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Transferring Visual Prior for Online Object Tracking
Qing Wang, Feng Chen, Jimei Yang, Wenli Xu, and Ming-Hsuan Yang

Abstract—Visual prior from generic real-world images can be
learned and transferred for representing objects in a scene. Moti-
vated by this, we propose an algorithm that transfers visual prior
learned offline for online object tracking. From a collection of real-
world images, we learn an overcomplete dictionary to represent
visual prior. The prior knowledge of objects is generic, and the
training image set does not necessarily contain any observation of
the target object. During the tracking process, the learned visual
prior is transferred to construct an object representation by sparse
coding and multiscale max pooling. With this representation, a
linear classifier is learned online to distinguish the target from the
background and to account for the target and background appear-
ance variations over time. Tracking is then carried out within a
Bayesian inference framework, in which the learned classifier is
used to construct the observation model and a particle filter is used
to estimate the tracking result sequentially. Experiments on a va-
riety of challenging sequences with comparisons to several state-of-
the-art methods demonstrate that more robust object tracking can
be achieved by transferring visual prior.

Index Terms—Object recognition, object tracking, sparse
coding, transfer learning, visual prior.

I. INTRODUCTION

O BJECT tracking has been an important and active re-
search topic in computer vision with numerous applica-

tions, including surveillance, traffic control, human–computer
interfaces, and motion analysis, to name a few. The main chal-
lenge in developing a robust tracking algorithm is to account for
large appearance variations of the target object and background
over time. In this paper, we tackle this problem with both prior
and online visual information. By learning visual prior from
real-world images and transferring it to the tracking task, we
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Fig. 1. Transferring visual prior to object tracking. We learn visual prior from
real-world images and represent it with an overcomplete dictionary based on the
SIFT features. The width of each arrow to the dictionary illustrates the contribu-
tion of one object class to one basis in the dictionary. With sparse coding
on the learned dictionary, visual prior is transferred from the real-world images
to the target object for tracking. The spare codes measure the contribution of the
bases to represent an object patch and reflect the resemblance of the target and
real-world object classes.

propose an adaptive tracking algorithm to account for appear-
ance variations of the target and background.
The central theme of our approach is to exploit generic visual

prior for object tracking. Although object tracking is usually an
online task and visual information of the target may be scarce
before the task starts, some useful prior can be still exploited
offline particularly on the patch level. We note that there is a
huge amount of real-world image data at our disposal. These
images are likely to include similar holistic observations of the
target object in the tracking task, but most likely they may not.
Nevertheless, local patches from these images often share great
similarity. Motivated by this, we learn generic visual prior from
a large set of image data with an over-complete dictionary and
sparse coding.
For visual tracking, we transfer the learned visual prior for

object representation by sparse coding. Fig. 1 shows the prior
representation and transfer processes in the proposed tracking
algorithm. By filtering the sparse representation results at dif-
ferent scales, the corresponding object-level representation is
obtained. With some samples from the target and background in
the first frame, a classifier is initialized to distinguish them and
the tracking task is formulated within the Bayesian inference
framework. To account for the appearance changes of the target
object and background during tracking, we update the classifier
when new tracking results are obtained. Furthermore, to alle-
viate the visual drift problem during classifier update, we retain
the initial classifier as a detector. In each frame, the observation
model for Bayesian inference is constructed by a combination
of the detector and the online classifier.
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For most tracking algorithms in the literature, either strong
prior information of the target object is assumed or no prior
knowledge is exploited. When an algorithm heavily depends on
the prior, all views of the target should be known or a detailed
geometric model is assumed before tracking, and the applica-
tion domains of such algorithms are limited. In contrast, online
tracking methods can be applied to numerous problems as no
prior is required. However, the tracking results after a long du-
ration period are usually unpredictable as only online visual in-
formation is used. Our algorithm exploits the strength of both
approaches. In particular, we propose an algorithm that learns
generic visual prior offline and transfers such knowledge to on-
line object tracking.
The contributions of our tracking algorithm are summarized

as follows. First, we learn a generic visual prior offline without
assuming any specific knowledge of the target object for
tracking. On the patch level, small images often share structural
similarity, which motivates us to exploit such prior information
offline and use it for online visual tracking. Second, the prior
is represented by an overcomplete dictionary and learned
by sparse coding from local patches. It is different from the
widely used orthogonal dictionary (subspace) learned from
holistic images by principal component analysis (PCA) or its
variants. The nonorthogonal overcomplete dictionary learned
from local patches makes our visual prior more effective for
object description. Third, with the learned dictionary,
sparse coding, and multiscale max pooling, a high-level object
representation is constructed, and a simple classifier is capable
of separating the target from the background.

II. RELATED WORK

There is a rich literature in object tracking, and a thorough re-
view on this topic can be found in [28]. To deal with the problem
of large object and background appearance variations, most re-
cent tracking algorithms have focused on developing robust ob-
ject representation schemes.
Since it is difficult to find a set of features that are invariant

to appearance variations of target objects and backgrounds,
learning algorithms have been adopted for this task. Based on
a specific prior of the target, an object model can be learned
offline. Black and Jepson [4] learn a subspace model to rep-
resent target objects at fixed views. In [5], Black et al. extend
their subspace representation method to a mixture model that
can better account for object appearance. Avidan [1] uses a set
of vehicle and nonvehicle images collected offline to learn a
classifier for car tracking. All these methods heavily depend
on the specific prior. That is, these methods are developed
for specific objects of interest. When all possible views of the
target are known before tracking, object appearance models
can be well constructed. However, in most real-world tracking
applications, it is difficult to enumerate all possible appearance
variations of objects. Therefore, such tracking algorithms have
limited application domains.
Numerous adaptive appearance models have been recently

proposed for object tracking. In these algorithms, object rep-
resentation can be initialized and updated with online observa-
tions without any prior. Jepson et al. [13] learn a Gaussian mix-
ture model via an online expectation maximization algorithm to
account for target appearance variations during tracking. Aside

from mixture models, incremental subspace methods based on
PCA or its variants have been used for online object repre-
sentation [17], [24]. To overcome the problem of partial oc-
clusion, sparse representation has been also utilized for object
tracking [21]. In [15], the authors extend the conventional par-
ticle filtering framework with multiple dynamic and observa-
tion models to account for target appearance variation caused
by change of pose, illumination, scale, and partial occlusion.
Object tracking has been also posited as a binary classifica-
tion problem. Collins et al. [7] propose a method to select dis-
criminative color features online for tracking, whereas Avidan
[2] uses an online boosting method to classify pixels belonging
to foreground and background. Recently, numerous approaches
have been proposed to deal with the drift problem when up-
dating the learned appearance model or classifier online with
newly obtained tracking results. Grabner et al. [11] regard all
the object information corresponding to the tracking results as
unlabeled data and adapt a classifier within the semi-supervised
learning framework. Babenko et al. [3] use multiple instance
learning (MIL) to handle ambiguously labeled positive and neg-
ative data obtained online to reduce visual drift. Kalal et al. [14]
propose a method to handle unbalanced samples that exploits
the underlying structure to select positive and negative samples
for online update. All these tracking algorithms do not assume
any prior regarding the target object class and can be applied to
numerous problems. However, persistent object tracking with
these methods is difficult as it is not clear whether the updated
visual information is correct or not (e.g., new observations may
contain image regions from the background, and thus, incorrect
information is updated).
Sparse coding algorithms model an observed example as a

linear combination of a few elements from an overcomplete
dictionary. The recent development of sparse coding/repre-
sentation has attracted much interest and has been used in
image denoising [8], [20], image classification [23], [27],
and object tracking [21]. These methods have proven that a
learning dictionary from data outperforms prechosen (fixed)
ones (e.g., wavelet) since the former can significantly reduce
reconstruction error [8]. Different from the representations
based on PCA and its variants [17], [24], such sparse models
do not impose that the bases in the dictionary be orthogonal,
which allows more flexibility to adapt the representation to
the data [19]. In [21], the sparse representation of a target
object is achieved by optimizing an objective function, which
includes two terms, i.e., one measures the reconstruction error
and the other measures the sparsity. However, these methods
are generative at its core (based on reconstruction error) for
determining tracking results and are not equipped to distinguish
target and background patches. In [23], the authors carry out
sparse coding on raw image patches for image classification. In
[27], the authors perform sparse coding on scale-invariant fea-
ture transform (SIFT) features [18] and achieve state-of-the-art
performance for image classification on public benchmarks.

III. LEARNING VISUAL PRIOR WITH SPARSE CODING

We first present how generic visual prior can be learned from
numerous images of diverse object classes. Although we can
get a large number of real-world images, there is no straightfor-
ward method to exploit and represent generic visual prior in the
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Fig. 2. Sample images for learning visual prior.

tracking literature. In this paper, we use sparse coding to learn
the visual prior from large image sets of diverse objects with an
overcomplete dictionary.

A. Image Set

This paper aims to bridge the gap between object recogni-
tion (based on visual prior) and object tracking (based on prior
or online information). On the patch level, small images often
share structural similarity. This is why we exploit such prior
information offline from existing data sets and use it for on-
line visual tracking. The VOC20101 and Caltech1012 data sets,
which consist of a large variety of objects, are used for learning
visual prior. Without loss of generality, we use object classes
that are common in surveillance scenarios from these two data
sets, including nonrigid (e.g., face, person, and dog) and rigid
(e.g., bicycle, bus, car, and motorbike) objects. Some images of
these classes are shown in Fig. 2. It is worth noting that other
related object images can be also used to learn a prior for spe-
cific tracking tasks.

B. Learning Dictionary

Since sparse coding based on SIFT descriptor has been
proved to outperform sparse coding on raw image patches
in computer vision [27], we also choose SIFT as the basic
appearance descriptor in our tracking method. We extract the
SIFT descriptors from overlapped patches of each grayscale
image and learn the dictionary in an unsupervised manner. Let

be the SIFT descriptors we extract
from the image set, where and are the dimensionality
of each SIFT descriptor and the number of SIFT descriptors,
respectively. Denote as
the dictionary we want to learn; this problem can be formulated
as

subject to (1)

where is the sparse coefficient vector of when en-
coded by the dictionary . Parameter is a tradeoff between
reconstruction error and sparsity. To enlarge the sparsity of the
learned coefficient vector, we can increase and vice versa. The
-norm constraint on is to prevent arbitrarily small values of

. Although there is a large number of SIFT
descriptors extracted from the data set, is learned offline with
the sparse codingmethod proposed in [16]. Some bases (column

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/index.html
2http://www.vision.caltech.edu/Image_Datasets/Caltech101/

vectors) in are shown in the image form in Fig. 1. This dic-
tionary contains generic structured information of different
objects from numerous classes and is used to encode generic vi-
sual prior of objects.
Different from a prechosen or randomly selected codebook,

the learned dictionary contains structural information of object
appearance and can represent an object with less reconstruction
error. Although it may be possible to represent an object with a
prechosen or randomly selected codebook [10], [22], the coding
coefficient vectors are likely to be denser and more sensitive to
noise.

IV. TRANSFERRING VISUAL PRIOR FOR

OBJECT REPRESENTATION

The learned visual prior is represented by the overcomplete
dictionary . We transfer this prior for object tracking by rep-
resenting an object with . For each SIFT descriptor inside
an object region, a sparse coefficient vector is learned by per-
forming sparse coding on the dictionary . Then, an ob-
ject is represented by applying multiscale max pooling on the
coding results of all the local SIFT descriptors in their corre-
sponding image region.

A. Sparse Coding

To represent an object, we first extract the SIFT descriptors
from their image patches and then encode them with the learned
dictionary. Let denote the SIFT
descriptors extracted from an object image, the sparse co-
efficient vector for coding by the learned dictionary
can be calculated by [29]

(2)

where and are regularization parameters. When ,
it leads to the -norm sparse coding problem, which has been
widely used in [21] and [27]. The choice of makes the
problem in (2) become strictly convex. The coding results of all
the descriptors in are denoted by a sparse coefficient matrix

, where each column of denotes
the coding result of the SIFT descriptor for an image patch.
With sparse coding, the SIFT descriptors from different

objects can be encoded by different bases in the dictionary. The
sparse coefficients from the dictionary reflect some structured
information of the image, thereby facilitating inference of their
class label (see Fig. 1). From this sparse coding process, the
visual prior of generic objects is transferred to the tracking task.

B. Comparison With Other Decomposition Methods

The sparse coding method that we use for object representa-
tion is different from the PCA method and vector quantization
(VQ) codebook. For object tracking, PCA has been widely used
to learn specific prior (with orthogonal dictionary/subspace) [4],
[5] and to model the target appearance online [24]. It is well
known that in PCA, the training data are assumed to be Gaussian
distributed and solved by optimization. When this assump-
tion does not hold (e.g., due to occlusion), object representation
using the dictionary learned by PCA is not effective. On the
other hand, VQ-based codebook is also widely used for dictio-
nary learning and encoding. Since VQ focuses on minimizing
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the overall reconstruction of data points, it is not effective in
representing a diverse collection of images as there is a tradeoff
between error and codebook size. Sparse coding can be re-
garded as a generalized VQ in which regularization allows
in (2) to have more than one nonzero element. Thus, sparse

coding can achieve a much lower reconstruction error due to this
less restrictive constraint. Compared with the sparse coding
formulation, the use of constraints can lead to more stable
coding results [29].

C. Multiscale Max Pooling

For the tracking task, we need to define an object-level feature
for a target or a background sample over the sparse representa-
tion matrix . There exist numerous methods for representing
an object with a set of descriptors, and here we use a pooling
function that operates on each row of and obtain a vector

. Since each row of corresponds to the response of all
local SIFT descriptors in to one specific basis in dictionary
, different pooling functions may generate different image sta-

tistics. To make the representation more robust to local spatial
translations, we use the max pooling function on the absolute
sparse codes

(3)

where is the th element of and is the element of the
th row and the th column of . As discussed in [26] and [27],
the max pooling process is well established with biophysical
evidence in visual cortex and has been shown to be effective for
object representation with local responses.
To preserve the spatial information and local invariance, we

use multiscale max pooling to obtain the object-level represen-
tation. This pooling process searches across different locations
and over different scales of the object image and combines all
local maximum responses. In this paper, it is implemented by
dividing the whole object image into nonoverlapped spatial
cells, applying max pooling on the coding results of descriptors
in each cell and concatenating the pooled features from all the
spatial cells

(4)

where is the max pooling result of the th spatial cell, is
the number of spatial cells, and . With this process, we
obtain a pyramid representation of an object, which is robust to
local transformation.

V. LEARNING CLASSIFIER

After extraction of SIFT features, sparse coding, and
multiscale max pooling, we obtain a spatial pyramid represen-
tation for each object image. With the overcomplete dictionary
, SIFT descriptors either from a target or a background object

image can be well represented by its sparse coefficient vector
with low reconstruction error. Therefore, different from [21] and
[24], it is less effective to use observation models based on the
reconstruction error for object tracking. With sparse coding and
multiscale max pooling, images of different object classes are
often represented by different bases of the learned dictionary.
Therefore, it is easier to separate the samples from different

classes. In this paper, we pose tracking as a binary classifica-
tion problem, in which a linear classifier is learned to separate
the target from the background. We use logistic regression to
learn the classifier and use the classification score as our simi-
larity measure for object matching. Although patches from dif-
ferent objects in the same category may be represented by sim-
ilar sparse coefficients, the object-level representation based on
multiscale max pooling exploits unique spatial characteristics
of a target object. That is, our representation scheme consists of
local feature their (based appearance) and responses geometric
shape. Thus, the learned classifier is target specific, which can
be used to discriminate a target from objects in the same or dif-
ferent categories. To account for appearance variations of the
target and background during tracking, the classifier is updated
with the most recent observations.

A. Classifier Initialization

To initialize the classifier, we need to collect some target (pos-
itive) and background (negative) samples with the sparse coding
and multiscale max pooling process. In the first frame, when the
target is labeled manually or by an object detector, we can get
a set of target images with small location perturbations. To col-
lect background samples, we first randomly draw samples from
an annular region defined by (i.e., and
are inner and outer radii), in which is the location of the
target sample and is the sample location. After extracting
SIFT descriptors, representing these target and background im-
ages by sparse coding and multiscale max pooling, we obtain
a set of training data denoted by ,
where is the class label. The linear classifier can be obtained
by minimizing the cost function

(5)

where is the classifier parameter set we want to learn, is a
loss function, and is the number of training samples. Param-
eter controls the strength of the regularization term. In
our method, we use the logistic loss function

(6)

The corresponding classifier can be denoted by

(7)

Once the classifier is initialized, the classification score can be
utilized as the similarity measure for tracking.

B. Online Update of the Classifier

The image appearance of the target and background may
change due to many factors such as pose, scale, illumination,
and occlusion. Intuitively, object appearance remains the same
only for a certain period of time, and eventually, the initialized
model will be no longer accurate as time progresses. To account
for image variations for robust object tracking, we update the
classifier adaptively with new observations. With the recently
obtained target observations and some negative samples ex-
tracted in the current frame, the classifier can be updated. We
have experimented with incremental learning methods (e.g.,
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stochastic gradient algorithm [6]) for online classifier update.
However, such update methods are sensitive to the learning rate
empirically, and thus, in our method, we update the classifier
by retraining with the method presented in Section V-A. Since
the number of samples for retraining is small, the classifier
can be efficiently updated. As only the most recently obtained
target observations are needed to be stored in the memory and
the negative samples are collected in the current image frame,
our algorithm does not have large memory requirement and is
flexible to deal with long sequences.

VI. PROPOSED TRACKING ALGORITHM

In this paper, object tracking is carried out within the
Bayesian inference framework. Given the observation set of
the target up to time , the target state
(motion parameter set) can be determined by the maximum
a posteriori estimation

(8)

where can be inferred by the Bayesian theorem in a
recursive manner (with Markov assumption)

(9)

where .
The tracking process is governed by a dynamic model, i.e.,

, and an observation model, i.e., .
A particle filter method [12] is adopted here to estimate the

target state. In the particle filter, is approximated by
a finite set of samples with importance
weights . The candidate sample is drawn
from an importance distribution , and the
weight of the th sample is

(10)

where in this paper.
The dynamic model delineates the temporal

correlation of the target states in consecutive frames. In our
algorithm, we approximate the motion of a target between
two consecutive frames with affine transformation. Let
be the 6-D vector where each parameter is independently
modeled by a scalar Gaussian distribution centered at its
counterpart of . Thus, the dynamic model is formulated
as , where is a diagonal co-
variance matrix whose elements are the variances of the affine
parameters.
The observation model denotes the likelihood of

generating observation . It plays a key role for robust tracking
because it directly corresponds to the core challenge of tracking,
i.e., unpredictable variations such as appearance or background
changes. When the classifier is available, the observation model
can be constructed as

(11)

where is the classification score at time . To alle-
viate the visual drift problem during update, we retain the initial
classifier trained in the first frame as a detector. In each frame,
the total classification score can be calculated by

(12)

where and are the classification scores of the detector ini-
tialized in the first frame and the adaptive classifier at time ,
respectively. We denote as the final classification score at
time , and is a predefined constant, which determines the
confidence of our adaptive classifier. That is, the adaptive clas-
sifier helps account for rapid appearance change while the de-
tector alleviates the drift problem.With the prior learned offline,
the online tracking algorithm is carried out, as summarized in
Algorithm 1.

Algorithm 1 Summary of the Online Tracking Algorithm.

1: Input: Video frames .

2: Output: Target states .

3: for do

4: if then

5: Transfer prior for object representation.

6: Initialize the classifier with parameter set .

7: else

8: Transfer prior for object representation.

9: Estimate using particle filtering.

10: Store target observation corresponding to .

11: if The number of target observations is equal to some
predefined threshold then

12: Collect a number of negative samples in the current
frame.

13: Use the target observations (positive samples) and
negative samples to update .

14: Clear the target observation set.

15: else

16:

17: end if

18: end if

19: end for

VII. EXPERIMENTS

We evaluate our tracker on 12 challenging image sequences
(some of them are publicly available) against several state-of-
the-art algorithms. The challenging factors in these sequences
include pose change, illumination change, occlusion, cluttered
background, image blur, and camera motion.
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A. Implementation

The proposed algorithm consists of an offline prior learning
module and an online object tracking component. In the offline
phase, the SIFT descriptors are densely extracted from 16 16
patches on a grid with step size of 8 pixels from each selected
image (based on intensity). With about 200 000 SIFT descrip-
tors, we learn a 128 1024 dictionary. For convenience of fur-
ther analysis, we add a label to each basis vector in the dictionary
to show which object class contributes most to this basis. (Note
that a basis vector may be learned by the SIFT descriptors from
different object classes, which is illustrated in Fig. 1.)
For multiscale max pooling in the online tracking phase, we

use three spatial levels and set the numbers of cells on three
levels to be 1, 4, and 9, respectively. Therefore, the dimension-
ality of each object representation is . In the first
frame, linear classifier is initialized with 60 target samples
and 60 background samples. Classifier parameter is updated
every ten frames as a tradeoff of effectiveness and efficiency.
Confidence ratio is set to be 0.8, and the number of particles
is 300 in all experiments.3

B. Baseline Experiments

In the Sylvester sequence [24], the target (plush toy) under-
goes pose and illumination change. The results in Fig. 3(a) show
that the proposed algorithm is able to track the target well. In
theWall-E sequence shown in Fig. 3(b), the proposed algorithm
is able to account for appearance variation due to drastic scale
and pose change (3-D motion) of the target. Note that we do not
have the same object images in the training set. These two ex-
periments demonstrate that the learned generic visual prior can
be used to represent different kinds of objects.
To illustrate how the visual prior is transferred for object

tracking, we plot the probability of learned bases of each object
class being selected to represent the target. Since we can de-
termine which object class contributes most to one basis when
learning the dictionary offline, we mark each basis with the cor-
responding class label. Thus, during tracking, the class label of
each basis being used to encode each local SIFT descriptor can
be identified. With the coding coefficients, we can compute the
probability of the visual prior transferred from each training ob-
ject class to the corresponding local descriptor. For the Sylvester
and Wall-E sequences, we select one image patch (marked by a
blue polygon) from the target region and plot the sparse coding
results on the dictionary and the histograms of prior being trans-
ferred from each training object class in Fig. 3(a) and (b). We
note that the visual prior of the dog object class is used in the
Sylvester sequence; the visual prior of the bus is exploited most
in theWall-E sequence. The results can be explained by the fact
that some patches of these targets bear significant resemblance
to the object classes in the training images (i.e., plush toy versus
dog and robot car versus bus).

C. Qualitative Evaluation

We compare our tracker with several object tracking algo-
rithms, i.e., the incremental visual tracker (IVT) [24], the vari-
ance ratio tracker (VRT) [7], the L1 tracker (L1T) [21], the MIL

3Videos and source codes are available at http://faculty.ucmerced.edu/
mhyang/papers/tip11a.html.

Fig. 3. Tracking results and prior transfer of the Sylvester and Wall-E se-
quences. The second rows of (a) and (b) show the coding results of an image
patch inside the object region over time, which reflects the weight changes
of each basis in the dictionary that an image patch is dependent on. The third
rows of (a) and (b) illustrate the prior transfer from the real-world images to
the target object (SIFT descriptor extracted from the image patch in the blue
polygon). The numbers on the -coordinate refer to different classes of training
data. The -coordinate illustrates how much prior is transferred to the tracking
object from each object class.

tracker (MILT) [3], the visual tracking decomposition tracker
(VTD) [15], and the tracking–learning–detection (TLD)method
[14]. We obtain the tracking results of these compared methods
with the codes provided by the authors. For the IVT, L1T, VTD,
and our methods, we use the same parameters for particle fil-
tering. Both the IVT and L1T methods learn dictionaries online
from test videos. The bases learned in the IVT method are or-
thogonal to each other, and the number of bases is not larger
than the dimensionality of the feature vector. On the contrary,
the dictionary in the L1T method is overcomplete. The TLD
method is equipped with a detection procedure to help find the
object after occlusion. The IVT, L1T, and VTD trackers are gen-
erative methods, whereas the others are discriminative trackers.
We also use experiments to show that the prior transfer is vital
for robust object tracking. To this end, we implement a tracking
algorithm (referred to as SIFTT) wherein the SIFT descriptors
are directly used for object representation by multiscale max
pooling. All the other modules are the same as our algorithm. In
the following sections, we present some representative tracking
results.
Pose Change: The Freeman sequence is used to test the per-

formance of our tracker in handling pose change. There is also
a significant scale change when the target walks toward the
camera. From the tracking results illustrated in Fig. 4, we note
that our method and the TLD method perform well whereas the
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Fig. 4. Tracking results of the Freeman sequence.

Fig. 5. Tracking results of the singer sequence.

Fig. 6. Tracking results of the shaking sequence.

IVT, L1T, MILT, VTD, and SIFTT have some tracking errors.
The VRT method gradually fails.
Illumination Change: We use the singer and shaking se-

quences [15] to evaluate whether our tracker is able to handle
drastic illumination change. Some representative tracking re-
sults are shown in Figs. 5 and 6. In both sequences, our tracker
performs well when compared with the VTD method. In the
singer sequence, there are large-scale changes of the target and
unknown camera motion in addition to illumination change.
The VRT method fails to track the target when illumination
changes. The MILT and TLD algorithms also succeed in
tracking the target but do not deal with the scale changes well.
The IVT, L1T, and SIFTT methods have similar tracking results
as our tracker. In the shaking sequence, the target undergoes
pose variation besides illumination change. The L1T, MILT,
and SIFTT algorithms are also able to track the target, whereas
the IVT, VRT, and TLD methods drift from the target quickly.
Our tracker uses an online update mechanism to account for
the appearance variation of the target and background over
time and retains a detector to alleviate visual drift problem. In
addition, the object representation based on sparse coding and

Fig. 7. Tracking results of the PETS2009 sequence.

Fig. 8. Tracking results of the CAVIAR sequence.

multiscale max pooling is less sensitive to illumination and
pose change, thereby achieving good tracking performance.
Occlusion: We use the PETS2009 and CAVIAR sequences

to test the performance of our tracker when the target object
undergoes heavy occlusion. In the PETS2009 sequence, there
is also an out-of-plane pose change besides heavy occlusion.
The tracking results presented in Fig. 7 show that our tracking
method and the TLD tracker succeed in tracking the target
object after heavy occlusion, whereas the others all fail. In this
sequence, the geometric shapes and local responses of the target
objects are different from the other objects. Consequently, they
can be used to differentiate the other objects. For the TLD
method, it has a detection procedure, thereby also succeeding
in tracking after occlusion. In the CAVIAR sequence (see
Fig. 8), it is difficult to keep track of the target after occlusion
because there are other objects with similar appearances in the
scene. The IVT, L1T, MILT, VTD, TLD, and SIFTT methods
do not perform well, whereas the VRT algorithm performs
slightly better. In contrast, our method exploits visual prior and
represents objects by coding results of local image patches de-
scribed by SIFT features for learning a target-specific classifier.
Thus, our method is able to discriminate the target from others
in the same object category and performs well in this sequence.
The initial classifier also facilitates the proposed method to
keep track of the target when heavy occlusion occurs.
Background Clutter: We use the box [25], board [25], and

NBA sequences to evaluate our tracker in handling background
clutter. In the box sequence shown in Fig. 9, there are also par-
tial occlusions, which adds difficulty for object tracking. From
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Fig. 9. Tracking results of the box sequence.

Fig. 10. Tracking results of the board sequence.

Fig. 11. Tracking results of the NBA sequence.

the tracking results in Fig. 9, we observe that our method and
the TLD tracker perform better than the other trackers. In the
board sequence shown in Fig. 10, our tracker performs well
when the target undergoes out-of-plane rotation (3-D motion).
All the other methods lose track of the target in some frames.
In the NBA sequence (see Fig. 11), the target object is similar
to other objects in the scene. The IVT, VRT, L1T, MILT, VTD,
TLD, and SIFTT methods all lose track of the target gradually,
whereas our tracker succeeds in most of the frames except to-
ward the end when the target undergoes occlusion for numerous
frames.
Image Blur and Low Contrast: Figs. 12 and 13 demonstrate

the performance of these trackers in handling scenarios with
image blur and low foreground–background contrast. In the car
sequence shown in Fig. 12, the target also undergoes partial

Fig. 12. Tracking results of the car sequence.

Fig. 13. Tracking results of the David sequence.

occlusion and pose variation other than image blur caused by
camera motion. Our tracker performs well in this sequence,
whereas the L1T method quickly fails when the car is partially
occluded by a bus. It can be explained by the fact that global in-
tensity features used in the L1T method cannot discriminate the
car object from buses that have similar holistic appearance. The
IVT and VRT methods perform better than L1T, but they lose
track of the target when image blur occurs. The MILT, VTD,
and TLD methods are able to track the target in this sequence
although with some errors in the last frames. The SIFTTmethod
provides similar tracking result as ours. In the David sequence
shown in Fig. 13, the contrast between the target and the back-
ground is low. In addition, there is severe occlusion and a large
pose change of the target. The IVT method quickly fails after
David is partially occluded by a pole, and the VTD and TLD
methods gradually fail when David walks in front of the van.
The MILT method fails after the target walks behind a tree. The
VRT and L1T methods perform better but also gradually fail
after the target turns around. On the other hand, our tracker and
the SIFTT method succeed throughout this sequence.

D. Quantitative Evaluation

Aside from the qualitative comparison, we compute the
tracking success rate and center location error using the
ground truth manually labeled at every five frames. We em-
ploy the criterion used in the PASCAL Visual Object Classes
challenge [9] to determine whether each tracking result is
a success. Given the tracked bounding box and the
ground truth bounding box , the score is defined as
score area area . The
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Fig. 14. Error plots of the test sequences.

TABLE I
SUCCESS RATES (%). THE BEST TWO RESULTS ARE PRESENTED IN

BOLD FACE AND ITALIC FONTS

tracking result in one frame is considered as a success when
this score is above 0.5. Table I shows the tracking results in
terms of success rates. The center location error is defined
as the distance between the central locations of the tracked
target and the ground truth. The tracking results in terms of
center location errors are illustrated in Fig. 14. The results
demonstrate that our tracking algorithm performs well against
the other state-of-the-art methods. Note that in the Sylvester,
Wall-E, box, and board sequences, no samples of these object
classes are included in the training set. The experimental results
demonstrate that the learned visual prior is generic and can
be applied to different tracking tasks. The comparisons also
demonstrate the necessity of learning and transferring visual
prior instead of using the SIFT descriptor directly for object
representation.

VIII. CONCLUSION

This paper has exploited generic visual prior learned from
real-world images for online tracking of specific objects. On the

patch level, small images often share structural similarity, and
such prior information can be learned offline and used for mod-
eling objects in online visual tracking. We have presented an
effective method that learns and transfers visual prior for robust
object tracking. With a large set of natural images, we repre-
sent visual prior with an overcomplete dictionary. We transfer
the learned prior to tracking tasks by sparse coding and repre-
sent the object with the multiscale max pooling method. With
newly arrived samples of the target and background, a classi-
fier is learned online to discriminate the target object from the
background and a particle filter algorithm is utilized to esti-
mate the target state sequentially. Compared with the related
state-of-the-art tracking methods, the proposed tracking algo-
rithm is demonstrated to robustly perform in complex environ-
ments where the target and background undergo different kinds
of variations.
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