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Robust Visual Tracking via Convolutional
Networks Without Training

Kaihua Zhang, Qingshan Liu, Yi Wu, and Ming-Hsuan Yang, Senior Member, IEEE

Abstract— Deep networks have been successfully applied to
visual tracking by learning a generic representation offline
from numerous training images. However, the offline training
is time-consuming and the learned generic representation may
be less discriminative for tracking specific objects. In this paper,
we present that, even without offline training with a large amount
of auxiliary data, simple two-layer convolutional networks can
be powerful enough to learn robust representations for visual
tracking. In the first frame, we extract a set of normalized patches
from the target region as fixed filters, which integrate a series
of adaptive contextual filters surrounding the target to define
a set of feature maps in the subsequent frames. These maps
measure similarities between each filter and useful local intensity
patterns across the target, thereby encoding its local structural
information. Furthermore, all the maps together form a global
representation, via which the inner geometric layout of the target
is also preserved. A simple soft shrinkage method that suppresses
noisy values below an adaptive threshold is employed to de-noise
the global representation. Our convolutional networks have a
lightweight structure and perform favorably against several state-
of-the-art methods on the recent tracking benchmark data set
with 50 challenging videos.

Index Terms— Visual tracking, convolutional networks, deep
learning.

I. INTRODUCTION

V ISUAL tracking is a fundamental problem in computer
vision with a wide range of applications. Although

much progress has been made in recent years [1]–[6],
it remains a challenging task due to many factors
such as illumination changes, partial occlusion, defor-
mation, as well as viewpoint variation [7]. To address
these challenges for robust tracking, recent state-of-the-art
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approaches [2]–[4], [8]–[12] focus on exploiting robust rep-
resentations with hand-crafted features (e.g., local binary
patterns [3], Haar-like features [4], [13], [14], histo-
grams [8], [10], HOG descriptors [11], and covariance descrip-
tors [12]). However, these hand-crafted features are not
tailored for all generic objects, and hence require sophis-
ticated learning techniques to improve their representative
capabilities.

Deep networks can directly learn features from raw data
without resorting to manual tweaking, and have gained much
attention with state-of-the-art results in complicated tasks such
as image classification [15], object recognition [16], detection
and segmentation [17]. However, considerably less attention
has been made to apply deep networks for visual tracking.
The main reason may be that there exists scarce amount of
data to train deep networks in visual tracking because only
the target state (i.e., position and size) in the first frame is
available. Li et al. [18] incorporate a convolutional neural
network (CNN) to visual tracking with multiple image cues
as inputs. In [19] an ensemble of deep networks have been
combined by online boosting method for visual tracking. Due
to the lack of sufficient training data, both methods have not
demonstrated competitive results compared to the state-of-the-
art methods. Another line of research resorts to numerous
auxiliary data for offline training the deep networks, and
then transfer the pre-trained model to online visual tracking.
Fan et al. [20] present a human tracking algorithm that learns
a specific feature extractor with CNNs from an offline train-
ing set (about 20000 image pairs). In [6] Wang and Yeung
develop a deep learning tracking method that uses stacked
de-noising auto-encoder to learn the generic features from a
large number of auxiliary images (1 million images). Recently,
Wang et al. [21] use a two-layer CNN to learn hierarchical
features from auxiliary video sequences, which takes into
account complicated motion transformations and appearance
variations in visual tracking. All these methods pay focus
on learning an effective feature extractor offline with a large
amount of auxiliary data, and do not fully take into account the
similar local structural and inner geometric layout information
among the targets over consequent frames, which is handy
and effective to discriminate the target from background for
visual tracking. For instance, when tracking a face, the appear-
ance and background in consecutive frames change gradually,
thereby providing strong similar local structure and geometric
layout in each tracked face (rather any arbitrary pattern from
a large dataset that covers numerous types of objects).

In this paper, we present a convolutional network based
tracker (CNT) which exploits the local structure and inner
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Fig. 1. Overview of the proposed representation. Input samples are warped into canonical 32 × 32 images. We first use the k-means algorithm to extract
a set of normalized local patches from the warped target region in the first frame, and extract a set of normalized local patches from the contextual region
surrounding the target. We then use them as filters to convolve each normalized sample extracted from subsequent frames, resulting in a set of feature maps.
Finally, the feature maps are de-noised by a soft shrinkage method, which results in a robust sparse representation.

geometric layout information of the target. The proposed CNT
has a simple architecture, and yet effectively constructs a
robust representation. Figure 1 shows an overview of our
algorithm. Different from the traditional CNNs [22], [23] that
use pooling with local averaging and subsampling to address
distortion variance, our algorithm employs a different pooling
process with an effective soft shrinkage strategy. The final
image representation in our method is global and sparse, which
is a combination of local feature maps. Such global image
representations are constructed based on the mid-level features
which extract low-level properties but remain close to image-
level information [24].

The main contributions of this work are summarized as
follows:

1) We present a convolutional network with a lightweight
structure for visual tracking. It is fully feed-forward
and achieves high speed performance for online tracking
even on a CPU.

2) Our method directly exploits local structural and inner
geometric layout information from data without manual
tweaking, which provides additional useful information
in addition to appearance for visual tracking.

3) Our method achieves competitive results based on the
recent tracking benchmark dataset with 50 challenging
videos [7] among 32 tracking algorithms including the
state-of-the-art kernel correlation filter (KCF) based
method [11] and transfer learning with transformation
Gaussian progress regression (TGPR) approach [12].
In particular, it outperforms the recently proposed deep
learning tracker (DLT) [6] (which requires offline train-
ing with 1 million auxiliary images) by a large mar-
gin (more than 10 percents in terms of area under
curve (AUC) of success rate).

II. RELATED WORK AND PROBLEM CONTEXT

Most tracking methods emphasize on designing effec-
tive object representations [25]. The holistic templates

(i.e., raw image intensity) have been widely used in visual
tracking [26], [27]. Subsequently, the online subspace-based
method has been introduced to visual tracking that handles
appearance variations well [28]. Mei and Ling [29] utilize a
sparse representation of templates to account for occlusion and
appearance variation of target objects, which has been further
improved [30], [31].

Meanwhile, the local templates have attracted much atten-
tion in visual tracking due to their robustness to partial
occlusion and deformation. Adam et al. [32] use a set of
local image patch histograms in a predefined grid structure
to represent a target object. Kwon and Lee [33] utilize a
number of local image patches to represent a target object
with an online scheme to update the appearance and geometric
relations. In [34] Liu et al. propose a tracking method that
represents a target object by the histograms of sparse coding
of local patches. However, the local structural information of
the target has not been fully exploited [34]. To address this
problem, Jia et al. [8] present an alignment-pooling method
to combine the histograms of sparse coding.

The discriminative methods have been applied to visual
tracking in which a binary classifier is learned online to
separate a target object from the background. Numerous
learning methods have been developed to further improve
classifiers rather than image features based on support vector
machine (SVM) classifiers [1], structured output SVM [4],
online boosting [35], P-N learning [3], multiple instance learn-
ing [36], and some efficient hand-crafted features are available
off the shelf like the Haar-like features [4], [5], [35], [36],
histograms [35], HOG descriptors [11], binary features [3],
and covariance descriptors [12].

Our approach for object tracking is biologically inspired
from recent findings in neurophysiological studies. First,
we leverage predefined convolutional filters (i.e., normal-
ized image patches from the first frame) to extract the
high-order features, which is motivated by the hierarchical
MAX (HMAX) model proposed by Serre et al. [37] that uses
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Fig. 2. Although the target appearance changes significantly due to illumination changes and scale variations, the simple cell feature map can well preserve
the local structure (e.g., the regions in the dotted ellipses) of the target and maintain its global geometric layout invariant to some degree.

Gabor filters instead. Furthermore, we combine local features
without changing their structures and spatial arrangements
to generate a global representation, which increases feature
invariance while maintaining specificity, thereby satisfying the
two essential requirements in cognitive tasks [38]. In con-
trast, the HMAX model [37] exploits a pooling mechanism
with a maximum operation to enhance feature invariance and
specificity. Second, our algorithm is based on a feed-forward
architecture, which is largely consistent with the standard
model of object recognition in the primate cortex [38] that
focuses on the capabilities of the ventral visual pathway
for immediate recognition without the help of attention or
other top-down visual information. The rapid performance
of the human visual system suggests humans most likely
use feed-forward processing due to its simplicity. Recently,
psychophysical experiments show that generic object tracking
can be implemented in a low level neural mechanism [39],
and hence our method leverages a simple template matching
scheme without using a high-level object model.

III. CONVOLUTIONAL NETWORKS FOR TRACKING

A. Image Representation

Given a target template, we develop a hierarchical represen-
tation architecture with a convolutional network including two
separated layers. Figure 1 summarizes the main components
of the proposed algorithm. First, local selective features are
extracted from a bank of filters convolving the input image at
each position. Second, selective features are stacked together
to form a global representation that is robust to appearance
variations. In the following, we refer these layers as the
simple and complex layers, with analogy to the V1 simple
and complex cells discovered by Hubel and Wiesel [40].

1) Preprocessing: Each input image is warped to a canon-
ical size of n × n pixels and represented by the intensity
values, denoted as I ∈ R

n×n . We densely sample a set of
overlapping local image patches Y = {Y1, . . . , Yl} centered
at each pixel location inside the input image through sliding
a window of size w × w (w is referred to as the receptive

field size), where Yi ∈ R
w×w is the i -th image patch and

l = (n −w + 1)× (n −w + 1). Each patch Yi is preprocessed
by subtracting the mean and �2 normalization that correspond
to local brightness and contrast normalization, respectively.

2) Simple Layer: After preprocessing, we employ the
k-means algorithm to select a bank of patches Fo =
{Fo

1, . . . , Fo
d } ⊂ Y sampled from the object region in the

first frame as fixed filters to extract our selective features
from simple cells. Given the i -th filter Fo

i ∈ R
w×w , its

response on the input image I is denoted with a feature map
So

i ∈ R
(n−w+1)×(n−w+1), where So

i = Fo
i ⊗ I and ⊗ is

the convolution operator. As illustrated in Figure 2, the filter
Fo

i is localized and selective that can extract local structural
features (e.g., oriented edges, corners, and endpoints), most
of which are similar despite significant appearance variation.
Furthermore, the simple cell feature maps have a similar
geometric layout (see the bottom row of Figure 2), which
shows that the local filter can extract useful information
across the entire image, and hence the global geometric layout
information can also be effectively exploited. Finally, the local
filters can be referred as a set of fixed local templates that
encode stable visual information in the first frame, thereby
handling the drifting problem effectively. Similar strategy has
been adopted in [10], [27], and [34], where [27] utilizes the
template in the first frame and the tracked results to update
the template whereas [10] and [34] exploit a static dictionary
learned from the first frame to sparsely represent the tracked
target.

The background context surrounding the object provides
useful information to discriminate the target from the back-
ground. As illustrated in Figure 1, we choose m background
samples surrounding the object, and use the k-means algorithm
to select a bank of filters Fb

i = {Fb
i,1, . . . , Fb

i,d } ⊂ Y from the
i -th background sample. We use the average pooling method
to summarize each filter in Fb

i , and generate the background
context filter set, Fb = {Fb

1 = 1
m

∑m
i=1 Fb

i,1, . . . , Fb
d =

1
m

∑m
i=1 Fb

i,d }. Given the input image I, the i -th background
feature map is defined as Sb

i = Fb
i ⊗ I. Finally, the simple cell
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Fig. 3. Illustration of the scale-invariant and shift-variant properties of
the complex cell features. Scale invariance: although the scale of the target
varies (top row), their corresponding simple feature maps (inside the black
rectangle) have similar local structures and geometric layouts due to wrapping
and normalization. Shift-variance: the bottom right feature map generated by
shifting the tracked target (in blue dotted rectangle) shows much difference
from the left ones due to inclusion of numerous background pixels.

feature maps are defined as

Si = So
i − Sb

i = (Fo
i − Fb

i ) ⊗ I, i = 1, . . . , d. (1)

3) Complex Layer: Each simple cell feature map Si simul-
taneously encodes the local structural and global geometric
layout information of the target object, thereby generating a
good representation to handle appearance variations. To fur-
ther enhance the strength of this representation, we con-
struct a complex cell feature map that is a 3D tensor C ∈
R

(n−w+1)×(n−w+1)×d , which stacks d different simple cell
feature maps constructed with the filter set F = Fo ∪ Fb.
This layer is analogous to the pooling layers in the CNNs [23]
and the HMAX model [37] where the local averaging and
subsampling operations are used in the CNNs and the local
maximum is used in the the HMAX model.

Both the HMAX model and CNNs focus on learning
shift-invariant features that are useful for image classification
and object recognition [6] which are less effective for visual
tracking (which requires higher position precision). As illus-
trated in Figure 3, if the complex features are shift-invariant,
both the blue dotted and the yellow bounding boxes can be
treated as the accurate tracking results, thereby leading to
the location ambiguity problem. To overcome this problem,
in [36] the multiple instance learning approach is developed
for visual tracking. In contrast, the shift-variant complex cell
features make our method more robust to location ambiguity.
Furthermore, the complex cell features are more robust to
scale variation, which is validated by the experimental results
(see Section IV).

After warping the target at different scales to a canonical
size (e.g., 32 × 32 pixels), the location of each useful part
in the target does not vary much in the warped images at this
abstract view, and hence the complex cell features can preserve
the geometric layouts of the useful parts at different scales as
well as their local structures due to normalizing the wrapped
target and local filters.

To make the feature map C more robust to appearance
variation, we utilize a sparse vector c to approximate vec(C)
by minimizing the following objective function

ĉ = arg mincλ‖c‖1
1 + 1

2
‖c − vec(C)‖2

2, (2)

where vec(C) ∈ R
(n−w+1)2d is a column vector by concate-

nating all the elements in C. We note that (2) has a closed
form solution that can be readily achieved by a soft shrinkage
function [41],

ĉ = sign(vec(C)) max(0, abs(vec(C)) − λ), (3)

where sign(·) is a sign function, and λ is set to
median(vec(C)), i.e., median value of vec(C), which adapts
well to target appearance variations during tracking as demon-
strated by the experimental results.

4) Model Update: The sparse representation c in (2) is
used as the target template and updated incrementally to
accommodate appearance changes over time for robust visual
tracking. We use a temporal low-pass filtering method [13],

ct = (1 − ρ)ct−1 + ρĉt−1, (4)

where ρ is a learning parameter, ct is the target template at
frame t and ĉt−1 is the sparse representation of the tracked
target at frame t − 1. This online update scheme not only
accounts for rapid appearance variations but also alleviates
the drift problem due to retaining the local filters in the first
frame.

5) Efficient Computation: The computational load for the
target or background template c mainly includes preprocessing
the local patches in Y as well as convolving the input image I
with d local filters in F . However, the operations of local
normalization and mean subtraction when preprocessing all
patches can be reformulated as convolutions on the input
image [42]. Therefore, only the convolution operations are
needed when constructing the target template, which can be
efficiently computed by the fast Fourier transforms (FFTs).
The computational complexity for computing each FFT is
O(2n2 log n) for each image patch of n × n pixels. Further-
more, since the local filters are independent during tracking,
the convolution operations can be easily parallelized, thereby
further reducing the computational load.

B. Proposed Tracking Algorithm

Our tracking algorithm is formulated within a particle filter-
ing framework. Given the observation set Ot = {o1, . . . , ot }
up to frame t , our goal is to determine a posteriori probability
p(st |Ot ) using the Bayes’ theorem:

p(st |Ot ) ∝ p(ot |st )

∫

p(st |st−1)p(st−1|Ot−1)dst−1, (5)

where st = [xt , yt , st ]� is the target state with translations
xt , yt and scale st , p(st |st−1) is the motion model that predicts
the state st based on the previous state st−1, and p(ot |st )
is the observation model that estimates the likelihood of
observation ot at the state st belonging to the target category.

We assume that the target state parameters are independent,
which are modeled by three scalar Gaussian distributions, and
hence it can be formulated as Brownian motion [28], i.e.,
p(st |st−1) = N (st |st−1,�), where � = diag(σx , σy, σs) is
a diagonal covariance matrix whose elements are the standard
deviations of the target state parameters. In visual tracking,
the posterior probability p(st |Ot ) in (5) is approximated
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TABLE I

TEST VIDEOS CATEGORIZED WITH 11 ATTRIBUTES

by a particle filter in which N particles {si
t }N

i=1 are sam-
pled with corresponding importance weights {π i

t }N
i=1, where

π i
t ∝ p(ot |si

t ).
The optimal state is achieved by maximizing the posteriori

estimation over a set of N particles

ŝt = arg max{si
t }N

i=1
p(ot |si

t )p(si
t |ŝt−1). (6)

The observation model p(ot |si
t ) in (6) plays a key role in robust

tracking, and the formulation in this work is

p(ot |si
t ) ∝ e−‖ct−ci

t ‖1
2 , (7)

where ct is the target template at frame t ,

ci
t = vec(Ci

t ) 	 w (8)

is the i -th candidate sample representation at frame t based on
the complex cell features, where 	 denotes the element-wise
multiplication, and w is an indicator function whose element
is defined as

wi =
{

1, if ct (i) 
= 0

0, otherwise,
(9)
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Algorithm 1 Convolutional Network Based Tracking

where ct (i) denotes the i -th element of ct . With the incre-
mental update scheme (4), the observation model is able to
adapt to the target appearance variations while alleviating the
drift problem. The main steps of the proposed algorithm are
summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed CNT is implemented in MATLAB and runs
at 5 frames per second on a PC with Intel i7 3770 CPU
(3.4 GHz), which is much faster than the DLT method [6]
that runs at 1.5 frames per second with an offline model
trained with GPU. The images of each video are converted
to grayscale, and the state of the target (i.e., size and location)
in the first frame is given by the ground truth. The size of
the warped image is set to 32 × 32 (n = 32). The receptive
field size is set to 6 × 6 (w = 6) and the number of
filters is set to d = 100. The learning parameter ρ in (4)
is set to 0.95 and the template is updated every frame. The
standard deviations of the target state of the particle filter
are set as follows: σx = 4, σy = 4, and σs = 0.01, and
N = 600 particles are used. All the parameters are fixed for
all experiments. The source code is available to the public at
http://faculty.ucmerced.edu/mhyang/project/cnt/.

B. Evaluation Metrics

For experimental validation, we use the tracking bench-
mark dataset and code library [7] which includes 29 trackers
and 50 fully-annotated videos (more than 29,000 frames).
In addition, we also add the results of two state-of-the-art
trackers including the KCF [11], TGPR [12], and DLT [6]
methods. To better evaluate and analyze the strength and
weakness of the tracking approaches, the videos are catego-
rized with 11 attributes based on different challenging factors
including low resolution (LR), in-plane rotation (IPR), out-of-
plane rotation (OPR), scale variation (SV), occlusion (OCC),
deformation (DEF), background clutters (BC), illumination
variation (IV), motion blur (MB), fast motion (FM), and out-
of-view (OV), which are summarized in Table I.

For quantitative evaluations, we use the success plot and
the precision plot [7]. The success plot is based on the
overlap ratio, S = Area(BT ∩ BG)/Area(BT ∪ BG), where
BT is the tracked bounding box and BG denotes the ground
truth. The success plot shows the percentage of frames with
S > t0 throughout all threshold t0 ∈ [0, 1]. The area under
curve (AUC) of each success plot serves as the second measure
to rank the tracking algorithms. Meanwhile, the precision plot
illustrates the percentage of frames whose tracked locations
are within the given threshold distance to the ground truth.
A representative precision score with the threshold equal
to 20 pixels is used to rank the trackers.

We report the results of one-pass evaluation (OPE) [7] based
on the average success and precision rate given the ground
truth target state in the first frame. For presentation clarity, we
only present the top 10 algorithms in each plot. The evaluated
trackers include the proposed CNT, KCF [11], TGPR [12],
Struck [4], SCM [10], TLD [3], DLT [6], VTD [2], VTS [43],
CXT [9], CSK [44], ASLA [8], DFT [45], LSK [34],
CPF [46], LOT [47], TM-V [48], KMS [49], L1APG [30],
MTT [31], MIL [36], L1APG [30], OAB [35], and SemiT [50].
Table II and Table III summarize the tracking results in terms
of success and precision plots. More results and videos are
available at http://faculty.ucmerced.edu/mhyang/project/cnt/.

C. Quantitative Comparisons

1) Overall Performance: Figure 4 shows the overall per-
formance of the top 10 performing tracking algorithms in
terms of success and precision plots. Note that all the plots
are generated using the code library from the benchmark
evaluation [7], and the results of KCF [11], TGPR [12], and
DLT [6] methods are provided by the authors. The proposed
CNT algorithm ranks first based on the success rate while third
based on the precision rate. In the success plot, the proposed
CNT algorithm achieves the AUC of 0.545, which outperforms
the DLT method by 10.9%. Meanwhile, in the precision plot,
the precision score of the CNT algorithm is 0.723 which
is close to the TGPR (0.766) and KCF (0.740) methods,
but outperforms the DLT approach by 14.5%. Note that the
proposed CNT algorithm exploits only simple sparse image
representation that encodes local structural and geometric
layout information of the target, and achieves competitive
performance to the Struck and SCM methods that utilize use-
ful background information to train discriminative classifiers.
Furthermore, even using only specific target information from
the first frame without learning with auxiliary training data,
the CNT algorithm performs well against the DLT method
(more than 10 percent in terms of both success and precision
rates), which shows that the generic features learned offline
from numerous auxiliary data may not adapt well to target
appearance variations in visual tracking.

2) Attribute-Based Performance: To analyze the strength
and weakness of the proposed algorithm, we further evalu-
ate the trackers on videos with 11 attributes [7]. Figure 5
shows the success plots of videos with different attributes and
Figure 6 shows the corresponding precision plots. We note
that the proposed CNT algorithm ranks within top 3 on 7
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TABLE II

SCORE OF SUCCESS PLOT (BEST VIEWED ON A COLOR DISPLAY). THE RED FONTS INDICATE THE BEST PERFORMANCE,
THE BLUE FONTS INDICATE THE SECOND BEST ONES, AND THE GREEN FONTS INDICATE THE THIRD BEST ONES

TABLE III

SCORE OF PRECISION PLOT (BEST VIEWED ON A COLOR DISPLAY). THE RED FONTS INDICATE THE BEST PERFORMANCE,
THE BLUE FONTS INDICATE THE SECOND BEST ONES, AND THE GREEN FONTS INDICATE THE THIRD BEST ONES

Fig. 4. The success plots and precision plots of OPE for the top 10 trackers. The performance score of success plot is the AUC value while the performance
score for each tracker is shown in the legend. The performance score of precession plot is at error threshold of 20 pixels. Best viewed on color display.

out of 11 attributes in success plots, and outperforms the
DLT method on all 11 attributes. In the precision plots, the
CNT algorithm ranks top 3 on 6 out of 11 attributes, and
outperforms the DLT method on all attributes. Since the AUC
score of the success plot is more informative than the score at
one position in the precision plot, in the following we analyze
the results based on these values.

On the image sequences with the low resolution attribute,
the CNT algorithm ranks first among all evaluated trackers.
The low resolution in the videos makes it difficult to extract
effective hand-crafted features from the targets. In contrast, the

CNT algorithm extracts dense information across the entire
target region by convolution operators to separate the target
from the background.

For the image sequences with attributes such as in-plane
rotation, out-of-plane rotation, scale variation, and occlusion,
the CNT algorithm ranks second among all evaluated algo-
rithms with a narrow margin (about 1 percent) to the best
performing methods, such as KCF, TGPR, and SCM. All these
methods use local image features as image representations.
The KCF method utilizes HOG features to describe the target
and its local context region, and the TGPR approach extracts
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Fig. 5. The success plots of videos with different attributes. The number in the title indicates the number of sequences. Best viewed on color display.

the covariance descriptors from the local image patches as
image representations. Furthermore, both CNT and SCM algo-
rithms employ local features extracted from the normalized
local image patches. The proposed CNT algorithm exploits
useful local features across the target object via filtering while
the SCM method learns local features from the target and
background with sparse representation. In addition, both CNT
and SCM algorithms utilize the target template from the first
frame to handle the drift problem.

On the videos with deformation and background clutter
attributes, the CNT algorithm ranks third which follows the
KCF and TGPR methods. The proposed CNT algorithm
encodes the geometric layout information using multiple sim-
ple cell feature maps (see Figure 2), which are stacked together
to form a global representation, thereby equipping it to account
for deformation. Furthermore, the CNT algorithm uses back-
ground context information that is online updated and pooled
in every frame, and hence provides helpful information to
accurately locate target objects from the background clutters.

On the videos with the illumination variation and motion
blur attributes, the CNT algorithm ranks fourth while the
TGPR and KCF methods perform well. All these methods
take advantage of normalized local image information, which
is robust to illumination variation. Furthermore, when the
target appearance changes significantly due to motion blur, the
relatively unchanged backgrounds exploited by these methods
provide useful information to help localize the target objects.

Finally, for the videos with fast motion attribute, the CNT
algorithm ranks fifth while the top 4 trackers are Struck, KCF,
TGPR, and TLD. The CNT algorithm does not address fast
motion well as simple dynamic model based on stochastic
search is used (similar to IVT, SCM and ASLA). In contrast,
the trackers based on dense sampling (e.g., Struck, KCF,
TGPR, and TLD) that detect all samples in a local region sur-
rounding the tracking location in the previous frame perform
well in the test set with the fast motion attribute as a large state
space is exploited. The performance of the CNT algorithm
can be further improved with more complex dynamic models,
by reducing the image resolution that equals to increasing
the search range, or with more particles in larger ranges.
Furthermore, there are 6 videos with the out of view attribute
and almost all of them contain fast moving objects. The
KCF and Struck methods perform well on image sequences
with both attributes. Struck employs a budgeting mechanism
that maintains useful target samples from the entire tracking
sequences, and can re-detect the target when it reappears after
out of view. On the other hand, CNT explores the stable visual
information from the first frame, which helps re-detect the
target objects.

D. Qualitative Comparisons

1) Deformation: Figure 7 shows some screenshots of the
tracking results in three challenging sequences where the
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Fig. 6. Precision plots of videos with different attributes. The number in the title indicates the number of sequences. Best viewed on color display.

Fig. 7. Qualitative results of the 10 trackers over sequences bolt, david3 and singer2, in which the targets undergo severe deformation. Best viewed on color
display.

target objects undergo large shape deformation. In the bolt
sequence, several objects appear in the scenes with rapid
appearance changes due to shape deformation and fast motion.
Only the CNT and KCF algorithms can track the targets
well. The TGPR, SCM, TLD, ASLA, CXT and VTS meth-
ods undergo large drift at the beginning of the sequence
(e.g.#10, #100). The DLT approach drifts to the background
at frame #200. The target object in the david3 sequence
undergoes significant appearance variations due to non-rigid
body deformation. Furthermore, the target appearance changes

drastically when the person walks behind the tree and turns
around. The DLT and CXT methods lose track of the target
object after frame #50. The SCM, ALSA and VTS methods
lock on some to parts of background when the person walks
behind the tree (e.g., #100, #135, and #170). The TLD
algorithm loses the target when the man turns around at
frame #135, and the Struck method locks on to the background
when the person walks behind the tree again (e.g., #220).
Only the CNT, TGPR and KCF methods perform well at all
frames. The target in the singer2 sequence undergoes both
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Fig. 8. Qualitative results of the 10 trackers over sequences car4, skating1 and trellis, in which the targets undergo severe illumination changes. Best viewed
on color display.

Fig. 9. Qualitative results of the 10 trackers over sequences david, freeman3 and singer1, in which the targets undergo scale variations. Best viewed on color
display.

deformation and illumination variations. Only the CNT, TGPR
and KCF algorithms perform well in the entire sequence.

2) Illumination Changes: Figure 8 shows some sampled
results in three sequences in which the target objects undergo
large illumination variations. In the car4 sequence, a moving
vehicle passes underneath a bridge and trees. Despite large
illumination variations at frames #180, #200, and #240, the
CNT algorithm is able to track the object well. The DLT,
CXT and VTS methods drift away from the target objects
when sudden illumination change occurs at frame #240.
Furthermore, the target object also undergoes scale variations
(e.g. #500 and #650). Although the TGPR and KCF methods
are able to successfully track the target objects, they do handle
scale variations well (e.g., #500 and #650). The target object
in the skating1 sequence undergoes rapid pose variations
and drastic light changes (e.g., #170, #360, and #400). Only
the CNT and KCF algorithms persistently track the object
from the beginning to the end. In the trellis sequence, the
object appearance changes significantly due to variations in
variations and pose. The DLT and ASLA methods drift away to

background (e.g., #510). The CNT, TLD and Struck algorithms
are able to stably track the target with much more better
accuracy than the TGPR, KCF and CXT methods.

3) Scale Variations: Figure 9 demonstrates some results
over three challenging sequences with targets undergoing
significant scale variations. In the david sequence, a person
moves from a dark room to a bright area while his appearance
changes much due to illumination variation, pose variation,
and a large scale variation of the target object with respect
to the camera. The ASLA and VTS algorithms drift away to
the background (e.g. #479 and #759). The KCF and Struck
methods do not handle scale well with lower success rate
than the CNT algorithm. In the freeman3 sequence, a per-
son moves towards the camera with a large scale variation
in his face appearance. Furthermore, the appearance also
changes significantly due to pose variation and low resolution.
The TGPR, KCF, Struck, DLT and VTS methods drift away
to the background regions (e.g., #380, #450, and #460)
whereas the CNT, SCM, TLD and CXT algorithms perform
well. In the singer1 sequence, the target object moves far away
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Fig. 10. Qualitative results of the 10 trackers over sequences jogging-1, suv and woman, in which the targets undergo heavy occlusion. Best viewed on color
display.

Fig. 11. Qualitative results of CNT with and without model update over six long sequences sylvester, mhyang, dog1, lemming, liquor, and doll.

from the camera with large scale change. The TGPR, KCF,
Struck and VTS methods do not perform well while the CNT,
SCM, ASLA and CXT approaches achieve better performance.

The CNT algorithm handles scale variation well because its
representation is built on scale-invariant complex cell features
(see Figure 3).
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Fig. 12. Success plots and precision plots of OPE for CNT with different components. The DLT is taken as a baseline.

4) Heavy Occlusion: Figure 10 shows sampled results of
three sequences where the targets undergo heavy occlusions.
In the jogging-1 sequence, a person is almost fully occluded
by the lamp post (e.g., #75 and #80). Only the CNT, TGPR,
DLT and CXT algorithms are able to re-detect the object when
the person reappears in the screen (e.g., #80, #150, #250).
In the suv sequence, the target vehicle is frequently occluded
by dense tree branches (e.g., #516, #549, #681, and #799).
In addition, there are several shot changes in this video. The
TGPR, Struck, TLD, ASLA and VTS methods do not perform
well (e.g., #945) Although the target person is occluded for a
long duration in the woman sequence (e.g., #114 and #374),
the CNT, TGPR, KCF, SCM, Struck and ASLA algorithms
achieve favorable results. All these methods use local features
that are robust to occlusions.

E. Analysis of CNT

To validate the effectiveness of key components of CNT,
we propose three variants of CNT: one utilizes random patch
filters to replace the filters learned by k-means algorithm, one
does not involve the soft shrinkage process, and another one
does not employ the model update scheme (4). Figure 12
shows the quantitative results on the benchmark dataset. The
results show that with random patch filters, the AUC score
of success rate reduces by 7%. Meanwhile, the CNT without
soft shrinkage can only achieve AUC score of 0.469, which
is lower than the original CNT method with 0.545 by a large
margin. However, both variants perform better than the DLT
method. Furthermore, the results for the CNT method without
model update are worse than the proposed algorithm. Figure 11
shows some sampled results over six long sequences. In the
mhyang and dog1 sequences, the CNT is able to track the
targets stably over all frames, which performs much better than
the CNT without model update. In the other four sequences
sylvester, lemming, liquor, and doll, the CNT performs favor-
ably for most frames in each sequence while the CNT without
model update undergoes severe drift after a few frames. These
results show that all the filers, soft shrinkage, and model
update components play key roles in the proposed algorithm
for robust visual tracking.

V. CONCLUDING REMARKS

In this paper, we propose a two-layer feed-forward convo-
lutional network that generates an effective representation for

robust tracking. The first layer is constructed by a set of simple
cell feature maps defined by a bank of filters, in which each
filter is a normalized patch extracted from the first frame with
simple k-means algorithm. In the second layer, the simple cell
feature maps are stacked to a complex cell feature map as the
target representation, which encodes the local structural and
geometric layout information of the target. A soft shrinkage
strategy is employed to de-noise the target representation.
In addition, an effective online scheme is adopted to update the
representation, which adapts to the target appearance variations
during tracking. Extensive evaluation on a large benchmark
dataset demonstrates the proposed tracking algorithm achieves
favorable results against some state-of-the-art methods.
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