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Visual Tracking via Coarse and Fine Structural
Local Sparse Appearance Models
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Abstract— Sparse representation has been successfully applied
to visual tracking by finding the best candidate with a minimal
reconstruction error using target templates. However, most sparse
representation-based tracking methods only consider holistic
rather than local appearance to discriminate between target
and background regions, and hence may not perform well when
target objects are heavily occluded. In this paper, we develop a
simple yet robust tracking algorithm based on a coarse and fine
structural local sparse appearance model. The proposed method
exploits both partial and structural information of a target object
based on sparse coding using the dictionary composed of patches
from multiple target templates. The likelihood obtained by
averaging and pooling operations exploits consistent appearance
of object parts, thereby helping not only locate targets accurately
but also handle partial occlusion. To update templates more
accurately without introducing occluding regions, we introduce
an occlusion detection scheme to account for pixels belonging to
the target objects. The proposed method is evaluated on a large
benchmark data set with three evaluation metrics. Experimental
results demonstrate that the proposed tracking algorithm
performs favorably against several state-of-the-art methods.

Index Terms— Object tracking, coarse and fine structural local
sparse appearance model, alignment-pooling.

I. INTRODUCTION

V ISUAL tracking has long been an important problem
in computer vision including applications of video sur-

veillance, vehicle navigation, motion analysis, and human
computer interfaces, to name a few. While numerous tracking
methods have been proposed, it remains a challenging problem
due to factors such as partial occlusion, illumination change,
pose change, background clutters and viewpoint variations.

In this paper, we propose an efficient tracking algorithm
based on coarse and fine structural local sparse models.
The proposed method exploits consistency of local appear-
ance while the global appearance change over time.
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Image patches in a fixed spatial layout within a target region
are extracted and encoded using a dictionary composed of
patches from multiple target templates with sparsity con-
straints. The coding coefficients of patches across multiple
templates are integrated via averaging and alignment pooling
to obtain a robust representation of a target object. This
operation helps locate an object accurately and handle partial
occlusion effectively by exploring consistent parts of the
target in an image sequence. To make its representation more
distinctive and robust, we compute the likelihood of candidate
regions based on the combination of patches extracted with
coarse-and-fine strategy. The dictionary for local sparse coding
is generated from the set of collected templates that are
updated sequentially based on an incremental subspace learn-
ing method [1]. We introduce a scheme to detect occluding
parts in roder to update template more accurately without
including occluding pixels. The update module facilitates
the proposed tracker account for target appearance variations
caused by pose change and illumination change.

The contributions of this work are summarized as follows.
First, sparse codes of local patches are computed via averaging
and alignment pooling to model object appearance for visual
tracking. A novel algorithm for constructing coarse and fine
dictionaries is presented for robust representation. Second,
a template update scheme based on incremental subspace
learning is proposed to describe appearance change of objects.
The template update module is equipped with an occlusion
detection module to include pixels belonging to foreground
objects. Third, extensive experiments on a large benchmark
dataset are carried out to evaluate the performance of the
proposed algorithm against the state-of-the-art methods.

II. RELATED WORK AND PROBLEM CONTEXT

Broadly speaking, tracking algorithms can be categorized
as either generative or discriminative. Discriminative methods
formulate visual tracking as a classification problem which
aims to distinguish foreground objects from background
regions by exploiting visual information from both classes.
Avidan [2], [3] uses support vector machines and boosting
algorithms as classifiers respectively for visual tracking.
Grabner and Bischof [4] propose an online boosting method
to select discriminative features for dynamic scene change,
and a semi-online boosting algorithm was proposed to address
the drifting problem [5]. Babenko et al. [6] introduce an online
multiple instance learning (MIL) approach for visual tracking,
which puts ambiguous positive and negative samples into bags
to learn a discriminative classifier. Kalal et al. [7] propose the
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P-N learning algorithm that exploits the underlying structure
of positive and negative samples for learning effective
classifiers for object tracking. Wang et al. [8] develop a
discriminative appearance model based on superpixels which
facilitates distinguish between target objects and background
regions. As the structural appearance information is not fully
exploited, these methods are likely to drift when the target
objects undergo heavy occlusion and large scale change.

Generative methods formulate the tracking problem as
searching for the region most similar to a target model.
Templates based methods use color histogram [9] and pixel
intensity [10] to model object appearance for visual tracking.
However, simple representations do not work well when
targets appear in cluttered backgrounds or heavily occluded
as the spatial information of object appearance is not used.
Matthews et al. [11] develop a template update method that
alleviates the drifting problem by aligning with the example
in the first frame. However, these approaches with single
adaptive target appearance models are not likely to model the
appearance variation well caused by large or lighting scale
change, and heavy occlusion.

Numerous methods have been developed to address the
above-mentioned issues. In [1], a subspace model is learned
incrementally during the tracking process to account for
appearance change of target objects. Kwon and Lee [12] utilize
multiple observation and motion models within a particle filter
framework to model appearance change caused by pose and
illumination variation. Recently, tracking methods based on
sparse representations have been proposed. Mei and Ling [13]
and Mei et al. [14]) use a number of holistic templates of a
target object as an appearance model and determine the most
likely object regions by solving one �1 minimization problem
for each drawn particle. Most of these methods employ holistic
representation schemes and hence do not perform well when
target objects are heavily occluded. Adam et al. [15] propose
a fragment-based tracking method which partitions a target
template into several patches where each one is tracked
locally by measuring region similarity. The object location is
estimated by combing the vote maps of these tracked patches.
Liu et al. [16] employ a local appearance model based on
histograms of sparse coefficients and the mean-shift algorithm
for object tracking. However, most methods based on local
appearance models assign equal weights to fragments and do
not consider lage scale change.

Sparse representation has been successfully applied in
numerous vision applications [13], [17]–[22]. With sparsity
constraints, one image can be represented in the form of linear
combination of only a few basis vectors. In [13] and [14],
a target candidate is sparsely represented by a linear com-
bination of the dictionary atoms constructed from target and
trivial templates. However, this approach entails solving one
�1 minimization with non-negativity constraints for each
drawn particle for determining the most likely object location.
The computational issues with �1 minimization problems are
alleviated by approximation techniques and resampling meth-
ods [14], [23]. In [22], dynamic group sparsity constraints of
spatial and temporal adjacency are introduced to model object
appearance for robust tracking. Zhang et al. [24] propose

Fig. 1. Illustration of local patches and feature vectors formed by averaging
and alignment pooling. Each local patch (where the first one is denoted in red,
second one in yellow, and the last one in blue) is sparsely represented by the
template set with a vector (where elements with larger values are denoted by
darker color). These sparse coefficients are averaged and pooled to represent
a target object.

a tracking method within the multi-task learning framework
which exploits similarities among candidate regions based
on joint group sparsity constraints. In [16] and [25], local
sparse representation schemes are employed to model object
appearance. The former method trains a classifier where an
object is described by local sparse representation, and the latter
one models the basis distribution of a target object with a
histogram of sparse codes. Due to the representation of local
patches, these methods perform well when target objects are
heavily occluded. In addition, mean shift algorithms and voting
maps are used to track target objects efficiently.

Our work bears some similarity to [16] in that both
use sparse coding to model local appearance of the object.
However, we extract coarse and fine local image patches in
a fixed spatial layout to construct dictionaries. More impor-
tantly, the structural information contained in local patches are
exploited to model target appearance. We show that histograms
of local sparse coefficients can be integrated via the proposed
averaging and alignment pooling to exploit consistent local
appearance of objects for robust tracking. Instead of using
fixed templates [15] or dictionary atoms [16] learned from
the first frame, we update the proposed appearance model
adaptively. In [13] and [14], the template is updated according
to both the weights assigned to each template and the similarity
between templates and current estimation of target candidate.
In contrast, we use incremental subspace learning to update
templates. Furthermore, an occlusion detection method is
developed in this work to alleviate the problem where pixels
belonging to the background regions are inadvertently included
by straightforward model update schemes.

III. COARSE AND FINE STRUCTURAL LOCAL

SPARSE APPEARANCE MODEL

Most tracking methods use either multiple holistic templates
or local appearance models to represent the target. In this
paper, we develop coarse and fine structural local appearance
models based on sparse representation of both multiple tem-
plates and local appearance models. That is, we exploit the
consistent local appearance of the object and highlight the
role of these fragments for visual tracking. Figure 1 shows
the main steps of feature formation in this work.
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A. Object-Specific Dictionary

For object classification and detection, a dictionary is usu-
ally learned by K-Means or sparse decomposition algorithm
such as the K-SVD method [26]. A dictionary learned from
patches or SIFT features [27] of a large dataset is expected to
cover generic and distinctive patterns of objects from numer-
ous classes. However, different from object classification and
detection, object-specific dictionary models the target objects
of interrest better for visual tracking. It has been shown that
dictionaries composed of local image patches extracted from
the region of a target object in a fixed spatial layout perform
well for visual tracking [22], [25], [28].

To construct the dictionary, we collect a set of n templates
to model object appearance T = [T1, T2, . . . , Tn] where
Ti is an image observation of a target object. Given T, we
extract a set of local image patches inside the target region
using a fixed spatial layout as shown in Figure 1. These
local patches are used as the dictionary atoms to encode the
local patches inside the possible candidate regions, i.e., D =[
d1, d2, . . . , d(n×N)

] ∈ R
d×(n×N) , where d is the dimension

of the image patch vector, and N is the number of local
patches sampled within the target region. Each column in D is
obtained by �2 normalization on the vectorized local image
patches extracted from T. While each local patch represents
one fixed part of the target object, the local patches altogether
represent the holistic structure of the target. For a target
candidate region, we extract the corresponding local patches
with Y = [

y1, y2, . . . , yN
] ∈ R

d×N .

B. Sparse Coding and Averaging

With the sparsity assumption, each local patch within a
target region can be represented as the linear combination of
only a few basis elements of the dictionary by solving

min
bi

‖yi − Dbi‖2
2 + λ‖bi‖1,

s.t. bi � 0, (1)

where yi denotes the i -th vectorized local image patch,
bi ∈ R

(n×N)×1 is the corresponding sparse code of that
local patch, and bi � 0 enforces that all the elements of
bi are nonnegative. Note B = [b1, b2, . . . , bN ] represents the
sparse coefficients of patches within one candidate region. The
proposed algorithm also accommodates another sparse coding
method, that is, the elastic net method [29] based on �1/�2
regularization. Using the �1/�2 sparse coding method, each
local patch is modeled by

min
bi

‖yi − Dbi‖2
2 + λ1‖bi‖1 + λ2

2
‖bi‖2

2,

s.t. bi � 0. (2)

The elastic net method combines the �1 and �2 regularization
together with the hope of getting the advantages of both.
�1 regularization tends to find sparse solution but introduces
a large Mean Square Error (MSE) error, while �2 is able to
produce small MSE. The effects of these two coding methods
on visual tracking are presented in Section VI.

Since the template set contains varying appearances of a
target object, the local patterns that frequently appear at the

same position are more distinctive than others, and play an
important role for robust representation and good alignment.
For example, the appearance change on the upper body of a
pedestrian is much less than that of the lower body. Thus, it
is more effective to recognize this person by the patches from
the upper body than other parts. The encoding vector of a
local patch is divided into several segments according to the
template that each element of the vector corresponds to, i.e.,
b�

i =
[
b(1)�

i , b(2)�
i , . . . , b(n)�

i

]
, where b(k)

i ∈ R
N×1 denotes

the segment of encoding vector bi corresponding to the k-th
template. To enhance the stability of the sparse coding results,
we use equally weighted averaging on different segments of
encoding vectors. That is, these segmented coefficients are
equally weighted to obtain vi for the i -th patch,

vi = 1

C

n∑

k=1

b(k)
i , i = 1, 2, . . . , N, (3)

where vector vi corresponds to the i -th local patch and C is
a normalization term. All the vectors vi of local patches in
a candidate region form a square matrix V and are further
processed by the proposed pooling method.

C. Pooling

A single local patch can only capture some local appearance
of the object. To model the whole object, it is necessary to
pool the information contained in averaged coefficient vectors.
We use the alignment pooling instead of the max pooling [18],
[30], [31], or directly concatenating these vectors, as it helps
alleviate the influence of irrelevant patches. In addition, the
alignment pooling method makes full use of the structural
information contained in the dictionary and hence helps to
locate target objects accurately. After vi is computed, each
local patch at a certain position within a candidate region
is represented by patches at different positions of templates.
The local appearance of a patch with small variation is best
described by the blocks at the same positions of the templates
(i.e., using the sparse codes with the aligned positions).
For example, the top left corner patch of the target object
in Figure 1 should be best described by patches at the
same position of templates. Therefore, the first element of v1
should have the largest coefficient value. We use the diagonal
elements of the square matrix V as the pooled feature (See
Figure 1), i.e.,

f = diag(V), (4)

where f is the vector of proposed alignment pooled features.
After consistent local patterns are computed by the equally
weighted averaging operation, this pooling method further
aligns local patterns between target candidate and templates
based on the locations of structural blocks. Figure 2 shows
that the tracking result that aligns well with the target object
has a higher score computed with the proposed pooling method
than the poorly aligned one.

The aligned tracking results also facilitate the incremental
subspace learning for template update as the alignment pooling
operation enables the proposed appearance model to deal
with partial occlusion. When occlusion occurs, encodings of
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Fig. 2. Comparison of the pooled features obtained by averaging and alignment-pooling as for both good and bad candidates. The upper and lower rows
show the pooled features for one good candidate (i.e., a region close to ground-truth tracking result) and one bad candidate (i.e., a region with large tracking
error) regions. With only averaging operations, the sparse coefficients for two regions are similar. However, the sparse coefficients after alignment pooling are
significantly different.

Fig. 3. Examples of pooled vectors. The proposed alignment pooling method
facilitate determine stable parts either due to large appearance change (top)
or partial occlusion (bottom) as indicated by the feature values.

the occluded local patches become dense due to significant
appearance change, thereby leading to smaller values in f .
However, local patches which are not occluded have similar
appearance to templates, and therefore can be described well
by a few sparse coefficients and large values in f . The
similarity between target candidate regions and the set of
target templates computed in this way is still higher than
other candidates. Some examples of the pooled vectors are
shown in Figure 3. In the first row, values correspond to
the pooled vectors (denoted by red bars) of the upper body
(patch 1, 4, and 7) are larger, and the tracking results align
with the ground truth locations well. This shows the pro-
posed alignment pooling method facilitates capturing stable
structural parts of the target. In the second row, the proposed
appearance model with alignment pooling helps handle partial
occlusion by down-weighting the contribution of occluded
local patches (denoted by yellow bars).

D. Coarse and Fine Representation

To further improve tracking performance, we adopt a coarse
and fine representation to model target appearance. We extract

local patches of different sizes within a target region and
construct multiple dictionaries at coarse and fine scales. Based
on these coarse and fine dictionaries, we obtain pooled features
and compute coarse and fine similarities between candidate
regions and a target model. The appearance model constructed
at fine scale helps distinguish foreground targets from back-
ground regions whereas the appearance model at coarse scale
facilitates account for appearance change due to large defor-
mation. The final likelihood of a target region is computed by
the combination of similarities computed at coarse and fine
scales. We evaluate different weighting methods to compute
the likelihood using Eq. 5 including similarities computed
based on finer resolution patches are weighted more than those
based on coarser ones; similarities computed based on coarser
ones are weighted more; and they are equally weighted.

ηo =
M∑

m=1

αmηm
o , (5)

where ηm
o is the similarity computed on the m-th scale and αm

denotes the weight of the m-th scale. The effects of different
weight combination are presented and discussed in Section VI.

IV. TEMPLATE UPDATE

Visual tracking with fixed templates is likely to fail in
dynamic scenes as it does not consider inevitable appearance
change due to factors such as illumination and pose variation.
However, if the templates are updated too frequently with
new observations, errors are likely to accumulate and the
tracker will drift away from the target objects. Numerous
approaches [1], [11], [13], [32] have been proposed for online
update of appearance models. Ross et al. [1] extend the
sequential Karhunen-Loeve algorithm and propose an incre-
mental subspace learning algorithm to update both eigenbasis
and mean vectors as new observations arrive. However the
subspace based representation is sensitive to partial occlu-
sion due to the assumption that the error term is Gaussian
distributed with small variance. Mei and Ling [13] and
Mei et al. [14] apply sparse representation to visual tracking
and employ both target templates and trivial templates to
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model object appearance and handle outliers (e.g., partial
occlusion). However, this method is prone to fail when target
objects are occluded by other objects with similar appearance.
In this paper, we exploit both multiple templates and local
sparse representation to adapt templates to appearance change
of target objects, and reduce the influence of the occluded
target templates.

When un-occluded, local patterns of a target object in the
current and previous frames can be well represented mutually.
However, it is not the case when a target object is occluded.
Different from the appearance model described in Section III,
we use patches of the tracking result to encode each patch di

of each template in T,

min
si j

∥
∥
∥di j − Ŷsi j

∥
∥
∥

2

2
+ λ

∥
∥
∥si j

∥
∥
∥

1
,

s.t. sij � 0, (6)

where di j is the i -th patch of the j -th template Tj, Ŷ represents
local patches of the tracking result. Since the template set
covers a wide range of target appearance, a non-occluded and
consistent local pattern on the target is likely to match its
corresponding patch at the same position of at least template.
Hence, for a non-occluded patch of a target region, it is likely
to use the one within the tracking result to represent the one
within a template (i.e., only a few coefficients are large).
However, an occluded patch may not match a similar one in
the template set due to the drastic difference in appearance
and thereby contributes little to the representation of the patch
within a template (i.e., the coefficients are small). For each
patch within the tracking result, we use the maximum of
sparse coding coefficients over all templates. A threshold γ is
used to determine whether one local patch within the tracking
result can be used to effectively model target appearance in
the previous frame.

ti = max
j

{si j }, i = 1, 2, . . . , N, j = 0, 1, . . . , n − 1, (7)

where ti is the maximum response corresponding to the
i -th patch of the tracking results. We compute gi to determine
whether a local patch is occluded or not,

gi (ri , ci ) =
{

1, ti (i) > γ,

0, otherwise,
(8)

where ri and ci are image coordinates of the pixel in the
i -th patch pi . The occlusion of patches within the tracking
result are accumulated to form a mask via Eq. 9 which can be
used to describe the occlusion distribution within the whole
target object.

M(r, c) =
∑

{i|P(r,c)=pi (ri ,ci )}
gi(ri , ci ), (9)

where P is the image patch of the tracking result, r and c are
coordinates on that image patch.

In addition, we use the incremental subspace model [1] to
represent a target object over a long duration. The tracking
result is then reconstructed in terms of the occlusion extent of
each local patch, and is represented as a weighted combination

Fig. 4. Examples of the template set obtained by the proposed update method.
(a) The template set consisted of images updated with different appearance
change of the target object when it is not occluded. (b) The template set is
updated with images without introducing occluding regions when the target
object is occluded.

Algorithm 1 Template Update

of its original appearance and its incremental subspace repre-
sentation. This not only reduces the risk that the occlusion is
updated into the dictionary, but adapts the model to appearance
change of a target object. Finally, to reduce the artifacts of
reconstruction by piecing together overlapped patches, the
guided image filter [33] is used for smoothing. Hence, the
new template is modeled as

Tnew = f (P � M + R � (1 − M), R), (10)

where f denotes the guided image filter, � denotes element-
wise multiplication, Tnew represents the image patch of the
new template, R is the reconstructed image patch using the
incremental subspace reconstruction of the tracking result and
also acts as guidance image. The new template Tnew is then
used for update of both the template set and the incremental
subspace model. Some templates obtained from the above-
mentioned process are shown in Figure 4.

The templates obtained when no occlusion occurs adapt to
the appearance change of the target. When a target object
is occluded, the templates focus on the parts which are
not contaminated. With this template update approach, the
proposed algorithm adapts to appearance change of target
objects and handles occlusion as well. The template update
method is summarized in Algorithm 1.

V. BAYESIAN TRACKING FRAMEWORK

Visual tracking is formulated within the Bayesian infer-
ence framework in this paper. Let affine parameters xt ={
lx , ly, θ, s, r, τ

}
represent the target state where lx and ly
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denote the horizontal and vertical translation, θ denotes the
rotation, s and r are the scale and aspect ratio, and τ is the
skew parameter. Given a set of observations z1:t = {z1, . . . , zt }
up to the t-th frame, the target state variable xt can be
computed by the maximum a posteriori (MAP) estimation,

x̂t = arg max
xi

t

p
(

xi
t |z1:t

)
, (11)

where xi
t is the state of the i -th sample. Based on the Markov

assumption, the posterior probability p
(
xi

t |z1:t
)

can be inferred
by the Bayes’ theorem recursively,

p
(

xi
t |z1:t

)
∝ p

(
zt |xi

t

) ∫
p

(
xi

t |xt−1

)
p (xt−1|z1:t−1) dxt−1,

(12)

where p
(
xi

t |xt−1
)

is the dynamic model and p
(
zt |xi

t

)
denotes

the observation model. The dynamic model p
(
xi

t |xt−1
)

describes the temporal correlation of the target states between
consecutive frames. The state variables are assumed to be inde-
pendent of each other and Gaussian distribution is employed to
model the target motion between two consecutive frames. The
state transition is formulated as p

(
xi

t |xt−1
) = N

(
xi

t ; xt−1,	
)
,

where 	 is a diagonal covariance matrix whose elements
are the variances of affine parameters. In this work, we only
consider translationa and scale change, so we set the variance
of affine parameters θ and τ to 0.

The observation model p
(
zt |xi

t

)
describes the likelihood

of the observation zt at state xi
t , which plays an important

role in robust tracking. The observation model in this work is
characterized by the similarity between the candidates and the
set of target templates,

p (zt |xt ) ∝ ηo, (13)

where ηo represents the similarity described in Section III.
With the template updated incrementally, the observation
model is able to adapt to the appearance change well.

VI. EXPERIMENTS

The proposed algorithm is implemented in MATLAB and
runs at 2.5 frames per second on an Intel Core i7-860
(2.8 GHz) machine. The �1 and �1/�2 minimization problems
are solved with the SPAMS package [34]. The regularization
constant λ is set to 0.01, and λ1 and λ2 are respectively
set to 0.05 and 0.01 in all experiments. For the dynamic
model, we set the variances of the affine parameters to{
lx , ly, θ, s, r, τ

} = {6, 6, 0.01, 0.0, 0.005, 0} for all experi-
ments. The number of samples for particle filter is set to 800.
For each sequence, the location of the target object is manually
labeled in the first frame. We normalize each target image
patch to 32×32 pixels and extract local patches of size 16×16
and 8×8 within the target region with 8 pixels as step length.
The parameters n and N for local appearance models are
set to 10 and 9 respectively. The threshold γ for occlusion
detection is set to 0.5. As for the process of template update,
20 eigenvectors are used to carry out incremental subspace
learning every 5 frames in all experiments.

Fig. 5. Success plots of OPE for the different template update stratgies.

TABLE I

PROPOSED ALGORITHM WITH DIFFERENT CONFIGURATIONS
BASED ON COARSE AND FINE ADAPTIVE STRUCTURAL

LOCAL APPEARANCE MODELS

We assess the proposed algorithm on a large benchmark
dataset [35] using three evaluation criteria. The one-
pass evaluation (OPE) criterion uses the ground truth object
location in the first frame for evaluation. The spatial robustness
evaluation (SRE) criterion perturbs the ground truth object
location in the first frame with some offset and scale change
for evaluation. The temporal robustness evaluation (TRE)
initializes a tracker with ground truth objet locations at
different frame for evaluation. For presentation clarity, only
the top 10 trackers are presented in the following figures.

A. Comparision of Different Template Update Strategies

In this section, we present experimental results based on
adaptive structural local sparse appearance (ASLA) [28] model
but with different template update strategies. ASLA_update
denotes the method using the proposed template update
strategy without guided filter, and ASLA_update_gf denotes
the proposed complete template update strategy. Figure 5
shows that the proposed template update strategy improves
the tracking performance. That can be attributed to the added
occlusion detection module. It alleviates the problem where
pixels belonging to the background regions are inadvertently
included by straightforward model update schemes. Besides,
the use of guided filter also contributes to the improvement.

B. Proposed Algorithm With Different Configurations

In this section, we present experimental results using the
proposed algorithm with different sparse coding methods
and weights for coarse and fine representations. Table I
shows different configurations of the proposed algorithm based
on sparse coding methods (i.e., �1 and �1/�2) and weight
combinations based on fine and coarse scales (α f and αc).
We evaluate all six coarse and fine configurations and the
tracking algorithm with ASLA on the benchmark dataset.
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Fig. 6. Success plots of OPE, SRE, TRE for the proposed method with different configurations.

Fig. 7. Overall success plots of OPE, SRE, TRE for the proposed algorithm and state-of-the-art trackers.

Figure 6 shows the experimental results where all methods
with the proposed coarse and fine adaptive structural local
appearance (MASLA) models perform better than the single
scale ASLA approach. These results indicate the effectiveness
of coarse and fine local appearance models and the update
module for visual tracking. Overall, the proposed algorithm
with larger weights assigned to finer scale local appearance
model performs better. This can be attributed to the fact
that fine scale local appearance models capture more dis-
tinctive and representative patterns for separating foreground
target objects from the background. Regarding sparse coding
methods, the proposed algorithm with �1/�2 sparse coding
(i.e., MASLA_4) performs slightly better due to its stability.

C. Comparison With State-of-the-Art Methods

In this section, we evaluate the proposed algorithm against
29 state-of-the-art tracking methods on the benchmark dataset
using three evaluation metrics with success plots. We use the
MASLA_4 tracking method for comparisons with other state-
of-the-art approaches. Figure 7 shows the overall performance
of the evaluated tracking methods. The proposed MASLA_4
algorithm performs favorably against the other trackers using
all the evaluation metrics, especially SRE and TRE that are
designed to evaluate robustness with respect to spatial and
temporal perturbations. Through the operations of averaging
and alignment pooling, the proposed algorithm exploits con-
sistent local patterns for robust visual tracking, and reduces the
effects of noisy occluding pixels. The proposed coarse and fine
structural representation further enhances robustness to scales
of initialization. We further analyze the tracking results based
on challenging attributes of the sequences in the benchmark
dataset.

1) Occlusion: Figure 8 shows the top performing tracking
methods for image sequences where target objects are
occluded where the SCM [36] and MASLA_4 methods
perform well. We note that these two methods use local

appearance models based on sparse representation. The
averaging and alignment pooling operators of the proposed
algorithm exploit consistent and un-occluded local patterns
of the object for visual tracking. In addition, the influence of
occluded pixels is alleviated by the proposed pooling method
(See Figure 2). The template update module facilitates
occluding pixels from being included in the appearance
model (See Figure 4) as occluders are detected by comparing
local patches within the estimated candidate region and the
corresponding ones in the template set.

2) Illumination Variation: For sequences where objects
undergo large illumination change, local appearance based
methods such as MASLA_4, SCM, ASLA and LSK [16] perform
as shown in Figure 9. Although illumination variation is not
uniform on a target object (i.e., holistic view), the intensity
change on local patches tend to be the same. The �2 normal-
ization of local image regions and the sparse representation
facilitate the proposed local appearance model to account for
illumination change of target objects. For the Struck [37] and
TLD [7] methods that perform well in these image sequences,
local contrast features such as Haar-like features and pixel
comparisons are used to represent target objects.

3) Deformation: Similar to most existing online tracking
methods, the proposed algorithm is developed mainly for
rigid objects with certain deformation. The appearance change
due to deformation is accounted for by the averaging and
pooling operators. The local patches with frequently changing
appearance do not always have good matches at the same
position of the templates. That is, it requires a few dictionary
words to describe these patches. As such, the weights of
such patches are lower after averaging and alignment pooling
(Similar to the example illustrated in Figure 2). Overall, the
proposed MASLA_4 method performs well in handling object
deformation as shown in Figure 10.

4) Background Clutters: For image sequences with mul-
tiple similar objects, tracking methods based on generative
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Fig. 8. Success plots of OPE, SRE, TRE in sequences with occlusion.

Fig. 9. Success plots of OPE, SRE, TRE in sequences with illumination variation.

Fig. 10. Success plots of OPE, SRE, TRE in sequences with deformation.

Fig. 11. Success plots of OPE, SRE, TRE in sequences with cluttered background.

representations may not perform well. On the other hand,
discriminative methods such as Struck, SCM, MASLA_4, and
ASLA, perform favorably as shown in Figure 11. These dis-
criminative methods construct appearance models based on a
template set covering a wide range of target appearance for
separating foreground objects from the background. Moreover,
the coarse and fine strategy in the proposed method allows it to
explore distinctive and representative local patterns of different
scales, thereby reducing the possibility of drifting to other
objects or background. In addition, generative approaches such
as VTD [12] and VTS [38] are also effective in dealing with
cluttered background by using multiple representations.

5) Scale Variations: We note that visual tracking methods
typically do not perform well when objects undergo large
scale change (e.g., David and singer sequences). For image

sequences with scale variations, the MASLA_4, SCM and
ASLA methods perform well as shown in Figure 12. All these
methods use affine motion models to account for large appear-
ance variation instead of translation or similarity transforms.

6) Fast Motion: Figure 13 shows the tracking results with
image sequences containing fast moving objects. Overall, the
Struck, TLD, CXT [39] and OAB [4] methods perform well.
As a large number of candidate regions are generated by
dense sampling over a large range, these methods are effective
in dealing with fast moving objects. On the other hand, the
MASLA_4, SCM and IVT [1] methods do not perform well as
the number of particles are fixed in all experiments as a trade-
off between speed and accuracy. We note that the tracking
methods based on particle filters are likely to perform better
by drawing more particles.



JIA et al.: VISUAL TRACKING VIA COARSE AND FINE STRUCTURAL LOCAL SPARSE APPEARANCE MODELS 4563

Fig. 12. Success plots of OPE, SRE, TRE in sequences with scale variation.

Fig. 13. Success plots of OPE, SRE, TRE in sequences with abrupt motion.

VII. CONCLUSION

In this paper, we propose an efficient tracking algorithm
based on coarse and fine structural local sparse appearance
models with adaptive update. The proposed algorithms exploit
both structural and local information of target objects by
averaging and alignment pooling. By using consistent and
distinct local object appearance, the proposed algorithms are
able to track targets more accurately and robustly under
occlusion and clutters. The update scheme based on occlusion
detection alleviates the problem where incorrectly estimated
or occluding pixels are included in the template set during
the update process. Experimental results with comparisons
to numerous state-of-the-art methods on a large benchmark
dataset demonstrate the effectiveness and robustness of the
proposed algorithms.
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