
UNIVERSITY OF SALERNO

Departments of Mathematics and Physics

PhD in Mathematics, Physics and Applications

Curriculum: Mathematics

CYCLE XXXII

PhD Thesis

Polyhedral Analysis and Branch and Cut

Algorithms for Some NP-hard

Spanning Subgraph Problems

Tutor:

Prof. Raffaele Cerulli

Co-Tutor:

Prof. Francesco Carrabs

Coordinator:

Prof. Carmine Attanasio

Doctoral dissertation of:

Federica Laureana

2018/2019

Alla mia famiglia e a Michele

Acknowledgements

I thank my tutor, Prof. Raffaele Cerulli, for being

a point of reference, for having believed in me

and for having guided and encouraged me with his

valuable advices. I also thank the co-tutor of this

thesis, Prof. Francesco Carrabs, for the time he has

dedicated to me and for always being available to

help me and spur me to pursue my goals.

Many thanks to all the members of my group,

Ciro, Andrea, Rosa and Carmine: the time that I

spent with you and your great support have been

essential for me.

I thank my wonderful parents, who have al-

ways been by my side and have affectionately

accompanied me through this journey. It is not

possible to express in these few lines how lucky I

feel for the family they have built for me and for

my sister. I thank my beautiful sister, her support

has never made me feel alone, not even miles away,

filling my life with joy and affection.

Finally, I thank Michele, who never stopped

believing in me, often more than I did myself. He

made me understand how much strength love gives

and this milestone is as mine as his.

Ringrazio il mio tutor, il Prof. Raffaele Cerulli,

per essere un punto di riferimento, per aver creduto

in me e avermi guidata e incoraggiata con i suoi

preziosi consigli. Ringrazio inoltre il co-tutor di

questa tesi, il Prof. Francesco Carrabs, per il tempo

dedicatomi e per essere sempre stato disponibile

ad aiutarmi e spronarmi a perseguire i miei obiettivi.

Ringrazio tutti i componenti del mio gruppo,

Ciro, Andrea, Rosa e Carmine: il tempo trascorso

con voi e il vostro sostegno sono stati per me di

fondamentale importanza.

Ringrazio i miei meravigliosi genitori, che

sono sempre stati al mio fianco e con amore mi

hanno accompagnata in questo percorso. È impos-

sibile esprimere in poche righe quanto io mi senta

fortunata per la famiglia che hanno costruito per me

e mia sorella. Ringrazio mia sorella, il cui sostegno

non mi ha mai fatta sentire sola, neanche a miglia

di distanza, riempiendo la mia vita di gioia e amore.

Infine, ringrazio Michele, che non ha mai smesso

di credere in me, spesso più di quanto facessi io

stessa. Mi ha fatto capire quanta forza dia l’amore

e questo traguardo è mio quanto suo.

Contents

Contents v

List of Figures vii

List of Tables ix

1 Basic Concepts: Combinatorial Optimization and Polyhedral Theory 16

1.1 Graph Theory . 17

1.2 Polyhedral Theory . 18

1.3 Branch and Cut Algorithm . 23

2 Network Design Problems 26

2.1 The Spanning Tree Problem . 27

2.1.1 Related Problems . 29

2.2 Generalized Network Design Problems 30

2.3 Survivable Networks . 32

2.3.1 Low-Connectivity Constrained Network Design Problems . . 34

3 Generation of 3-Connected non-Hamiltonian Graphs 36

3.1 Hamiltonian Graphs . 36

3.2 A Class of 3-Connected non-Hamiltonian Graphs 39

4 The Generalized Minimum Branch Vertices Problem 44

4.1 Introduction . 44

4.2 Definition of the Problem and Notation 45

4.3 Mathematical Formulation . 46

v

CONTENTS

4.4 Properties of the Clustered Graphs 48

4.4.1 v-Connection . 48

4.4.2 Generalized Cut Vertex . 51

4.5 Polyhedral Analysis . 52

4.6 Branch and Cut Algorithm . 58

4.6.1 Preprocessing Phase . 60

4.6.2 Separation Procedures . 65

4.7 Computational Results . 65

4.7.1 Instances Generation . 65

4.7.2 Preprocessing . 66

4.7.3 Medium and Large Instances 68

5 The 2-Edge-Connected Minimum Branch Vertices Problem 74

5.1 Introduction . 74

5.2 Mathematical Formulation . 76

5.2.1 2-Edge-Connected Subgraph Properties 77

5.3 Polyhedral Analysis . 83

5.4 Branch and Cut Algorithm . 90

5.4.1 Separation Procedures . 92

5.5 Computational Results . 93

5.5.1 Instances Generation . 94

Conclusions 100

Appendix A 104

References 110

vi

List of Figures

1.1 The black dots represent points in S while the grey area is the conv(S). 22

2.1 A graph G=(V,E), where the set V is partitioned in clusters V1,V2,V3,V4. 30

3.1 non-Hamiltonian . 38

3.2 1-tough and non-Hamiltonian . 38

3.3 The Petersen graph. 39

3.4 A graph G(G′;W ;T) with V ′ = {v1,v2,v3,v4}, W = {v1,v2,v3} and

T = {v5,v6,v7}. 40

4.1 (a) A graph G with five clusters. (b) A gst of G with one branch vertex. 46

4.2 (a) A graph G, such that G is v1-connected, but not v2-connected. (b)

A connected subgraph G[v1,v4,v5,v6]. 49

4.3 A v-connected (dotted line) and u-connected (dashed line) graph, such

that the edge {u,v} does not belong to any feasible solution. 50

4.4 A graph G, such that vertex v1 is a generalized cut vertex. 51

4.5 A graph G= (V,E), with k = 4, t = 6 and s= 3, satisfying assumptions

(A1) and (A2). 53

4.6 (a) A clustered graph G = (V,E), with k = 4. (b) The auxiliary graph

Ḡ = (V̄ , Ē), associated to G. 61

4.7 (a) A clustered graph G = (V,E), with k = 4. (b) The auxiliary graph

G̃ = (Ṽ , Ã), associated to G. 62

4.8 Bar chart reporting the percentage of removed vertices and the percent-

age of time reduction for instances with k = 30,40,50,60,70,80. . . . 70

4.9 Percentage of optimally solved instances within the Cpu time. 71

vii

LIST OF FIGURES

5.1 (a) An undirected graph G = (V,E). (b) A 2-edge-connected spanning

subgraph of G with one branch vertex. (c) An optimal solution to the

2ECMBV problem on G with zero branch vertices. 75

5.2 (a) A graph G such that the edge {u,v} is a bridge in G. (b) A graph G

such that the edge {u,v} is essential in G and v is a cut vertex in G. . . 78

5.3 (a) A graph G such that G\{v} is not 2-edge-connected and |δ (Ci)∩
B(G′)| ≤ 2, for any i ∈ {1, ..., t}. (b) A graph G such that G \ {v} is

not 2-edge-connected and there exists i ∈ {1, ..., t} such that |δ (Ci)∩
B(G′)| ≥ 3. 80

5.4 (a) A graph G = (V,E) such that G\{v1} is not 2-edge-connected and

(1) holds. (b) A graph G = (V,E) such that G \ {v1} is not 2-edge-

connected and (2) holds. 81

5.5 Percentage of optimally solved instances within the Cpu time for the

Complete B&C (blue) and the Basic B&C (green). 98

viii

List of Tables

4.1 Results of the preprocessing phase on the sets of Medium and Large

instances. 67

4.2 Computational results for Medium instances. 69

4.3 Computational results for Large instances. 72

5.1 Computational results for instances with n′ = 15 and n′ = 20. 96

5.2 Computational results for instances with n′ = 25 and n′ = 30. 96

5.3 Computational results for instances with n′ = 35 and n′ = 40. 97

5.4 Computational results for instances with n′ = 45 and n′ = 50. 97

A.1 Computational results for instances with k = 12 and k = 16. 105

A.2 Computational results for instances with k = 20 and k = 30. 106

A.3 Computational results for instances with k = 40 and k = 50. 107

A.4 Computational results for instances with k = 60 and k = 70. 108

A.5 Computational results for instances with k = 80. 109

ix

Introduction

There is a widespread need to use a quantitative approach for the solu-

tion of decision problems that arise in many different areas of real life.

The goal is to choose which decisions to take to manage a real system

as efficiently as possible using mathematical tools. Operations Research

provides a scientific basis to try to analyze and understand situations even

with very complex structures and then use the gathered information to pre-

dict the behaviour of a system and improve the performance of the system

itself. The analysis of a real problem occurs in two phases: the represen-

tation of the problem through a mathematical model and the development

of efficient mathematical methods to determine an optimal solution of the

problem or a good approximation of it. Therefore, the Operations Re-

search is the science that deals with giving a unitary context to mathemati-

cal and computer science concepts and that starting from theoretical bases

arrives at the construction of concrete models and their solution. Com-

binatorial optimization problems are those in which mathematical tech-

niques are applied to find optimal solutions within a discrete set of possi-

ble solutions. Many combinatorial optimization problems are defined on

graphs and are hard to solve, which means that no polynomial time al-

gorithm exists for them. To solve these problems it can be used heuristic

approaches, which aim to return good solutions in a reasonable time, or

exact approaches, which return the optimal solutions and are often based

on implicit enumeration techniques.

This dissertation involves the study of two problems defined on graphs: the

Generalized Minimum Branch Vertices (GMBV) problem and the 2-Edge-

Connected Minimum Branch Vertices (2ECMBV) problem. Both problems

aim to identify a subgraph of a given graph satisfying some feasibility con-

ditions and for which is minimum the number of branch vertices, namely

vertices with degree greater than two. Branch vertices have a very im-

portant role in the design of optical networks. Indeed, when in an optical

network the signal enters a node having degree greater than two, it has to

be split by a switch. For reasons related to cost containment, it is necessary

to minimize the use of switches within the network, and thus minimize the

number of branch vertices. Below are the definitions of the problems.

• Let G = (V,E) be an undirected graph, where the set V is partitioned

into k clusters, V1, ...,Vk. The GMBV problem consists of finding

a tree in G spanning exactly one vertex for each cluster and with

the minimum number of branch vertices. This problem is NP-hard,

indeed when each cluster is a singleton it reduces to the well-known

Minimum Branch Vertices problem.

• Given an undirected graph G = (V,E), the 2ECMBV problem con-

sists of finding a spanning 2-edge-connected subgraph in G with the

minimum number of branch vertices. Let us recall that a subgraph

is 2-edge-connected if there exist at least two edge-disjoint paths be-

tween any pair of vertices. This problem is NP-hard, indeed finding

an optimal solution to the 2ECMBV problem on a graph G in poly-

nomial time is equivalent to establishing in polynomial time whether

G is Hamiltonian.

This thesis is organized as follows.

Chapter 1 provides an overview of some basic concepts on combinatorial

optimization, graph theory, polyhedral analysis and a brief description of

the Branch and Cut algorithm.

Chapter 2 describes some Network Design Problems related to those han-

dled in this thesis: the Minimum Spanning Tree problem, Generalized Net-

work Design Problems and the survivability requirements in Network De-

sign Problems.

In Chapter 3 we show some sufficient and necessary conditions for a graph

to be Hamiltonian and we devise a procedure for the generation of a family

of 3-connected non-Hamiltonian graphs.

In Chapter 4 we introduce an integer linear programming formulation for

the GMBV problem. Furthermore, we derive some properties regarding

feasible GMBV solutions and we design a procedure to identify and re-

move useless vertices, namely vertices that do not belong to any feasible

solution. We determine the dimension of the polyhedron of integer solu-

tions as well as some valid inequalities and prove some facet results. We

develop a Branch and Cut algorithm and computational tests are carried

out on a set of 675 instances. Computational results show that the Branch

and Cut algorithm optimally solve almost the 80% of the instances in 7

minutes.

In Chapter 5 we model the 2ECMBV problem as an integer linear pro-

gram. We derive the dimension of the polyhedron of integer solutions, pro-

pose new classes of valid inequalities and we prove that some of them are

facet-defining. We solve the 2ECMBV problem by a Branch and Cut al-

gorithm. The computational tests are conducted over a set of 3-connected

non-Hamiltonian graphs, generated as described in Chapter 3. Computa-

tional results show the effectiveness of the valid inequalities proposed in

this dissertation.

Final remarks on the presented problems and future work projects are re-

ported at the end of this thesis.

Chapter 1

Basic Concepts: Combinatorial

Optimization and Polyhedral Theory

An optimization problem consists of maximizing or minimizing a function with respect

a set representing the range of choices available in a certain situation. The function

compares the possible choices to determine which is best. More formally, given a

space X , a set S ⊆ X and a function f : S→ R, an optimization problem (OP) (in the

minimum form) can be formulated as

minx∈S f (x)

It consists of determining, if exists, x∗ ∈ S such that f (x∗) ≤ f (x), for any x ∈ S. The

function f is called objective function while the set S is the feasible set. A point x in

S is a feasible solution to the OP. Commonly, the space X coincides with the space R
n

or with the space Z
n, and the corresponding optimization problems are very different,

both from the point of view of the theoretical characterizations and for the design of

solution algorithms.

Combinatorial optimization studies optimization problems in which the feasible set is

defined in terms of combinatorial structures, thus in such problems the set of feasible

solution S is discrete. Examples of combinatorial optimization problems are the knap-

sack problem, the minimum spanning tree problem and the travelling salesman prob-

lem. In this thesis we deal with integer linear programming (ILP) problems, namely

problems where the objective function is linear, the feasible set is expressed by linear

15

1. Basic Concepts: Combinatorial Optimization and Polyhedral Theory

inequalities and the decisional variables are integer.

In this chapter we introduce some basic concepts that will be used in the following: an

introduction to the graph theory, the main concepts of the polyhedral theory and a brief

description of the Branch and Cut algorithm.

1.1 Graph Theory

A graph is a set of points, called vertices, connected by lines, named edges. The

importance of this structure is due to the observation that several real-world problems

can be modelled by graphs, such as the problems related to the transportation and

communication networks. The historical origin of the theory is generally traced back

to a work developed by Euler in 1736 concerning the answer to a famous mathematical

question, known as the problem of the Königsberg bridges. Königsberg was a city

in Prussia and one of the main cultural and political centers of Germany. The city is

located on the banks of the Pregel river and includes two islands which were connected

by seven bridges. The problem was to determine whether it was possible to plan a

walk through the city that crossed each of those bridges once. Euler build a graph

replacing each river bank and each island with a vertex, and each bridge with an edge,

reducing the process of solving the problem into the analysis and topological study of

a graph. Euler showed that the possibility of a walk through a graph traversing each

edge exactly once depends on the number of edges touching the vertices: he proved

that such a walk exists if the graph is connected and every vertex is touched by an even

number of edges, and a graph that satisfies this property is called Eulerian graph.

A graph G is represented by a pair of sets (V,E), where V = {v1, ...,vn} is a non-

empty discrete finite set and the elements in V are the vertices of the graph, while

E = {e1, ...,em} is the set of edges of the graph and contains pairs of vertices of G.

If the pairs of vertices are ordered, the graph is said directed, if not the graph is said

undirected. In what follows, we will refer to undirected graphs. Any edge ek ∈ E

is a pair of vertices in V , namely ek = {vi,v j} with vi,v j ∈ V , and we say that ek is

incident on vi and v j. Two vertices u,v ∈ V are adjacent if the edge {u,v} belongs to

E, while we say that two edges e, f ∈ E are adjacent if they have a vertex in common.

Given a vertex v ∈V , the set N(v) = {u ∈V : {u,v} ∈ E} is the neighborhood of v in

G. Furthermore, given v ∈ V , we denote by δ (v) the set of the edges incident on v,

16

and |δ (v)| is the degree of v. Given a graph G = (V,E), the graph G′ = (V ′,E ′) is a

subgraph of G if V ′ ⊆V and E ′ ⊆ E such that if {u,v} ∈ E ′ then u,v ∈V ′. A graph G

is called bipartite if there exists a partition of V into sets V1 and V2 such that each edge

in G joins a vertex in V1 to a vertex in V2. G is complete if it contains all the possible

edges, namely |δ (v)|= m−1, for any v ∈V . A sequence of vertices v1, ...,vk such that

{vi−1,vi} ∈ E for any i = 2, ...,k, is a path of length k. A path is simple if each vertex is

crossed exactly once. A simple path in which the first and last nodes coincide is called

cycle of length k. A vertex u ∈ V is connected to a vertex v ∈ V if there exists a path

in G between u and v. Finally, a graph is connected if all its vertices are connected to

each other.

1.2 Polyhedral Theory

Let Rn be the set of n-dimensional vectors.

Definition 1.2.1. A point x ∈ R
n is a linear combination of the points x1, ...,xk ∈ R

n

if there exist λ1, ...,λk ∈ R such that x = ∑
k
i=1 λixi. A linear combination such that

∑
k
i=1 λi = 1 is an affine combination. An affine combination such that λ1, ...,λk ≥ 0 is

a convex combination.

A subset A⊆R
n is an affine space if it is closed under taking affine combinations.

The inclusionwise minimal affine space containing a set S⊆R
n is called the affine hull

of S and is denoted by a f f (S). Let us now introduce the notions of linear independent

and affine independent vectors.

Definition 1.2.2. A set of points x1, ...,xk ∈ R
n is linear independent if the unique

solution to ∑
k
i=1 λixi = 0 is λi = 0, for any i = 1, ...,k.

Definition 1.2.3. A set of points x1, ...,xk ∈ R
n is affinely independent if the unique

solution to ∑
k
i=1 λixi = 0 and ∑

k
i=1 λi = 0 is λi = 0, for any i = 1, ...,k.

Let us note that two distinct points are always affinely independent, while three

points are affinely independent if they are contained in a line. Although the linear

independence implies the affine independence, the inverse does not hold. For exam-

ple the points (2,1),(4,2) ∈ R
2 are affinely independent, but not linearly independent

17

1. Basic Concepts: Combinatorial Optimization and Polyhedral Theory

since (4,2) = 2(2,1).

Linear Programming is concerned with maximizing or minimizing a linear objective

function with a finite number of variables and a finite number of linear inequalities.

Thus the set of feasible solutions is the intersection of a finite number of half-spaces

and it is called polyhedron.

Definition 1.2.4. A polyhedron P ⊆ R
n is the set of points that satisfy a finite set of

linear inequalities, then P = {x ∈R
n : Ax≤ b}, where A ∈R

m×n and b ∈R
m.

A bounded polyhedron is called polytope.

Definition 1.2.5. The dimension of a polyhedron P, denoted by dim(P), is the maxi-

mum number of affinely independent points in P minus 1.

Definition 1.2.6. A polyhedron P⊆R
n is full-dimensional if dim(P) = n.

Let M = {1, ...,m} be the set of indices of the rows of the matrix (A,b). We consider

a partition of M in the following subsets: M= = {i∈M : aix = bi, for all x∈ P}, which

contains the indices corresponding to the inequalities satisfied by the equality from any

point in P, and M≤ = M \M= = {i ∈M : aix < bi, for some x ∈ P}. Let (A=,b=) and

(A≤,b≤) be corresponding rows of (A,b). There is a relation between the dimension

of the polyhedron P and the rank of the matrix (A=,b=). In what follows, we assume

that P 6= /0 and dim(/0) =−1. The following result holds:

Proposition 1.2.1. Let P = {x ∈R
n : Ax≤ b} be a nonempty polyhedron. Then

a f f (P) = {x ∈R
n : A=x = b=}= {x ∈R

n : A=x≤ b=}.

Furthermore dim(P) = n− rank(A=,b=).

Given the description of a polyhedron by a set of linear inequalities, our purpose is

to find a minimal description for it, determining which inequalities are necessary and

which can be eliminated.

Definition 1.2.7. An inequality πx ≤ π0 is valid for P if it is satisfied by all points in

P.

18

Definition 1.2.8. Given πx≤ π0, a valid inequality for P, the set F = {x∈ P : πx= π0}
is called a face of P. Moreover, if F 6= /0 and F 6= P then F is a proper face induced by

πx≤ π0.

A face F represented by πx≤ π0 is non-empty if and only if max{πx : x∈ P}= π0,

and in such a case we say that F supports P. Obviously, all the inequalities inducing

faces which are not supports of P can be eliminated by its description. By definition,

all faces are polyhedra. The empty face is trivial, and the entire polyhedron P is the

face which corresponds to the trivial valid inequality 0≤ 0. Non-trivial faces are those

having dimension between 0 and dim(P)−1. Faces of dimension 0 are called extreme

points and faces F such that dim(F) = dim(P)− 1 are called facets. Facets are the

maximal proper faces of a polyhedron and they are necessary and sufficient for the

description of P, as stated by the following proposition:

Proposition 1.2.2.

1. For each facet F of P, one of the inequalities representing F is necessary in the

description of P.

2. Every inequality aix≤ bi with i ∈M≤ representing a face of P of dimension less

than dim(P)−1 is redundant in the description of P.

The following theorem states that in a minimal description of P we must have a set

of linearly independent equalities together with precisely one inequality for each facet

of P.

Theorem 1.2.3.

1. A full-dimensional polyhedron P has a unique (to within scalar multiplication)

minimal representation by a finite set of linear inequalities. In more detail, for

each facet Fi of P, with i= 1, ..., t, there is an inequality aix≤ bi (unique to within

scalar multiplication) representing Fi and P= {x∈Rn : aix≤ bi, for i= 1, ..., t}.

2. If dim(P) = n− k, with k > 0, then P = {x ∈ R
n : aix = bi, for i = 1, ...,k,aix≤

bi, for i = k + 1, ...,k + t}. For i = 1, ...,k, aix = bi are a maximal set of lin-

early independent rows of (A=,b=), and for i = k+ 1, ...,k+ t, aix ≤ bi is any

inequality representing the facet Fi.

19

1. Basic Concepts: Combinatorial Optimization and Polyhedral Theory

Example 1.1. Let us consider the polyhedron P described by the following in-

equalities:

x1− x2 ≤ 0

−x1 + x2 ≤ 1

2x2 ≥ 5

8x1− x2 ≤ 16

x1 + x2 ≥ 4

x ∈R
2

We want to derive the dimension of P and a minimal description for it. P is full-

dimensional, then dim(P) = 2. The face F1 = {x ∈R
2 : x1−x2 = 0}= /0, thus it is not

a support for P and can be discarded. The face F2 = {x ∈R2 :−x1+x2 = 1} is a facet,

indeed

(A=
F2
,b=F2

) =
(

−1 1 1

)

Thus, (A=
F2
,b=F2

) has rank 1, then dim(F2) = 1 = dim(P)− 1. Similarly inequalities

2x2 ≥ 5 e 8x1− x2 ≤ 16 are facet-defining. Finally, let us consider the face F5 = {x ∈
R

2 : x1 + x2 = 4}. It results that

(A=
F5
,b=F5

) =







1 1 4

0 2 5

−1 1 1







This matrix has rank 2, then dim(F5) = 0. In more detail F5 = {(3
2
, 5

2
)} and it is not a

facet for P. The minimal description for P is the following:

−x1 + x2 ≤ 1

2x2 ≥ 5

8x1− x2 ≤ 16

20

1. Basic Concepts: Combinatorial Optimization and Polyhedral Theory

1. the objective value of (IP) is unbounded from below if and only if the objective

value of (LP) is is unbounded from below;

2. If (LP) has a bounded optimal value, then it has an optimal solution that is an

optimal solution to (IP);

3. If x0 is an optimal solution to (IP), then x0 is an optimal solution to (LP).

Therefore, we can solve the integer program (IP) by solving the linear program

(LP). The main issue concerns the representation of conv(S) by a set of linear inequal-

ities.

An inequality πx≤ π0 is valid for the set S if πx≤ π0, for any x ∈ S.

Proposition 1.2.6. If πx≤ π0 is valid for S, it is also valid for conv(S).

Two valid inequalities πx ≤ π0 and γx ≤ γ0 are equivalent if (γ,γ0) = µ(π,π0),

with µ > 0. If there exists µ > 0 such that γ ≥ µπ and γ0 ≤ µπ0, then we say that

πx ≤ π0 is dominated by γx ≤ γ0. A maximal valid inequality is not dominated by

any other valid inequality. It follows that any maximal valid inequality for S induces a

non-empty face of conv(S) and the set of maximal valid inequalities contains all of the

facet-defining inequalities for conv(S).

Further details on polyhedral theory can be found in [53], [59] and [43].

1.3 Branch and Cut Algorithm

The Branch and Cut algorithm is a very successful algorithm for solving a variety

of integer programming problems. It was introduces in [45] and makes use of two

techniques: the Branch and Bound algorithm and the Cutting Plane method.

The Branch and Bound algorithm is based on the idea of reducing the resolution of a

difficult problem to that of simpler subproblems by performing a (recursive) partition

of the feasible region. Computing upper and lower bounds of the optimal solution,

only promising areas of the feasible region are explored, while are avoided part of it

that cannot produce the optimal value. Therefore, branching is referred to the process

of generating subproblems of the initial problem, while bounding refers to ignoring

partial solutions that cannot be better than the current best solution. The Branch and

22

Bound algorithm is typically represented by a tree, where the root node is the initial

integer linear programming and the other nodes are subproblems of it.

The Cutting Plane method iteratively refines a feasible set or objective function by

means of linear inequalities. To solve an integer linear program, one considers the

linear relaxation of the problem and repeatedly cuts out areas of the feasible region by

adding new valid inequalities which are satisfied by the integer feasible solutions of the

ILP but not by the optimal solution of its linear relaxation. Then, it is solved the linear

relaxation of the problem obtained by adding the cuts and the procedure is iterated. The

Cutting Plane methods often shows slow convergence, indeed by recursively adding

cuts the resulting problem may become very large and there also may be a progressive

loss of effectiveness of the cuts (tailing off).

The need to overcome the weaknesses of the Branch and Bound algorithm and the

Cutting Plane method led to the development of the Branch and Cut algorithm. Given a

node of the branch and bound tree, it is performed the search of new valid inequalities

violated by the optimal solution of the current linear relaxation with the purpose of

obtaining an optimal integer solution or a better bound, and if this is not possible

a new branching is performed. To apply the Branch and Cut algorithm we need a

structure to store the added cuts which globally valid and the definition of properly

separation procedures, which allow to identify inequalities violated by the current

relaxed solution.

The steps of the Branch and Cut algorithm for a minimization problem are summarized

below:

1. Let L be the list of the active nodes, namely subproblems that still need to be

solved. We initialize L with the initial integer linear program and we set the

initial solution x∗ = NULL and the initial optimal value z∗ = ∞.

2. While L is non empty, we select a subproblem Pi from L. If L = /0, then x∗ is the

optimal solution and z∗ is the optimal value.

3. Solve the linear relaxation of the subproblem Pi, named RL(Pi).

4. If RL(Pi) is infeasible node Pi can be pruned and go to Step 2.

5. If RL(Pi) is feasible, let xi and zi be the optimal solution and the optimal value

respectively.

23

1. Basic Concepts: Combinatorial Optimization and Polyhedral Theory

(a) if zi ≥ z∗, then node Pi can be pruned and go to Step 2.

(b) if zi ≤ z∗ and xi is integer, then we update x∗ and z∗, namely x∗ = xi and

z∗ = zi. Node Pi can be pruned and go to Step 2.

(c) if zi ≤ z∗ and xi is not integer, then we search for cutting planes that are

violated by xi. If one or more violated cuts are found, we add them to the

linear programming relaxation of Pi and go to Step 3.

6. Branch to partition the subproblem Pi into two subproblems with restricted fea-

sible regions. Add these subproblems to L and to to Step 2.

24

Chapter 2

Network Design Problems

In this chapter, we describe some network design problems, which are closely related

to those addressed in this thesis. Many combinatorial optimization problems can be

classified as network design problems: given an undirected graph G = (V,E), a Net-

work Design Problem (NDP) consists of identifying an optimal subgraph F of G, which

satisfies some feasibility constraints. For instance, the Minimum Spanning Tree prob-

lem, which consists of identifying a minimum cost spanning tree of G, is one of the

best known NDP, and it is a model for many real-world problems. In the literature,

there are several variants of the Minimum Spanning Tree problem, where the addition

of other constraints makes the problem difficult to solve. In designing telecommuni-

cation networks, the additional requirement regards the survivability, which refers to

the restoration of services when a node or link failure occurs. Therefore, to achieve

survivability it is necessary to introduce some connectivity constraints, which give rise

to spanning subgraphs different from the tree.

In Generalized NDP, the set of vertices V is partitioned into clusters, and the feasibility

conditions are expressed in terms of the clusters. The Generalized Minimum Spanning

Tree problem is one of the most studied Generalized NDP, and it consists of determin-

ing a minimum cost tree, spanning exactly/at least one node for each cluster. In the

remainder of the chapter, we describe in more detail these problems. In Section 2.1

we introduce the definition and some properties of the Minimum Spanning Tree prob-

lem, along with some of its NP-hard variants. Section 2.2 concerns the generalized

version of NDPs. Finally, in Section 2.3 we present an overview of the most common

survivability requirements for network design problems.

25

2. Network Design Problems

2.1 The Spanning Tree Problem

Let G = (V,E) be an undirected connected graph, where V is the set of the vertices

and E is the set of the edges. Given a subgraph GT = (V,ET) of G, GT is a tree if it

satisfies at least one of the following:

(i) any two vertices in GT can be connected by a unique path;

(ii) GT is acyclic and ET = |V |−1;

(iii) GT is connected and ET = |V |−1.

Let us introduce a cost function on G, c : E −→ R+, which assigns a cost ce to each

edge e ∈ E. The Minimum Spanning Tree (MST) problem consists of finding a span-

ning tree GT = (V,ET), with the minimum total cost, where the cost of a tree GT is

defined as the sum of the costs of the edges in ET , and is denoted by C(GT). The MST

problem has several applications in the field of network design, including computer,

telecommunication networks, transportation, electrical grids, and so on. It can be for-

mulated as an integer linear program (ILP), as follows. For each edge e ∈ E, let xe be

a binary variable equal to 1 if e is selected, and 0 otherwise. Given S ⊆ V , we denote

by E(S) the subset of E, containing any edge having both extremes in S. Using the

Subtour Elimination Constraints (SECs), an ILP formulation for the MST problem is

the following:

min ∑
e∈E

cexe (2.1)

subject to

∑
e∈E

xe = |V |−1, (2.2)

∑
e∈E(S)

xe ≤ |S|−1, S⊂V, |S| ≥ 3 (2.3)

xe ∈ {0,1}. e ∈ E (2.4)

The objective function (2.1) minimizes the total cost of the selected edges. Constraint

(2.2) ensures that exactly the |V |−1 edges are selected, while constraints (2.3) are the

26

SECs, and they guarantee that the optimal solution does not contain cycles. Let us

note that this ILP formulation is based on property (ii). As an alternative, we could use

property (iii), and obtain the following ILP formulation:

min ∑
e∈E

cexe (2.5)

subject to

∑
e∈E

xe = |V |−1, (2.6)

∑
e={u,v}∈E,
u∈S,v∈V\S

xe ≥ 1, S⊂V,S 6= /0 (2.7)

xe ∈ {0,1}. e ∈ E (2.8)

Constraints (2.7) ensure that any feasible solution is connected. Although both mod-

els contain an exponential number of constraints, the MST problem can be solved in

polynomial time, by Kruskal algorithm ([37]), or Prim algorithm ([50]).

Integer programming problems are in general hard to solve, then we usually deal with

some type of more easily solved relaxation of the problem. The most common relax-

ation is the linear programming relaxation, obtained by eliminating the restriction that

the decision variables need to be integer. For instance, for the MST problem constraints

(2.4) and (2.8) are replaced by

0≤ xe ≤ 1 e ∈ E (2.9)

In general the optimal solution of the linear relaxation for a minimization problem

provides a lower bound for the optimal solution, but for the MST problem the optimal

solution of the formulation (2.2)-(2.4) has the same value of the optimal solution of its

linear relaxation. This property was stated by Edmonds in [11], through the following

theorem:

Theorem 2.1.1. The extreme points of the polyhedron defined by the linear program-

ming relaxation of the spanning tree model (2.2)-(2.4) are the 0-1 incidence vectors of

27

2. Network Design Problems

spanning trees.

2.1.1 Related Problems

In this subsection, we introduce some problems related to the MST problem. Although

the latter can be solved in polynomial time, most of its constrained versions are NP-

hard.

Given an undirected graph G = (V,E), and a cost function c : E→R
+, let us consider

a subset of vertices T ⊆ V , named set of terminal vertices, while V \ T is the set of

steiner vertices. The Steiner Tree (ST) problem consists of finding a minimum cost

tree spanning the set of terminal vertices, and, if necessary, some of the steiner ver-

tices. It is easy to see that, when T =V , ST problem corresponds to the MST problem.

The ST problem was first studied for Euclidean distance metric [34], and unlike the

MST, it is NP-hard [24]. ST problem has application in any situation where the task

is to minimize the cost of connection among some important locations, like very large

scale integration design, computer networks, and so on.

Given a connected undirected graph G, the Maximum Leaf Spanning Tree (MLST)

problem, consists of finding a spanning tree in G, having the maximum number of

leaves, where a leaf is a vertex with degree 1 ([22], [1]). This problem has application

in the field of communication networks and circuit layouts. Although it is easy to solve

on complete graph, for the general case it is NP-hard, [23].

Given an undirected graph G, the Minimum Branch Vertices (MBV) problem, consists

of finding a spanning tree in G with the minimum number of branch vertices, where a

vertex is branch if its degree is greater than two. This problem arises in the context of

optical network design, where minimizing the number of branch vertices corresponds

to minimizing the number of switches deployed in the network. Indeed, when an opti-

cal signal traverses a vertex with degree greater than two, it is splitted through the usage

of an electronic device, a switch. Thus, to reduce the cost of the network, the number

of switches must be minimized. The MBV problem was introduced by Gargano et al.

[25], and it is NP-hard.

Given a connected undirected graph G = (V,E), and T a spanning tree of G, a vertex

28

V1

V2 V3

V4

Figure 2.1: A graph G = (V,E), where the set V is partitioned in clusters V1,V2,V3,V4.

v ∈ V , is said to be a degree-preserving vertex, if its degree in T is the same as its

degree in G. The Degree Preserving Spanning Tree (DPST) problem [8] is to find a

spanning tree T of G such that the number of degree-preserving vertices is maximized.

This problem is NP-hard, and has application in water distribution networks.

The Degree Constrained Minimum Spanning Tree (DCMST) problem asks for a mini-

mum cost spanning tree satisfying the condition that every vertex has degree no greater

than a fixed value. By reducing it to an equivalent symmetric traveling salesman prob-

lem, Garey and Johnson [23] showed that the DCMST problem is NP-hard. This prob-

lem arises naturally in communication networks where the degree of a vertex repre-

sents the number of line interfaces available at a center.

2.2 Generalized Network Design Problems

Let G=(V,E) be an undirected graph, with V the set of vertices, and E the set of edges.

Moreover, a cost ce is associated to each edge e∈ E. In Generalized NDP (GNDP), the

graph G is clustered, namely the set V is partitioned into k clusters, V1, ...,Vk. Figure

2.1 shows an undirected graph G = (V,E), where the set of vertices is partitioned into

four clusters. It is easy to see that, if each cluster is a singleton, the GNDP reduces

to the corresponding NDP. Formal definition for the GNDP have been introduced in

[16]. Let us denote by K the set of indices of the clusters, namely K= {1, ...,k}, and

by SP a spanning NDP. Moreover, given V ′ ⊂ V , we denote by G[V ′] = (V ′,E(V ′)),

the subgraph induced by V ′, and by FSP(V
′), the set of the feasible solutions of the

spanning problem SP on the graph G[V ′]. In the following, we give the definition of

29

2. Network Design Problems

the exactly generalization of the spanning problem SP.

Definition 2.2.1. Given a clustered graph G = (V,E), the ”exactly” generalization of

SP on G, consists of identifying a minimum cost subgraph F = (VF ,EF) of G, such that

|VF ∩Vi|= 1, for any i ∈K, and F belongs to FSP

(

∪k
i=1 (VF ∩Vi)

)

.

This definition can be naturally extended to the ”at least” and ”at most” version of a

GNDP, simply substituting the word ”exactly” with ”at least” or ”at most”. Obviously

in the ”exactly” and ”at most” versions of a GNDP, intra-cluster edges are neglected.

In the remainder of this section, we introduce two Generalized Network Design Prob-

lems, which have been extensively studied in the literature: the Generalized Minimum

Spanning Tree Problem and the Generalized Minimum Travelling Salesman Problem.

Given an undirected graph G = (V,E), let us suppose that the set of vertices is parti-

tioned into k clusters, V1, ...,Vk, and on the edge of the graph is defined a cost function,

c : E → R
+. The Exactly Generalized Minimum Spanning Tree Problem (E-GMSTP),

consists of determining a tree GT = (VT ,ET), spanning exactly one vertex for each

cluster, and with the minimum total cost. This problem arises in designing telecom-

munication networks, where it is required to interconnect metropolitan and regional

areas by a tree, containing a gateway from each local area network. E-GMSTP was in-

troduced by Myung et al. [42], and they proved that it is NP-hard. Feremans et al. [14]

proposed several formulations for it, and made a comparison between them. Feremans

et al. [15] derived some polyhedral results for the tightest formulation introduced in

[14], and they developed a Branch and Cut algorithm. Pop et al. [48] designed a solu-

tion procedure, based on a new formulation for the problem. Some heuristic algorithms

for the E-GMSTP can be found in [44], [18], [7], [49] and [26]. [47] provides a survey

of the main known results for the E-GMSTP.

The A least Generalized Minimum Spanning Tree Problem (L-GMSTP), consists of

finding a tree GT = (VT ,ET), spanning at least one vertex for each cluster, and with the

minimum total cost. L-GMSTP has been proposed by Ihler et al. [35], and they proved

that it is NP-hard. It has applications in agricultural settings, related to the construction

of irrigation networks in desert environments. Dror et al. [10] proposed three mathe-

matical formulations for the L-GMSTP. They also developed five heuristics, including

a genetic algorithm. Feremans [13] designed an exact procedure and compared it to

30

the genetic algorithm in [10].

Given a graph G = (V,E), and a partition of V into k clusters, the Exactly General-

ized Traveling Salesman Problem (E-GTSP), consists of finding a cycle passing once

through exactly one node for each cluster, and having the minimum total cost. The

symmetric E-GTSP has been introduced in [33], [57] and [52]. In the ”at least” ver-

sion of this problem, named L-GTSP, a feasible solution is a cycle visiting once at

least a node for each cluster. These problems arises in location problems, logistics,

postal routings, railway optimization, and so on. Fischetti et al. [19] studied the facial

structure of both E-GTSP L-GTSP, and in [20] the same authors designed a Branch

and Cut algorithm. Furthermore, several heuristic approaches have been proposed in

the literature: an efficient composite heuristic [51], genetic algorithms [54][46], and a

memetic approach [32].

2.3 Survivable Networks

Let us recall that a NDP consists of determining an optimal subgraph of a graph, taking

into account some feasibility constraints. The latter are usually related to the real-world

situations in which the problem arises. In the process of planning fiber-optic networks,

the main issues are the economy and the survivability. Economy refers to the construc-

tion costs and is expressed as the sum of the costs of the edges of the network, while

survivability refers to the restoration of services in case a node/edge fails. Thus, the

aim is to determine a set of links connecting all the nodes with a minimum cost, en-

suring some survivability criteria. Trees meet the primary goal of minimizing the total

cost while connecting all the nodes. However, only one node/edge breakdown causes

the failure of a tree network in its main purpose of enabling communication between

all pairs of nodes. The construction of network topologies that protect against failures

is one of the most important problems in the field of network design. A network is

survivable if there exists a pre-specified number of node-disjoint or edge-disjoint paths

between any two nodes/edges in the network. Given an undirected graph G= (V,E), G

is k-edge-connected (respectively k-node-connected) if for each pair of nodes u,v ∈V ,

G contains at least k edge-disjoint (respectively, node-disjoint) paths between u and v.

The edge connectivity (respectively, node-connectivity) of a graph G is the maximum

31

2. Network Design Problems

k for which G is k-edge-connected (respectively, k-node-connected). The notions of

1-edge-connectivity and 1-node-connectivity coincide and are reduced to the connec-

tivity requirement. 2-connectivity concerns the protection of the network from a single

link or node failure, and it has been found that 2-connected networks provide a suf-

ficient level of survivability, indeed the probability of having multiple simultaneous

failures is low. Therefore, a considerable amount of research has focused on the so-

called Low Connectivity Constrained Network Design problems, where each node v is

characterized by a requirement rv ∈ {0,1,2}, and for all pairs of nodes u,v there must

be at least min{ru,rv} edge/node-disjoint paths.

Let us now introduce some definitions, which are useful in the context of survivable

NDPs. A connected component of a graph G is a maximal connected subgraph of G.

Given a graph G, and an edge e ∈ E, if G\{e} has more connected components than

G, we call e a bridge. Similarly, given a node set W ⊆V , if G\W has more connected

components than G, we call W an articulation set of G. If a single node forms an

articulation set, the node is called articulation point. Finally, given W ⊆V , we define

the subset of edges δ (W) = {e = {u,v} ∈ E : u ∈W,v ∈ V \W} as the cut induced

by W . Menger’s theorem [39] states the relation between edge-disjoint paths and cuts,

and node-disjoint paths and articulation sets:

Theorem 2.3.1 (Menger,1927).

1. In a graph G= (V,E), there is no cut of size k−1 or less disconnecting two given

nodes s and t, if and only if there exist at least k edge-disjoint paths between s

and t in G.

2. Let s and t be two non-adjacent nodes in G. Then, there is no articulation set

W of size k−1 or less disconnecting s and t, if and only if there exist at least k

node-disjoint paths between s and t in G.

Grötschel, Monma and Stoer studied in detail NDPs with connectivity constraints,

and in [31] there is a survey of their work. More recently, Kerivin and Mahjoub [36]

and Fortz and Labbé [21] did a review of the polyhedral approaches for the survivable

NDPs. In their first work on survivable NDP, Grötschel and Monma [29] introduced

a general model mixing edge and node survivability constraints. They derived the

dimension of the associated polytope, proved facet results for two classes of valid

inequalities, and fully described the polytope of the 1-connected network problem.

32

2.3.1 Low-Connectivity Constrained Network Design Problems

As we mentioned in the previous section, much of the research has focused on Low-

Connectivity Constrained NDPs. The latter have been introduced by Monma et al. [41]

and Stoer [58]. The real-world problem from which Low-Connectivity Constrained

NDPs arise can be stated as follows. Let us consider a set of telephone offices that

have to be connected by a network. Moreover, offices are ranked in the following

way: special offices, for which a ”high” degree of survivability has to be ensured;

ordinary offices, which simply require to be connected to the network; optional offices,

that eventually could not be part of the network. It is assigned the set of possible

connections between the offices, as well as the fiber cable management costs. The

problem is to determine where to place fiber cables minimizing the construction cost

and ensuring certain survivability constraints. This problem can be modeled by a Low-

Connectivity Constrained NDP, where the set of offices and the connections between

them, are represented by an undirected graph G = (V,E). An integer rv ∈ {0,1,2} is

associated to each vertex v∈V : rv = 2, if v is a special office; rv = 1, if v is an ordinary

office; rv = 0, if v is an optional office. Therefore, the aim is determining a minimum-

cost subgraph, satisfying node/edge-connectivity requirements, namely there exist at

least min{ru,rv} node/edge-disjoint paths between every pair of vertices, u,v ∈V .

Let us consider some particular Low-Connectivity Constrained NDPs:

• rv ∈ {0,1}, for any v ∈V : it reduces to the well-known Steiner Tree problem.

• rv = 1, for any v ∈ V : the problem reduces to the well-known Minimum Span-

ning Tree problem.

• rs = 1 = rt , with s, t ∈ V , and rv = 0, for any v ∈ V \ {s, t}: it reduces to the

problem of determining the shortest path between s and t.

• rv = 2, for any v ∈ V : it consists of determining a 2-connected network with

the minimum total cost, and it is NP-hard even if the graph is complete and

the function of the costs satisfies the triangle inequality. Indeed, solving this

problem on a graph is equivalent to decide whether the graph is Hamiltonian or

not ([12]).

33

Chapter 3

Generation of 3-Connected

non-Hamiltonian Graphs

In this chapter, we introduce a procedure for the generation of a class of 3-connected

non-Hamiltonian graphs. Given an undirected graph G, the problem of determining

whether G is Hamiltonian is NP-complete. Nevertheless, sometimes there is an easily

verifiable proof of the fact that G is non-Hamiltonian. In Section 3.1 we present some

sufficient and necessary conditions for a graph to be Hamiltonian. A procedure for the

generation of a family of 3-connected non-Hamiltonian graphs is proposed in Section

3.2.

3.1 Hamiltonian Graphs

Given an undirected graph G = (V,E), an Hamiltonian cycle in G, is a cycle passing

once through all the vertices in G. A graph G is said to be Hamiltonian, if there

exists an Hamiltonian cycle in G. Decide whether a graph is Hamiltonian or not is

a NP-complete problem. Trivially, if G is complete it is Hamiltonian. Given n =

|V |, it is interesting to ask which is the minimum number of edges f (n), so that G is

Hamiltonian. For instance, a graph G with n vertices and 1+ (n−1)(n−2)
2

edges is non-

Hamiltonian. Indeed, G is obtained by adding to a complete graph with n−1 vertices,

a vertex of degree one. The following theorem is due to Dirac [9]:

Theorem 3.1.1. Given an undirected graph G with n vertices, if each vertex v has

35

3. Generation of 3-Connected non-Hamiltonian Graphs

degree at least n/2, then G is Hamiltonian.

Therefore, one may ask when a sequence of positive integers d1, ...,dn ≤ n ensures

that every graph G with vertices v1, ...,vn, such that the degree of vi in G is di, for

any i = 1, ...,n, is Hamiltonian. Such a sequence is called forcibly Hamiltonian, and

Chvàtal [4] introduced the following theorem:

Theorem 3.1.2. A sequence d1, ...,dn is forcibly Hamiltonian if there is no k such that

0 < k < n/2, at least k of the numbers di are at most k and at least n− k of them are

less than n− k.

A later generalization of this theorem is due to Bondy and Chvàtal [2], and uses

the notion of closure of a graph G, denoted by [G]. The closure of G is obtained by

adding to G the edges connecting each pair of non-adjacent vertices u and v in G, such

that d(u)+d(v)≥ n, where d(v) is the degree of v in G. The Bondy-Chvàtal Theorem

is the following:

Theorem 3.1.3. A graph G is Hamiltonian if and only if its closure [G] is Hamiltonian.

Finally, Chvàtal and Erdös [6] stated a sufficient condition for a graph G to be

Hamiltonian, using the independence number of G, α(G), and its connectivity, k(G).

The independence number of G is the cardinality of the largest independent vertex set,

that is a set of vertices in G, no two of which are adjacent. While the connectivity of

G is defined as the largest k such that G is k-connected. We recall that a graph G is

k-connected if there exist at least k disjoint paths between any pair of vertices.

Theorem 3.1.4. If α(G)≤ k(G) then G is Hamiltonian.

Although establishing whether a given graph G is Hamiltonian is a NP-complete

problem, there is a good characterization of certain non-Hamiltonian graphs. Given a

graph G, it is 1-tough if for any subset of vertices S in G, the graph G\S, resulting from

G by the removal of S, consists of at most |S| connected components. The following

theorem is due to Chvàtal [5]:

Theorem 3.1.5. If G is not 1-tough, then G is non-Hamiltonian.

For instance, consider the graph G shown in Figure 3.1. The subgraph G\{v1,v9,v11}
consists of four connected components, thus G is non-Hamiltonian. The inverse of

36

v9

v1

v2

v3 v4

v5

v6 v7

v8

v10
v11

v12

Figure 3.1: non-Hamiltonian

Figure 3.2: 1-tough and non-Hamiltonian

37

3. Generation of 3-Connected non-Hamiltonian Graphs

the theorem does not hold, indeed the subgraph in Figure 3.2 is 1-tough and non-

Hamiltonian. Given a graph G, a 2-factor is a subgraph of G in which all vertices have

degree two, that is a collection of disjoint cycles which together cover all the vertices

of G. It is easy to see that if G has no 2-factor, then G is non-Hamiltonian.

Let us mention an interesting class of non-Hamiltonian graphs, the hypohamiltonian

graphs. Given a graph G = (V,E), G is hypohamiltonian if G is non-Hamiltonian,

but G \ {v} is Hamiltonian for any v ∈ V . Hypohamiltonian graphs were first studied

by Sousselier [56] and they arise in integer programming solutions to the Traveling

Salesman problem, since certain kinds of hypohamiltonian graphs define facets of the

traveling salesman polytope. Grötschel [28] observed that the computational complex-

ity of determining whether a graph is hypohamiltonian, although unknown, is likely to

be high. Every hypohamiltonian graph has the property of being 3-connected, since the

removal of three vertices leaves a Hamiltonian path, which is connected. The smallest

hypohamiltonian graph is the Petersen graph, which is shown in Figure 3.3.

Figure 3.3: The Petersen graph.

3.2 A Class of 3-Connected non-Hamiltonian Graphs

In this section, we devise a procedure to generate a class of 3-connected non-Hamilto-

nian graphs. Let G = (V,E) be an undirected graph, we denote by δ (v) the set of

incident edges on v, by d(v) the cardinality of δ (v), and by N(v) = {u ∈ V : {u,v} ∈
δ (v)}. Let G′ = (V ′,E ′) be a complete graph with |V ′| ≥ 4, and let W be a subset

of V ′, with |W | = 3. Given a set of vertices T , with |T | ≥ 3, we build a new graph

38

G(G′;W ;T) = (V,E), as follows. The set V is obtained by adding to V ′ the vertices in

T , namely V =V ′∪T . The set of edges E is the following:

E = E ′∪{{u,v} : u ∈ T,v ∈W}

It is easy to see that G(G′;W ;T) is 3-connected, indeed whenever we remove two

vertices it remains connected. We claim that G(G′;W ;T) is also non-Hamiltonian.

Proposition 3.2.1. The graph G(G′;W ;T) is non-Hamiltonian.

Proof. To prove the assert we use Theorem 3.1.5, mentioned in the previous section.

Therefore, it is sufficient to show that G(G′;W ;T) is not 1-tough to prove that it is non-

Hamiltonian. Let us recall that a graph G is 1-tough if for any subset of vertices S in

G, G\S consists of at most |S| connected components. Choosing S =W , it results that

G(G′;W ;T) \ S is composed by the following connected components: {u1},...,{up},
G′ \ S, where T = {u1, ...,up}. Since p ≥ 3, G(G′;W ;T) \ S consists of at least four

connected components, while |S| = 3. This implies that G(G′;W ;T) is not 1-tough,

and then non-Hamiltonian.

v1 v2 v3

v4 v5 v6 v7

Figure 3.4: A graph G(G′;W ;T) with V ′ = {v1,v2,v3,v4}, W = {v1,v2,v3} and T =
{v5,v6,v7}.

Let us note that the graph shown in Figure 3.4 is the graph G(G′;W ;T), where

G′ = (V ′,E ′) is the complete graph with V ′ = {v1,v2,v3,v4}, W = {v1,v2,v3} and

T = {v5,v6,v7}.
This construction can be further generalized as described below. Let G′ = (V ′,E ′) be

a complete graph such that |V ′| ≥ 3q+ 1, where q ≥ 1. Let us consider q disjoint

subsets of vertices W1, ...,Wq ⊆ V ′, such that |Wi| = 3, for any i = 1, ...,q. Given q

disjoint sets of vertices T1, ...,Tq, with |Ti| ≥ 3, for any i = 1, ...,q, we build a new

39

3. Generation of 3-Connected non-Hamiltonian Graphs

graph G(G′,W1, ...,Wq,T1, ...,Tq) = (V,E), where V = V ′∪T1∪ ...∪Tq and the set of

edges E is the following:

E = E ′∪{{u,v} : u ∈ Ti,v ∈Wi}i=1,...,q

The graph G(G′,W1, ...,Wq,T1, ...,Tq) is 3-connected, and also non-Hamiltonian.

Proposition 3.2.2. The graph G(G′,W1, ...,Wq,T1, ...,Tq) is non-Hamiltonian.

Proof. The proof is analogous to that of the Theorem 3.2.1, since we show that the

graph G(G′,W1, ...,Wq,T1, ...,Tq) is not 1-tough. Indeed, choosing S = Wi, with i =

1, ...,q, the graph G(G′,W1, ...,Wq,T1, ...,Tq)\ S is made of |Ti|+1 connected compo-

nents, where |Ti| ≥ 3, while |S|= 3.

Therefore, graphs G(G′,W1, ...,Wq,T1, ...,Tq) constitute a family of 3-connected

non-Hamiltonian graphs. A procedure for the generation of such graphs is described

in Algorithm 1. The inputs of the procedure are three integers: q, n′ ≥ 3q+ 1, and

n̄ ≥ 3q. The function BuildComplete(n′) builds a complete graph with n′ vertices

(line 1). Then, the function 3Dis jointSubset(V ′) returns q disjoint subsets of ver-

tices W1, ...,Wq ⊆ V ′, with |Wi| = 3. For any i = 1, ...,q− 1 we compute ti as a ran-

dom integer between 3 and n̄/q, and by the function Vertices(ti) we create a set

Ti with ti vertices (lines 3-5). Finally, we set tq to n̄−∑
q
i=1 ti, and the set of ver-

tices Tq is obtained by the function Vertices(tq). The algorithm returns the graph

G(G′,W1, ...,Wq,T1, ...,Tq) = (V,E), where V is equal to V ∪ T1 ∪ ...∪ Tq, while the

set of edges E is initialized to E ′. Then, for any i = 1, ...,q, we add to E the edges

connecting each vertex in Ti to any vertex in Wi (lines 10-13).

40

Algorithm 1: Generation of G(G′,W1, ...,Wq,T1, ...,Tq)

Input: q, n′ ≥ 3q+1, n̄≥ 3q

Output: G(G′,W1, ...,Wq,T1, ...,Tq)
1 G′ = (V ′,E ′)← BuildComplete(n′);
2 (W1, ...,Wq)← 3Dis jointSubset(V ′);
3 for i = 1 to q−1 do

4 ti← random(3, n̄/q);
5 Ti←Vertices(ti);

6 tq← n̄−∑
q−1
i=1 ti;

7 Tq←Vertices(tq);
8 V ←V ′∪T1∪ ...∪Tq;

9 E← E ′;
10 for i = 1 to q do

11 for u ∈ Ti do

12 for v ∈Wi do

13 E← E ∪{u,v};

14 G(G′,W1, ...,Wq,T1, ...,Tq)← (V,E);

41

Chapter 4

The Generalized Minimum Branch

Vertices Problem

4.1 Introduction

In this chapter, we introduce the Generalized Minimum Branch Vertices (GMBV) prob-

lem: given an undirected graph G=(V,E), where V is partitioned into clusters V1, ...,Vk,

the aim is determining a subgraph spanning exactly one vertex for each cluster, and

with the minimum number of branch vertices, namely vertices with degree greater

than two. The GMBV problem is NP-hard, indeed when each cluster is a singleton

it reduces to the Minimum Branch Vertices (MBV) problem. The MBV problem was

introduced by Gargano et al. [25]. Carrabs et al. [3] proposed four mathematical

formulations, while Silvestri et al. [55] derived some valid inequalities and proposed

a hybrid formulation with both undirected and directed variables, which was solved

through a Branch & Cut algorithm. Landete et al. [38] investigated decomposition

methods for degree dependent spanning tree problems. Finally, Merabet et al. [40]

proposed a generalization of the MBV problem, introducing the definition of k-branch

vertex, a vertex with degree greater than k+2.

The GMBV problem arises in the context of optical network. When designing Metropoli-

tan Area Network (MAN) we need to interconnect several Local Area Network (LAN),

by selecting a hub for each LAN, and then connecting hubs through transmission links.

If more than two links entering a hub are chosen, the optical signal has to be split us-

43

4. The Generalized Minimum Branch Vertices Problem

ing a dedicated network device, a switch. Then, the minimization of the number of

switches in the network is required to minimize the costs. This problem can be mod-

elled as a GMBV problem, where each LAN is a cluster, each hub is a vertex, and

hubs where a switch is deployed are branch vertices. To the best of our knowledge,

the GMBV problem has never been introduced before. However, in the literature, the

generalized version of other Network Design Problems have been extensively studied.

Feremans et al. [17] provided a definition of the Generalized Network Design Prob-

lem, as a problem defined over clustered graph and where the feasibility conditions

are expressed in terms of the clusters. Myung et al. [42] introduced the Generalized

Minimum Spanning Tree problem, and Feremans et al. [14] proposed several mathe-

matical formulations for it. Moreover in [15], they developed new valid inequalities

and designed a Branch & Cut algorithm. Fischetti et al. [19] conducted a polyhedral

analysis for the Generalized Travelling Salesman Problem, and in [20] they proposed

a Branch & Cut algorithm.

The remainder of the chapter is organized as follows. In Section 4.2 we introduce the

definition of the problem and some notations. In Section 4.3, we propose an integer

linear programming formulation for the GMBV problem. Section 4.4 reports some

properties about clustered graphs. In Section 5.3, we derive the dimension of the poly-

hedron as well as some facet related results, and we introduce some valid inequalities.

A Branch and Cut algorithm is described in Section 4.6, and the computational results

are summarized in Section 4.7.

4.2 Definition of the Problem and Notation

Let G = (V,E) be an undirected graph, where V is the set of vertices, and E is the set

of edges. Moreover, G is clustered, which means that V is partitioned into k clusters,

V1, ...,Vk, see Figure 5.1(a). A generalized spanning tree (gst) of G is a subgraph

GT = (VT ,ET) of G, such that GT is a tree and |VT ∩Vi| = 1, for any i = 1, ...,k. A

vertex v∈VT is a branch vertex if its degree is greater than two in GT . The Generalized

Minimum Branch Vertices (GMBV) problem, consists of finding a gst in G, with the

minimum number of branch vertices. Since exactly one vertex for each cluster can be

selected, edges among vertices of the same cluster are neglected. Let us consider the

graph shown in Figure 5.1(a). An optimal solution to the GMBV problem in G, is the

44

tree in Figure 5.1(b), having only one branch vertex.

V1

V2

V3

V4

V5

(a)

V1

V2

V3

V4

V5

(b)

Figure 4.1: (a) A graph G with five clusters. (b) A gst of G with one branch vertex.

4.3 Mathematical Formulation

The GMBV problem can be formulated as an integer linear program (ILP) as follows.

The binary variables are:

• xe, ∀e ∈ E, is equal to 1 if e is selected, and 0 otherwise;

• yv, ∀v ∈V , is equal to 1 if v is selected, and 0 otherwise;

• zv, ∀v ∈V , is equal to 1 if v is a branch vertex, and 0 otherwise.

Given E ′ ⊆ E and V ′ ⊆V , we use the notations x(E ′) = ∑e∈E ′ xe, and y(V ′) = ∑v∈V ′ yv.

For S,T ⊆V , we define E(S : T) = {{u,v} ∈ E : u∈ S,v∈ T}, and E(S) = E(S : S) the

set of the edges having both extremes in S. We denote by δ (S) = E(S : V \ S) the set

of edges incident to vertices in S, and by N(S) = {u ∈ V \ S : ∃{u,v} ∈ δ (S),v ∈ S}.
When S = {v}, δ ({v}) and N({v}) become δ (v) and N(v) respectively, and we denote

by d(v) the cardinality of δ (v). Let us denote by K the set of indices of the clusters,

K = {1, ...,k}. Given S ⊆ V , we define µ(S) = |{i ∈K : Vi ⊆ S}|, that is the number

of clusters included in S.

The ILP formulation is the following:

Minimize z = ∑
v∈V

zv (4.1)

45

4. The Generalized Minimum Branch Vertices Problem

subject to

x(E) = k−1 (4.2)

y(Vi) = 1 i ∈K (4.3)

x(E(S))≤ y(S)−1 S⊂V : |S| ≥ 2,µ(S)> 0 (4.4)

x(δ (v))−2yv ≤ (d(v)−2)zv v ∈V (4.5)

xe ∈ {0,1} e ∈ E (4.6)

yv ∈ {0,1} v ∈V (4.7)

zv ∈ {0,1} v ∈V (4.8)

The objective function (4.1) minimizes the number of branch vertices. Constraint (4.2)

requires that the number of selected edges coincides with the number of clusters mi-

nus one. Constraints (4.3) guarantee that exactly a vertex is selected for each cluster.

Constraints (4.4) are the Generalized Subtour Elimination Constraints (GSECs), in-

troduced in [15]. Constraints (4.5) ensure that a selected vertex v is branch if at least

three edges in δ (v) are selected. The objective function forces variables zv to zero

when x(δ (v)) ≤ 2 holds. However, to ensure that variables zv fully describe a branch

vertex, the following constraints can be introduced for any v ∈V :

2zv ≤ x(δ (v))− yv (4.9)

Constraints (4.9) ensure that zv is equal to zero if in δ (v) are selected less than three

edges. Given a vertex v ∈ V , by h(v) we denote the index of the cluster containing v,

and then by Vh(v) the cluster containing v. Let us consider the set W = {v∈V : |Vh(v)|=
1}, containing vertices which belong to clusters that are singleton. It is worth noting

two particular cases of the GSECs:

x(E({v} : Vi))≤ yv i ∈K,v ∈V \ (W ∪Vi) (4.10)

x(δ (v))≥ yv v ∈V (4.11)

Constraints (4.10) are obtained from constraints (4.4), when S =Vi∪{v}, while (4.11)

are obtained choosing S =V \{v}. Let us note that constraints (4.10) ensure that yv is

equal to 1 if at least one edge incident to v is selected, while constraints (4.11) ensure

46

that yv is equal to 0 if no edge in δ (v) is selected. Furthermore, constraints (4.11)

Remark 1. Constraints (4.11) is dominated by constraints (4.9).

4.4 Properties of the Clustered Graphs

In this section, we show some properties that any feasible solution to the GMBV prob-

lem satisfies. Some of these properties can be used to determine useless vertices or

edges, since they do not belong to any feasible solution. These elements could be

identified and removed to reduce the size of the graph. Moreover, they will be used in

Section 5.3 to obtain some polyhedral results about the GMBV polyhedron.

Given a subset of vertices V ′ ⊆V , we denote by G[V ′] = (V ′,E(V ′)), the subgraph in-

duced by V ′. When V ′= {a1, ...,al}, instead of G[{a1, ...,al}] we use simply G[a1, ...,al].

4.4.1 v-Connection

Definition 4.4.1. Given a vertex v ∈ V , G is v-connected if there exist vertices a1 ∈
V1, ...,ak ∈Vk, with ah(v) = v, such that G[a1, ...,ak] is connected.

Given the graph G = (V,E), shown in Figure 4.2(a), it is easy to see that it is v1-

connected, since the subgraph G[v1,v4,v5,v6] is connected (see Figure 4.2(b)). On the

contrary, G is not v2-connected, because neither G[v2,v3,v5,v6] nor G[v2,v4,v5,v6] are

connected. If the subgraph G[a1, ...,ak] is not connected, let us denote by c(a1, ...,ak)

the number of connected components of G[a1, ...,ak]. Then, we define

cv = min{c(a1, ...,ak) :a1 ∈V1, ...,ak ∈Vk,ah(v) = v,

G[a1, ...,ak] is not connected}.

For example, for the graph shown in Figure 4.2(a), it results that c(v2,v3,v5,v6) =

c(v2,v4,v5,v6) = 2, then cv2
= 2.

Remark 2. If each cluster is a singleton, given a vertex v ∈V , G is v-connected if and

only if G is connected.

47

4. The Generalized Minimum Branch Vertices Problem

Indeed, since each cluster is a singleton, we have that V1 = {a1}, ...,Vk = {ak}, and

G[a1, ...,ak] = G. Therefore, the v-connection is an extension of the connection prop-

erty to clustered graphs.

v1

v2

V1

V2

V4

V3

v6

v3 v4

v5

(a)

V2

v1

V1 V3

V4

v6

v4

v5

(b)

Figure 4.2: (a) A graph G, such that G is v1-connected, but not v2-connected. (b) A

connected subgraph G[v1,v4,v5,v6].

Lemma 4.4.1. Given a vertex v ∈V , it results that:

1. if G is v-connected, then there exists a feasible solution to the GMBV problem

containing v.

2. if G is not v-connected, then v does not belong to any feasible solution to the

GMBV problem.

Proof.

1. If G is v-connected, there exist a1 ∈ V1, ...,ak ∈ Vk, with ah(v) = v, such that

G[a1, ...,ak] is connected. Therefore, there exists a gst GT in G[a1, ...,ak], that is

a feasible solution to the GMBV problem containing v.

2. We prove it by contradiction. Let GT be a feasible solution to the GMBV prob-

lem containing v. By definition GT is a gst. Therefore, the subgraph induced by

vertices in GT is connected, and then G is v-connected, which is a contradiction.

Thanks to Lemma 4.4.1 it is possible to identify in G vertices that are useless because

they do not belong to any feasible solution. To this end, for any v ∈ V , we have to

48

V1

V2

V4

V3

u

v

Figure 4.3: A v-connected (dotted line) and u-connected (dashed line) graph, such that

the edge {u,v} does not belong to any feasible solution.

check if G is v-connected, and if this condition does not hold v can be removed from

G. In what follows we assume that G is v-connected, for any v ∈ V , to guarantee that

any vertex may belong to a feasible solution to the GMBV problem. It is worth noting

that in G there could be useless edges too. Indeed, given an edge {u,v} ∈ E, even if G

is both u-connected and v-connected, it may not be contained in any feasible solution,

as shown by the following remark:

Remark 3. Given an edge e = {u,v} ∈ E, even if G is u-connected and v-connected,

this does not imply that there exists a feasible solution to the GMBV problem in G,

containing e.

Let us consider the graph shown in Figure 4.3: it is u-connected and v-connected.

It is easy to see that edge {u,v} cannot belong to any feasible solution, since the con-

temporary selection of u and v does not allow to reach cluster V3. Given a vertex v∈V ,

we denote by G(v) the subgraph of G obtained by removing all vertices in Vh(v), except

for v, namely G(v) = G[V \{Vh(v) \{v}}].

Lemma 4.4.2. Given an edge e = {u,v} ∈ E, if G(u) is v-connected, then there exists

a feasible solution to the GMBV problem in G, containing e.

Proof. Since G(u) is v-connected, there exist a1 ∈V1, ...,ak ∈Vk, with ah(v) = v, such

that G[a1, ...,ak] is connected. Moreover, Vh(u) in G(u) is a singleton containing only

vertex u, thus ah(u) = u. Therefore, in G[a1, ...,ak] there exists a gst, GT = (VT ,ET),

spanning u and v. If edge e belongs to ET , the lemma is proved. Otherwise, we can

build a new gst, G′T = (VT ,E
′
T), where E ′T = ET ∪{e}\{e′}, with e′ one of the edges

in ET belonging to the cycle generated by the introduction of e in GT .

49

4. The Generalized Minimum Branch Vertices Problem

V2

v1

V1 V3

V4

v7

v4

v5

v2

v3

v6

Figure 4.4: A graph G, such that vertex v1 is a generalized cut vertex.

4.4.2 Generalized Cut Vertex

In this section, we extend the notion of cut vertices to clustered graphs, where a cut

vertex is a vertex which removal disconnects the graph.

Definition 4.4.2. A vertex v ∈V is a generalized cut vertex in G, if there exists a vertex

u ∈ N(v), such that G[V \Vh(v)] is not u-connected.

In the graph depicted in Figure 4.4, v1 is a generalized cut vertex, since G[V \Vh(v1)] is

not u-connected for any u ∈ N(v1), with N(v1) = {v3,v4,v6,v7}. If v is a generalized

cut vertex, let us denote by c(v) = min{cu : u ∈ N(v),G[V \Vh(v)] is not u-connected}.
In the previous example, we have that c(v1) = min{cv3

,cv4
,cv6

,cv7
}, where cv3

= cv6
=

3, cv4
= min{c(v4,v5,v7),c(v4,v6,v7)}= 2, and cv7

= 2. Therefore, c(v1) = 2.

Remark 4. If each cluster is a singleton, a generalized cut vertex is exactly a cut

vertex.

Indeed, if v is a generalized cut vertex, there exists u∈N(v) such that G[V \Vh(v)] is

not u-connected. Without loss of generality, let us suppose that Vh(v) =V1, and when-

ever we take a2 ∈V2, ...,ak ∈Vk, with ah(u) = u, G[a2, ...,ak] is disconnected. Further-

more, it is straightforward to note that if each cluster contains exactly one vertex, then

G[a2, ...,ak] = G[V \{v}], and it is disconnected. Therefore v is a cut vertex.

Lemma 4.4.3. Given a vertex v∈V , if G[V \Vh(v)] is not u-connected, for any u∈N(v),

and c(v)≥ 3, then v is branch in any GMBV feasible solution which contains v.

Proof. Let us suppose that G[V \Vh(v)] is not u-connected, for any u∈N(v), and c(v)≥
3. Whenever in cluster Vh(v) we select v, to guarantee connectivity we have to select at

50

least three edges in δ (v). Therefore, v is branch in any feasible solution which contains

v.

Lemma 4.4.4. If a vertex v ∈ V is not a generalized cut vertex, then there exists a

feasible solution to the GMBV problem containing v and exactly one edge incident on

v.

Proof. Since v is not a generalized cut vertex, for any u ∈ N(v), G[V \Vh(v)] is u-

connected. Without loss of generality let us assume Vh(v) =V1. According to the defini-

tion, there exist a2 ∈V2, ...,ak ∈Vk, with ah(u) = u, such that G[a2, ...,ak] is connected.

Therefore, there is a spanning tree GTu
= (VTu

,ETu
) in G[a2, ...,ak], that is a gst in

G[V \Vh(v)] containing u. Finally, if we consider GT = (VT ,ET), where VT =VTu
∪{v}

and ET = ETu
∪{u,v}, it is a feasible solution to the GMBV problem in G, containing

v and exactly one edge in δ (v).

Notice that, if v ∈ V is not a generalized cut vertex, we have d(v) feasible solutions

to the GMBV problem containing v and exactly one edge incident on it, one for each

edge in δ (v).

Lemma 4.4.5. If there are no generalized cut vertices in G, then for any v ∈ V there

exists a feasible solution to the GMBV problem containing v and at least two edges in

δ (v).

Proof. Since G does not contain any generalized cut vertex, d(v) ≥ 2 for any v ∈ V .

Given v∈V , let us consider u∈N(v). Since u is not a generalized cut vertex, according

to Lemma 4.4.4, there exists a feasible solution GT to the GMBV problem containing

u and exactly one edge in δ (u). In more detail, let us assume that {u,v} belongs to

GT . Therefore, GT contains {u,v} and at least another edge incident on v, thus it is

a feasible solution to the GMBV problem containing v, and with at least two edges

belonging to δ (v).

4.5 Polyhedral Analysis

Let us denote by P(G) the polytope described by the constraints (4.2)-(4.8), that is:

P(G) = conv{(x,y,z) ∈R
|E|+2|V | : (x,y,z) satisfies (4.2)− (4.8)} (4.12)

51

4. The Generalized Minimum Branch Vertices Problem

V2

V1 V3

V4

v2

v3

v5

v6

v1

v4

v7

Figure 4.5: A graph G = (V,E), with k = 4, t = 6 and s = 3, satisfying assumptions

(A1) and (A2).

In this section, we examine some properties of the polytope P(G). In order to assure

that each vertex could be a branch vertex in a GMBV solution, we assume that k ≥ 4,

and N(v) contains at least three vertices belonging to three different clusters, for any

v∈V . We denote by t = |V \W |, and by s the number of clusters that are not singleton,

namely s = |{i ∈K : |Vi|> 1}|. We assume that:

(A1) G does not contain any generalized cut vertex;

(A2) if t > 0, there exist S1 ⊂ S2 ⊂ ...⊂ St−s ⊂V , with µ(Si) = 0 and |Si|= i, for any

i = 1, ..., t− s, such that G[V \Si] does not contain any generalized cut vertex.

Let us consider the graph G = (V,E) shown in Figure 4.5. Here we have, k = 4,

t = 6 and s = 3. G satisfies assumption (A1). Moreover, it satisfies assumption (A2),

with S1 = {v1}, S2 = {v1,v4} and S3 = {v1,v4,v7}. Let us introduce some results,

which were proposed by Fischetti et al. [19] for the Generalized Travelling Salesman

problem, and here they are adapted to the GMBV problem.

Definition 4.5.1. Let αx ≤ βy+ γz+ δ be a valid inequality for P(G). We denote by

H(α,β ,γ,δ) the face of P(G) induced by αx≤ βy+γz+δ . Given a vertex v∈V \W,

the v-restriction of αx≤ βy+ γz+δ is the inequality obtained through the deletion of

the variables yv, zv and xe, for all e ∈ δ (v).

Lemma 4.5.1. Given a valid inequality αx ≤ βy+ γz+ δ , for any v ∈ V \W, the di-

mension of H(α,β ,γ,δ) is greater than or equal to the sum of the following quantities:

52

(i) the dimension of the face of the polyhedron P(G[V \ {v}]) induced by the v-

restriction of αx≤ βy+ γz+δ ;

(ii) the rank of the matrix containing the coordinates of the extreme points of

H(α,β ,γ,δ) with yv = 1, restricted to yv, zv and xe, for any e ∈ δ (v).

Proof. Let us consider the matrix X , where each row is an extreme point of the face

H(α,β ,γ,δ). Let us note that, since the polyhedron does not contain the origin, the

dimension of H(α,β ,γ,δ) is the rank of X minus 1. Given v ∈ V \W , matrix X can

be partitioned in this way:

X =







X11 0 0 0

X21 X22 1 0

X31 X32 1 1







The last two columns are associated to variables yv and zv, respectively, while the sub-

matrix

[

X22

X32

]

contains variables xe, with e ∈ δ (v). It results that rank X ≥ rank X11 +

rank

[

X22 1 0

X32 1 1

]

, where rank X11 minus 1 is exactly the dimension of the face of

P(G[V \{v}]), induced by the v-restriction of αx≤ βy+ γz+δ .

Given V ′ ⊆V , we represent V ′ by its characteristic vector, νV ′ ∈ B
n, with νV ′

v = 1

if v ∈ V ′, and νV ′
v = 0 otherwise. Analogously, given E ′ ⊆ E, let πE ′ ∈ B

m be its

characteristic vector, with πE ′
e = 1 if e ∈ E ′, and πE ′

e = 0 otherwise. Moreover, we

denote by 0 and 1, the vectors of all zeros and all ones, respectively.

Proposition 4.5.2. dim(P(G)) = m+2n− k−1.

Proof. Inequality dim(P(G)) ≤ m+ 2n− k− 1 is trivial, indeed constraints (4.2) and

(4.3) are valid for P(G), and they are linearly independent. We show the inverse in-

equality by induction on t. We recall that t = |V \W |, namely t is the number of vertices

which belong to clusters that are not singleton. When t = 0, the GMBV problem re-

duces to the MBV problem and the claim is true (see [55]). Let us assume that the

claim holds for t, we prove it for t + 1. Since t > 0, then there exists at least a vertex

v ∈V \W . According to Lemma 5.2.1, given the valid inequality 0≤ 0, dim(P(G))≥

53

4. The Generalized Minimum Branch Vertices Problem

rank X11 + rank

[

X22 1 0

X32 1 1

]

. Furthermore, assumption (A2) implies that we can

choose v ∈ V \W such that G[V \ {v}] satisfies the same conditions as G, thus, from

the induction hypothesis, it follows that rank X11 = |E \ δ (v)|+ 2|V \ {v}| − k− 1.

Therefore, we need to show that rank

[

X22 1 0

X32 1 1

]

= d(v)+ 2. This matrix contains

the columns associated to yv, zv and xe, e ∈ δ (v), of the incidence vectors of feasible

GMBV solutions containing vertex v. We have to exhibit d(v)+ 2 incidence vectors

belonging to P(G), such that when restricted to yv, zv and xe, e ∈ δ (v) are linearly in-

dependent. Due to assumption (A1) and Lemma 4.4.4, for any u ∈ N(v) there exists a

feasible solution GT u = (VT u ,ET u) to the GMBV problem where yv = 1, x{u,v} = 1, and

x(δ (v)) = 1. Therefore, for any u ∈ N(v), (πET u ,νVT u ,1 \ν{v}) belongs to P(G), and

matrix X22 is the identity matrix Id(v). Moreover, (πET u ,νVT u ,1), with u ∈ N(v), be-

longs to P(G) too. Due to Lemma 4.4.5, there exists a feasible solution GT = (VT ,ET),

with yv = 1 and x(δ (v)) > 1. Thus, (πET ,νVT ,1) belongs to P(G). Introducing in the

matrix the incidence vectors of these solutions, we have:

[

X22 1 0

X32 1 1

]

=







Id(v) 1 0

1 0 0 0 ... 0 1 1

1 ...1 0 ... 0 1 1







The rows of this matrix are linearly independent, thus its rank is d(v)+2.

Lemma 4.5.3. Given a valid inequality αx ≤ βy+ γz+ δ inducing a proper face of

P(G), if there exists a vertex v ∈V \W such that:

(i) the v-restriction of this inequality is facet-defining for P(G[V \{v}]);

(ii) there are d(v) + 2 incidence vectors of GMBV solutions containing v and be-

longing to H(α,β ,γ,δ), such that their restriction to xe, e ∈ δ (v), yv and zv, are

linearly independent;

then, αx≤ βy+ γz+δ is facet-defining for P(G).

Proof. Inequality αx≤ βy+ γz+δ induces a proper face of P(G), then

dim(H(α,β ,γ,δ))≤m+2n−k−2. Therefore, we have to prove the inverse inequal-

ity. By Lemma 5.2.1, dim(H(α,β ,γ,δ))≥ dim(v− restriction)+ rank

[

X22 1 0

X32 1 1

]

.

54

Hypothesis 1 implies that the v-restriction of the inequality is a facet of P(G[V \{v}]),
then, for the Proposition 5.3.2, dim(v− restriction) = |E \δ (v)|+2|V \{v}|−k−2 =

m+2n−k−d(v)−4. Moreover, hypothesis 2 implies that rank

[

X22 1 0

X32 1 1

]

= d(v)+

2. Therefore, dim(H(α,β ,γ,δ)) ≥ m+ 2n− k− d(v)− 4+ d(v)+ 2 = m+ 2n− k−
2.

Proposition 4.5.4.

1. Inequality yv ≥ 0, v ∈V , is not facet-defining for P(G).

2. Inequality yv ≤ 1, v ∈V , is not facet-defining for P(G).

Proof.

1. Inequality yv ≥ 0 is not facet-defining for P(G), since the face P(G)∩{(x,y,z) :

yv = 0} is properly contained in the proper face P(G)∩{(x,y,z) : x(E({v} :Vi))=

0}, for any i 6= h(v).

2. The inequality yv ≤ 1, v ∈ V , does not define a facet of P(G), because of the

constraints (4.3).

Proposition 4.5.5. Inequality zv ≤ 1, v ∈ V , is a facet of P(G), if assumption (A2)

holds for S1, ...,St−s ⊂V \{v}.

Proof. We prove the proposition by induction on t. When t = 0, all clusters are

singleton, so the GMBV problem reduces to the MBV problem, and the claim is true.

Let us assume that the claim holds for t, we prove it for t +1. Since t > 0, then there

is a vertex u ∈ V \W , with u 6= v, such that G[V \{u}] satisfies assumptions (A1) and

(A2). By the induction hypothesis, the first request of Lemma 5.2.2 is satisfied. If

we prove that the second hypothesis of Lemma 5.2.2 is satisfied too, we are done.

To this end, we exhibit d(u) + 2 feasible solutions containing u, satisfying zv = 1,

and such that the restrictions of their incidence vectors to yu, zu and xe, e ∈ δ (u),

are linearly independent. By Lemma 4.4.4, for any w ∈ N(u) there exists a feasible

solution GT w = (VT w ,ET w) to the GMBV problem with yu = 1 and x(δ (u)) = 1. Note

that, (πET w ,νVT w ,1 \ ν{u}) belongs to P(G) and satisfies zv = 1, for any w ∈ N(u).

55

4. The Generalized Minimum Branch Vertices Problem

Furthermore, (πET w ,νVT w ,1) ∈ P(G) too. By Lemma 4.4.5, there exists a feasible

solution GT = (VT ,ET) having yu = 1 and x(δ (u)) > 1, thus (πET ,νVT ,1) belongs to

P(G). These are d(u)+2 feasible solutions containing u, that satisfy zv = 1, and their

restriction to the variables associated to u gives rise to a full rank matrix.

Proposition 4.5.6. Inequality zv ≥ 0,v ∈V , is a facet of P(G) if

1. G[V \Vh(v)] does not contain any generalized cut vertex;

2. there exists i ∈K such that Vi ⊆ N(v);

3. assumption (A2) holds for S1, ...,St−s ⊆V \{N(v)∪{v}}.

Proof. We prove the assert by induction on t. For t = 0, each cluster is a singleton,

thus the GMBV problem reduces to the MBV problem and the claim is true. Let us

assume that the claim is true for t, we prove it for t + 1. Since t > 0, and according

to hypothesis 2, it is always possible to choose a vertex u ∈ V \W , with u 6= v and

u /∈ N(v), such that the graph G[V \ {u}] satisfies (A1) and (A2). Therefore, by the

induction hypothesis, the first request of Lemma 5.2.2 holds. Thus, to complete the

proof, we have to exhibit d(u)+2 feasible solutions to the GMBV problem, satisfying

yu = 1 and zv = 0, such that the restrictions of their incidence vectors to yu, zu and xe,

with e ∈ δ (u), are linearly independent. We have to consider two cases:

• h(u) = h(v):

whenever we consider a feasible solution with yu = 1, we have yv = 0, thus

we can set zv to 0. From assumption (A1), u is not a generalized cut vertex,

and by Lemma 4.4.4, there exists a feasible solution GT w = (VT w ,ET w), with

yu = 1 and x(δ (u)) = 1, for any w ∈ N(u). Therefore, (πET w ,νVT w ,1 \ ν{u,v})

belongs to P(G), for any w ∈ N(u). Moreover, (πET w ,νVT w ,1 \ ν{v}) belongs

to P(G) too. Finally, Lemma 4.4.5 assures that there exists a feasible solution

GT = (VT ,ET), with yu = 1 and x(δ (u)) > 1, thus (πET ,νVT ,1 \ ν{v}) belongs

to P(G). Obviously, the restrictions of these solutions to yu, zu and xe, with

e ∈ δ (u), are d(u)+2 linearly independent vectors.

• h(u) 6= h(v):

u is not a generalized cut vertex in G[V \Vh(v)], then for any w∈N(u), there exists

56

GT̄ w = (VT̄ w ,ET̄ w), a feasible solution to the GMBV problem in G[V \Vh(v)].

To obtain a feasible solution in G, it is sufficient to add an edge in δ (v), and

this can always be done thanks to hypothesis 2. Thus, for any w ∈ N(u), we

have a feasible solution to the GMBV problem on G, GT w = (VT w ,ET w), where

VT w = VT̄ w ∪{v} and ET w = ET̄ w ∪{e}, with e ∈ δ (v). This solution contains

exactly one edge in δ (v), and its characteristic vector (πET w ,νVT w ,1 \ ν{u,v})

belongs to P(G) and satisfies zv = 0. In such a way we have built d(u) feasible

solutions. The remaining two are the followings: one is that represented by

(πET w ,νVT w ,1 \ ν{v}), for a given w ∈ N(u), and the other one is (πET ,νVT ,1 \
ν{v}), where GT = (VT ,ET) is obtained by adding to a feasible solution with

yu = 1 and x(δ (u)) > 1 in G[V \Vh(v)], one edge in δ (v). These solutions are

such that their restrictions to the variables related to u are linearly independent.

Proposition 4.5.7. Given v ∈V and H ⊆ δ (v), with |H| ≥ 3, inequality

∑
e∈H

xe−2yv ≤ (|H|−2)zv (4.13)

is valid for P(G).

Proof. This inequality is derived from constraints (4.5). It ensures that whenever at

least three edges in H ⊆ δ (v), with |H| ≥ 3, are selected, then v is branch.

4.6 Branch and Cut Algorithm

We designed a Branch and Cut algorithm for the GMBV problem, based on the ILP

formulation introduced in Section 4.3. The steps of the algorithm are summarized in

Algorithm 2. We initialize the linear program (LP) model by removing the exponential

number of constraints GSECs, and relaxing the integrality constraints on the variables

of the original formulation. Hence, the initial LP model is (4.2), (4.3), (4.5) and (4.9),

and the continuous relaxation of (4.6)-(4.8). Given a subproblem L′, we compute the

optimal LP solution (x∗LP(L
′)): if it is feasible for the ILP, and it is better than the

incumbent solution, then the incumbent is updated (line 14). Otherwise, if the LP

57

4. The Generalized Minimum Branch Vertices Problem

Algorithm 2: Branch and Cut algorithm for the GMBV problem

Input: integer linear program ILP

Output: optimal solution of ILP

1 L = /0;

2 x′← null; //incumbent

3 z(x′)← ∞; //value of the incumbent

4 L0← first subproblem;

5 L← L0;

6 while L 6= /0 do

7 f ound← true;

8 L′← subproblem from L;

9 while f ound == true do

10 f ound← f alse;

11 x∗LP(L
′)← optimal LP solution of the subproblem L′;

12 if z(x∗LP(L
′))< z(x′) then

13 if x∗LP(L
′) is feasible then

14 x′← x∗LP(L
′); //update incumbent

15 else

16 search for violated constraints (4.10);

17 if violated constraints (4.10) are identified then

18 add them to the model;

19 f ound← true;

20 else if violated constraints (4.10) are not identified then

21 search for violated constraints (4.4);

22 if violated constraints (4.4) are identified then

23 add them to the model;

24 f ound← true;

25 search for violated constraints (4.13);

26 if violated constraints (4.13) are identified then

27 add them to the model;

28 f ound← true;

29 else

30 do the branching→ subproblems L1,L2;

31 L← L1,L2;

58

solution is not feasible, we search for violated constraints (4.4) and (4.13) (lines 16-

28). Since constraints (4.4) are exponentially many, we first check the violations of

constraints (4.10) (lines 16-19); if no violated inequalities (4.10) are found, then we

look for violations of constraints (4.4) (lines 20-24). We repeat this procedure until

inequalities violated by the current relaxed solution are identified. When improvements

are no longer possible, we branch on the variables using the default parameters of

CPLEX (lines 29-31).

4.6.1 Preprocessing Phase

Before applying the Branch and Cut algorithm, a preprocessing phase is carried out to

reduce the size of the instances, when possible, exploiting the properties introduced in

Section 4.4. In that section, we introduced the definition of v-connection for a graph

G and a vertex v ∈ V , and we showed that if G is not v-connected, then v does not

belong to any feasible solution (see Lemma 4.4.1). Therefore, if G is not v-connected,

v is useless and can be removed from G. In order to remove from G all the useless

vertices, we verify if G is v-connected, for any v∈V . To this end, we build an auxiliary

graph Ḡ = (V̄ , Ē), where V̄ is obtained by adding to V k dummy vertices t1, ..., tk,

such that each ti is connected to all and only the vertices in Vi. Accordingly, Ē =

E ∪{{u, ti} : ∀u ∈ Vi}i∈K. Furthermore, we introduce a cost function, c : Ē → R
+,

where c(u,w) = 1, for any {u,w} ∈ Ē. The cost of a subgraph G′ = (V ′,E ′) of Ḡ, is

denoted by C(G′) and is the sum of the costs of the edges in E ′. In Figure 4.6 is shown

a graph Ḡ for a given graph G. Given a vertex v ∈ V , let us consider the Steiner Tree

problem in Ḡ with terminal set {v, t1, ..., tk}, we call it v−ST problem. The following

lemma holds:

Lemma 4.6.1. The value of any feasible solution to the v−ST problem in Ḡ is greater

than or equal to 2k−1.

Proof. To prove the assert, let Ḡ′ be a feasible solution to the v− ST problem in Ḡ.

Let us note that t1, ..., tk belong to the terminal set, then Ḡ′ contains at least an edge

incident on ti, for any i ∈K. Moreover, N(ti) = Vi, for any i ∈K, thus to reach ti we

need to select at least a vertex for each Vi. Thus, to ensure the connection between the

terminal vertices, the clusters V1, ...,Vk must be connected by a tree, namely by k− 1

edges. Hence, C(Ḡ′)≥ k+ k−1 = 2k−1.

59

4. The Generalized Minimum Branch Vertices Problem

v1

v2

V1

V2

V4

V3

v6

v3 v4

v5

t4

t1

t3

t2

1

v1

v2

V1

V2

V4

V3

v6

v3 v4

v5

(a)

(b)

1

1

1

1

1

1
1

1
1

1

1

Figure 4.6: (a) A clustered graph G = (V,E), with k = 4. (b) The auxiliary graph

Ḡ = (V̄ , Ē), associated to G.

Proposition 4.6.2. G is v-connected if and only if the value of the optimal solution to

the v−ST problem in Ḡ is 2k−1.

Proof. Let us suppose that G is v-connected. According to Definition 4.4.1, there exist

vertices a1 ∈V1, ...,ak ∈Vk, with ah(v) = v, such that G[a1, ...,ak] is connected. There-

fore, there exists a spanning tree GT in G[a1, ...,ak]. A Steiner Tree ḠT in Ḡ with ter-

minal set {v, t1, ..., tk}, can be obtained by adding to GT the edges {a1, t1}, ...,{ak, tk}.
Clearly, C(ḠT) = 2k− 1. Thanks to Lemma 4.6.1, ḠT is an optimal solution to the

v−ST problem.

On the contrary, let us assume that the optimal solution to the v− ST problem in Ḡ

is a tree ḠT = (V̄T , ĒT), with C(ḠT) = 2k− 1. Vertices ti belongs to the terminal set

and t1, ..., tk ∈ V̄T . Furthermore, each vertex ti can be reached only through vertices

in Vi, then |V̄T ∩Vi| ≥ 1, for any i = 1, ..,k. Let us note that, since C(ḠT) = 2k− 1,

then ḠT is a tree spanning 2k vertices, k of which are t1, ..., tk. This implies, that

ḠT [V̄T \{t1, ...tk}] is a connected subgraph containing exactly one vertex for each clus-

ter, a1 ∈ V1, ...,ak ∈ Vk. Since v belongs to the terminal set, then ah(v) = v, and G is

v-connected.

As a consequence of Proposition 4.6.2, to establish if G is v-connected, it is sufficient

to optimally solve the v− ST problem on the auxiliary graph Ḡ. Nevertheless, since

60

Steiner Tree problem is NP-hard, this cannot be done in reasonable computational

time. Therefore, we need another approach to determine in polynomial time if G is

v-connected.

Let us consider a capacitated network, G̃ = (Ṽ , Ã), built as follows. The set of vertices

Ṽ is obtained by adding to V , k sink vertices, t1, ..., tk, each of them requiring 1 unit

of flow. Every edge {u,w} ∈ E is replaced in G̃, by two arcs (u,w) and (w,u). Every

vertex u ∈ Vi, with i ∈ K, is connected to the corresponding sink vertex ti, by arc

(u, ti). Finally, we introduce a capacity function on the arcs of G̃, p : Ã→ R
+, where

p(u,w) = k, for any (u,w) ∈ Ã such that u,v ∈ V , while p(u, ti) = 1, for any u ∈ Vi,

i ∈K. For example, in Figure 4.7(b) is shown the auxiliary graph G̃, for the graph G

depicted in Figure 4.7(a). Given u ∈ Ṽ , we denote by δ−(u) the set of the ingoing arcs

v1

v2

V1

V2

V4

V3

v6

v3 v4

v5

t4

t1

t3

t2

1

1

1

1

11

4

4

4

4
4

4

v1

v2

V1

V2

V4

V3

v6

v3 v4

v5

(a)

(b)

Figure 4.7: (a) A clustered graph G = (V,E), with k = 4. (b) The auxiliary graph

G̃ = (Ṽ , Ã), associated to G.

in u, while δ+(u) is the set of the outgoing arcs from u.

Given v ∈ V , we introduce on G̃ a decision problem, named v− f low, that consists

of verifying if it is possible to satisfy the demands of the sink vertices t1, ..., tk, by

sending k units of flow from vertex v, and using exactly one vertex for each cluster.

For instance, the answer to the v1− f low problem for the graph in Figure 4.7(b) is

”yes”, because it is possible to satisfy the demands of t1, t2, t3 and t4, by using the arcs

in the subgraph induced by vertices v1,v4,v5 and v6. On the contrary, the answer to the

v2− f low problem on the same graph is ”no”, because it is not possible to satisfy the

61

4. The Generalized Minimum Branch Vertices Problem

demand of vertex t3, having v2 as the source of the flow and using exactly one vertex

for each cluster.

The following proposition holds:

Proposition 4.6.3. Given v ∈ V , G is v-connected if and only if the answer to the

v− f low problem on G̃ is ”yes”.

Proof. If G is v-connected, according to Definition 4.4.1, there exist vertices a1 ∈
V1, ...,ak ∈ Vk, with ah(v) = v, such that G[a1, ...,ak] is connected. Let us consider the

subgraph of G̃, G∗ = (V ∗,A∗), where V ∗ = {a1, ...,ak, t1, ..., tk}, while A∗ is obtained

by considering any directed arc in G̃ having both extremes in V ∗. Since G[a1, ...,ak] is

connected in G, by the construction of G̃, in G∗ there exists a path from v to any other

node. For this reason, sending k unit of flow from vertex v, we are able to satisfy the

demands of vertices t1, ..., tk, using the arcs in G∗. Thus, the answer to the v− f low

problem is ”yes”.

On the contrary, if the answer to the v− f low problem is ”yes”, it is possible to satisfy

the demands of t1, ..., tk, sending k unit of flow from v, and using exactly one vertex for

each cluster, a1 ∈ V1, ...,ak ∈ Vk, with ah(v) = v. It is easy to see that the subgraph of

G, G[a1, ...,ak] is connected. Indeed, each sink node ti is connected only to the vertices

belonging to Vi and if G[a1, ...,ak] is not connected, then the demand of some sink

nodes is not satisfied, which is a contradiction. Therefore, G is v-connected.

Let us consider the optimization problem, Min(v− f low), corresponding to the

the v− f low problem, where the objective function is that of minimizing the number

of vertices used to ship flow from v to {t1, ..., tk}. We can formulate it as a mixed-

integer linear programming (MILP), as follows. Let x̃uw, with (u,w) ∈ Ã, represents

the amount of flow passing through arc (u,w). Moreover, let ỹu, with u∈V , be a binary

variable equal to 1 if vertex u is used to ship flow (in other words, if there exist at least

an arc in δ−(u) traversed by flow), and 0 otherwise. Given A′ ⊆ Ã and V ′ ⊆ Ṽ , we use

the notations x̃(A′) = ∑(u,w)∈A′ x̃uw, and ỹ(V ′) = ∑u∈V ′ ỹu. The MILP formulation is the

following:

Minimize y = ∑
u∈V

ỹu (4.14)

62

subject to

ỹv = 1 (4.15)

ỹ(Vi) = 1, i ∈K (4.16)

x̃(δ+(v))− x̃(δ−(v)) = k, (4.17)

x̃(δ+(u))− x̃(δ−(u)) = 0, u ∈V \{v} (4.18)

x̃(δ+(ti))− x̃(δ−(ti)) =−1, i ∈K (4.19)

kỹu ≥ x̃(δ−(u)), u ∈V (4.20)

0≤x̃uw ≤ p(u,w), {u,w} ∈ Ã (4.21)

ỹu ∈ {0,1}. u ∈V (4.22)

The objective function (4.14) minimizes the number of vertices used to ship flow. Con-

straints (4.15) and (4.16) require that vertex v is used to ship flow and exactly one

vertex for each cluster belongs to the network flow, respectively. Constraint (4.17) re-

quires that v is the source of the flow. Constraints (4.18) state the conservation of flow.

Constraints (4.19) require that vertices t1, ..., tk are the sink nodes of the network flow.

Constraints (4.20) establish the link between variables x̃ and ỹ: variable ỹu is equal to

1 if at least an arc in δ−(u) is traversed by flow. Finally, constraints (4.21) are the

capacity constraints. It is easy to see that the following corollary of Proposition 4.6.3

holds:

Corollary 4.6.4. The Min(v− f low) problem is feasible if and only if G is v-connected.

Let us note that the value of any feasible solution to the Min(v− f low) problem is

always equal to the number of clusters k.

The preprocessing procedure follows from Corollary 4.6.4: given the graph G, we

build the directed graph G̃, as described before, and for any vertex v ∈V , we check if

the Min(v− f low) problem on G̃ is feasible, and if not we remove v from G. It is worth

noting that, thanks to the following remark, we do not need to solve the Min(v− f low)

problem for any v ∈V .

Remark 5. Given a vertex v ∈V , if the Min(v− f low) problem on G̃ is feasible, then

for any vertex u ∈ V belonging to this feasible solution, it results that the Min(u−
f low) problem is feasible too, and G is u-connected.

63

4. The Generalized Minimum Branch Vertices Problem

Hence, the number of times the procedure is applied is less than the number of

vertices of the graph. The Min(v− f low) problem is solved by CPLEX, and since the

value of any feasible solution is equal to the number of clusters, we set the lower cutoff

tolerance parameter to k.

4.6.2 Separation Procedures

Since the number of constraints (4.13) is polynomial, no particular separation proce-

dures are needed: we just check if x(E({v} : Vi)) ≤ yv is violated, for any v ∈ V and

i ∈K. The separation procedure for constraints (4.4) consists of solving a maximum

flow problem on an auxiliary graph, built according to the current LP solution, as de-

scribed in [15]. Finally, for constraints (4.13), the separation procedure is the one

proposed by Lucena et al. [1]. In more detail, let (x̄, ȳ, z̄) be a feasible solution to

the integer relaxation of the problem. Given a vertex v ∈ V with d(v) ≥ 4, we order

variables x̄e, with e ∈ δ (v), in a decreasing way according to their values. For every

p = 3, ...,d(v)−1, we compute ∑
p
i=1 x̄ei

− (p−2)z̄v−2ȳv: if this value is greater than

a certain tolerance, we have identified a subset H ⊆ δ (v), with |H| = p, for which

constraints (4.13) is violated.

4.7 Computational Results

The Branch and Cut algorithm was coded in C++ on an OSX platform, running on an

Intel Core i7 3.4 GHz processor with 8 GB of RAM. For the model the Concert library

of IBM ILOG CPLEX 12.8 was used (default parameters and single thread mode).

Furthermore, all CPLEX Cuts were disabled, because useless and wasteful.

4.7.1 Instances Generation

Since no benchmark instances for the GMBV problem are available in the litera-

ture, then we generated them to evaluate the performance of the Branch and Cut

algorithm. It is worth noting that if the density of the graph is too high, in most

cases the optimal solution to the GMBV problem is zero. Therefore, to guarantee

a significant number of branch vertices in the optimal solution, we generated graphs

64

with a low density. The instances are grouped in three sets: Small instances, with

k ∈ {12,16,20}, Medium instances, with k ∈ {30,40,50}, and Large instances, with

k ∈ {60,70,80}. The number of vertices is chosen as a multiple of the number of clus-

ters, n∈ {3k,4k,6k,8k,10k}, and vertices are randomly distributed among the clusters.

Finally, the number of edges has been generated according to the following formula,

[3]: m = ⌊n−1+δ ×0.5×⌈√n ⌉⌋, where δ ∈ {1,3,5}. For each combination of k, n

and δ , we have a different scenario, and for each scenario we generated five instances,

thus the total number of instances is 675. Therefore, each line in the tables represents

a scenario composed by 5 instances with the same characteristics but different topolo-

gies, and the results reported in each line are the average values on these 5 instances.

From the computational tests, it turns out that Small instances are easy to solve, be-

cause the optimal solution is always found within 20 seconds. For this reason, in the

following we present computational results only for Medium and Large instances. The

detailed computational results for Small instances can be found in Appendix A.

4.7.2 Preprocessing

To evaluate the effectiveness of the preprocessing procedure, we look over three pa-

rameters: the number of removed vertices, the computational time it requires, and

the time reduction gained applying the Branch and Cut algorithm after preprocessing

the instances. These parameters for Medium and Large instances are summarized in

Table 4.1. In the first three columns of the tables, there are the informations about

the instances: the number of clusters (k), the number of vertices (n), and the number

of edges (m). In column %RV is reported the percentage of vertices removed by the

preprocessing procedure, computed as %RV = RV×100
n

, where RV is the number of

vertices removed by the preprocessing procedure. In column %T R there is the per-

centage of time reduction obtained comparing the computational time required by the

Branch and Cut algorithm with the preprocessing phase (T P) and the by Branch and

Cut algorithm without it (T NP), and it is computed as %T R = (T NP−T P)×100
T NP

. Finally,

in column time there is the computational time, in seconds, required by the preprocess-

ing phase. The preprocessing procedure is quite fast, because it requires at most 29,6

seconds on the Medium instances, and at most 87 seconds on the Large instances. The

parameters that mostly affect the preprocessing phase, both in terms of effectiveness

65

4. The Generalized Minimum Branch Vertices Problem

k n m %RV %TR time

30 90 93 20,7 -141,4 0,1

103 10,9 -67,6 0,2

112 7,3 -43,1 0,2

120 124 18,7 -88,3 0,3

135 16,0 -4,2 0,6

146 0,8 28,5 0,5

180 185 8,1 3,4 0,9

199 2,7 20,9 1,4

212 1,8 52,9 2,1

240 246 12,5 27,1 2,2

262 5,9 45,3 3,8

277 2,8 57,1 4,6

300 307 13,8 59,3 3,9

324 4,5 63,3 5,8

342 2,1 67,2 8,5

40 120 124 15,3 -59,4 0,3

135 6,5 24,9 0,3

146 3,5 12,5 0,4

160 165 14,4 -14,8 0,5

177 4,5 20,5 0,9

190 1,8 37,9 1,1

240 246 10,7 38,3 1,8

262 3,4 74,2 3,1

277 0,6 89,1 3,6

320 327 13,7 16,5 4,8

345 2,2 71,9 6,3

363 1,5 76,6 9,4

400 409 8,0 52,1 8,7

429 4,0 80,5 11,8

449 3,0 13,8 15,1

50 150 155 14,3 -43,8 0,4

167 6,9 25,4 0,5

179 3,6 52,5 0,7

200 206 11,9 35,1 1,0

220 5,9 24,8 1,3

234 0,9 83,6 2,1

300 307 7,7 38,9 3,8

324 4,2 61,9 5,3

342 1,1 71,6 6,6

400 409 7,5 60,5 8,2

429 3,4 83,1 11,4

449 0,8 48,2 17,0

500 510 7,3 71,4 16,2

532 2,6 26,4 18,7

554 1,8 -0,8 29,6

k n m %RV %TR time

60 180 185 15,0 -35,2 0,5

199 7,4 31,9 0,7

212 2,7 65,5 1,0

240 246 9,2 31,3 1,5

262 3,8 60,7 2,1

277 2,5 54,1 2,4

360 368 8,3 66,9 4,2

387 1,9 73,4 7,6

406 1,4 33,0 10,9

480 489 8,3 88,3 12,0

511 1,9 13,8 18,0

533 1,0 0,0 27,4

600 611 6,4 73,7 22,9

635 2,4 0,0 34,8

660 1,0 0,0 39,8

70 210 216 14,6 16,8 0,7

230 9,6 74,6 1,0

245 6,2 55,7 1,1

280 287 12,8 36,3 1,8

304 7,0 66,7 2,7

320 2,2 68,0 3,6

420 429 6,2 77,0 7,2

449 2,3 44,3 10,4

470 0,7 4,0 13,3

560 570 5,4 75,0 16,7

594 1,5 0,0 22,8

618 0,5 0,0 29,4

700 712 5,2 66,8 31,7

738 1,3 0,0 43,9

765 1,0 0,0 78,1

80 240 246 16,9 47,6 0,9

262 5,0 32,0 1,3

277 6,1 64,1 1,6

320 327 11,8 52,7 2,4

345 7,1 70,8 3,8

363 2,2 59,8 5,3

480 489 10,2 71,9 9,4

511 1,8 11,0 12,8

533 1,3 0,0 15,8

640 651 4,4 60,9 22,8

676 2,2 0,0 33,6

702 0,8 0,0 38,9

800 813 4,3 27,2 45,0

841 1,6 0,0 68,4

869 1,1 0,0 87,0

Table 4.1: Results of the preprocessing phase on the sets of Medium and Large in-

stances.

66

and efficiency, are the number of vertices and the number of edges. For the set of

Medium instances, as the number of vertices increases, the percentage of time reduc-

tion increases too. This does not happen for the set of Large instances, where there

are instances which were not optimally solved within the time limit, not even with the

introduction of the preprocessing phase. Given the number of clusters and the number

of vertices, the percentage of removed vertices decreases as the number of edges in-

creases. Indeed, the more sparse is the graph, the higher is the probability to identify

useless vertices. For some of the Medium instances the time reduction is negative,

which denotes an increase of the computational time with the introduction of the pre-

processing phase. This is not surprising, since those scenarios were optimally solved

within 1 second even without the preprocessing phase. For the Large instances, the

time reduction is greater than or equal to zero for all the scenarios, except the one with

k = 60, n = 180 and m = 185, which is the smallest scenario in the set of Large in-

stances. Finally, it is equal to zero for the scenarios with the highest density, which are

the ones not optimally solved within the time limit.

The introduction of the preprocessing phase causes the 6,4% of additional instances

optimally solved within the time limit. Furthermore, it leads to a reduction of the com-

putational time for almost all the instances that were optimally solved even without the

preprocessing phase. In Figure 4.8, we reported the percentage of the removed ver-

tices (green) and the percentage of the time reduction (blue), computed over Medium

and Large instances. It is easy to see that as the number of clusters increases, both

the percentage of removed vertices and the percentage of time reduction, decreases,

except for the group of instances with k = 70, where there is a slight increase in the

percentage of the time reduction with respect the instances with k = 60.

4.7.3 Medium and Large Instances

Computational results of the Branch and Cut algorithm for Medium instances are

shown in Table 4.2. In column Opt is reported the value of the optimal solution,

when available, or the value of the best solution computed within the time limit. In

column Nodes there is the number of nodes of the Branch and Bound tree. In the next

three columns there are the informations about the added cuts: column GSEC(4.10)

reports the number of inequalities (4.10), column GSEC(4.4) reports the number of

67

4. The Generalized Minimum Branch Vertices Problem

k n m %RV Opt Nodes GSEC(4.10) GSEC(4.4) (4.13) time

30 90 93 20,7 4,2 7,8 41,0 88,2 47,0 0,2

103 10,9 2,4 17,0 72,0 279,6 72,0 0,5

112 7,3 1,6 18,4 78,4 363,0 81,4 0,6

120 124 18,7 3,4 9,6 70,2 117,6 79,4 0,5

135 16,0 2,8 14,8 94,4 217,4 84,8 1,0

146 0,8 1,0 55,8 150,4 846,6 148,6 2,2

180 185 8,1 2,2 14,6 138,2 260,6 124,4 1,7

199 2,7 1,8 53,0 182,2 877,2 176,0 5,0

212 1,8 1,2 161,6 241,4 2118,2 225,6 16,4

240 246 12,5 2,2 18,4 173,4 348,6 155,0 3,8

262 5,9 1,4 61,2 257,4 1064,6 208,0 10,5

277 2,8 1,2 291,4 324,2 2925,8 268,6 43,6

300 307 13,8 1,8 25,6 217,8 548,6 156,4 7,0

324 4,5 1,0 132,8 305,4 1728,2 256,8 30,4

342 2,1 1,0 146,2 395,0 3393,4 328,5 334,8

40 120 124 15,3 5,6 6,0 58,4 144,4 77,0 0,4

135 6,5 4,2 25,0 99,6 639,4 115,8 1,1

146 3,5 2,2 37,6 123,4 1023,4 143,0 1,9

160 165 14,4 4,8 11,6 94,0 176,8 108,6 0,9

177 4,5 3,0 54,8 156,0 1130,2 190,2 3,8

190 1,8 2,0 80,2 199,6 2272,8 219,8 7,3

240 246 10,7 4,0 26,2 175,2 455,8 187,2 3,9

262 3,4 2,6 104,0 257,6 2338,0 262,4 16,4

277 0,6 1,8 163,2 298,4 3708,2 294,0 95,7

320 327 13,7 3,0 135,6 248,4 1266,2 282,2 12,3

345 2,2 2,0 208,8 341,0 3846,2 373,4 84,0

363 1,5 1,4 310,6 401,8 7153,6 398,6 252,3

400 409 8,0 2,2 99,0 337,4 1648,4 403,2 27,3

429 4,0 1,8 225,8 406,0 4787,8 364,8 135,2

449 3,0 1,4(2) 659,4 509,8 10555,6 555,6 2673,5

50 150 155 14,3 7,0 19,8 81,2 553,6 105,0 1,0

167 6,9 5,2 44,4 123,6 1306,4 161,4 2,6

179 3,6 3,2 54,4 156,8 1970,4 176,8 4,5

200 206 11,9 5,4 32,2 128,6 568,8 170,4 2,3

220 5,9 3,8 66,8 182,0 1885,4 188,8 7,8

234 0,9 3,4 118,0 243,6 3830,0 258,2 25,7

300 307 7,7 4,6 94,6 234,8 1450,4 296,8 12,6

324 4,2 3,2 168,0 304,6 4171,8 389,0 59,0

342 1,1 2,6 545,0 382,8 14284,2 494,2 547,0

400 409 7,5 4,2 218,8 330,8 2921,8 459,8 47,0

429 3,4 2,6 265,6 421,8 7489,0 449,6 223,8

449 0,8 2,4(2) 662,0 497,2 16335,2 511,2 1870,9

500 510 7,3 3,4 150,0 432,2 3757,0 494,0 84,3

532 2,6 2,2 672,8 503,2 12824,2 722,0 1190,2

554 1,8 2,8(5) 691,0 627,2 26013,8 765,4 3610,6

Table 4.2: Computational results for Medium instances.

68

7,6%
5,8% 4,7% 4,2% 4,0% 4,1%

64,7%

46,6%

40,2%

23,1% 24,0%

18,3%

0

10

20

30

40

50

60

70

30 40 50 60 70 80

% Removed Vertices % Time Reduction

Figure 4.8: Bar chart reporting the percentage of removed vertices and the percentage

of time reduction for instances with k = 30,40,50,60,70,80.

inequalities (4.4), and column (4.13) contains the number of constraints (4.13) added.

Finally, column time reports the computational time in seconds. If in a scenario there

are a instances that were not optimally solved within the time limit, (a) appears close

to the solution value, while we use the symbol ”− ” if for that scenario there are in-

stances for which no feasible solution has been found.

Only 9 over the 225 Medium instances were not optimally solved within the time limit,

and they are the ones corresponding to the scenario with the highest density and the

highest number of vertices with 40 clusters, and the ones corresponding to the scenar-

ios with k = 50, n = 400 and n = 500, with the highest density. At the same k, as the

number of vertices increases the computational time increases too. For instance, let us

consider the instances with k = 50 and the maximum density: when n goes from 150 to

300 there is an increase of the computational time of the 12055,5%. Furthermore, the

computational time is directly proportional to the density of the instances. For exam-

ple, for the scenarios with k = 40 and n = 400, passing from m = 409 to m = 429 we

have an increase of the computational time of the 395,2%, and when m = 449 there are

69

4. The Generalized Minimum Branch Vertices Problem

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

0 400 800 1200 1600 2000 2400 2800 3200 3600

%
 I

n
st

a
n

c
e

s
o

p
ti

m
a

ll
y

 s
o

lv
e

d

Cpu Time (seconds)

Figure 4.9: Percentage of optimally solved instances within the Cpu time.

two instances that were not optimally solved within the time limit. It is worth noting

that GSEC(4.4) are in all cases the most generated inequalities, while the number of

GSEC(4.10) and (4.13) inequalities generated are comparable.

Table 4.3 reports the computational results for the set of Large instances. As expected,

the number of instances that were not optimally solved within the time limit is bigger

for the set of Large instances, with respect the set of Medium instances. Indeed, 76

over 225 instances were not optimally solved, and in the scenario with the k = 80,

n = 800 and m = 869, there is an instance for which we were not even able to find a

feasible solution within one hour of computation. Even for the set of Large instances,

the computational time is strictly related to the number of vertices and to the number

of edges. Indeed, at the same k and the same n, the increase of the density implies the

increase of the computational time. Analogously, at the same k and the same density,

as the number of vertices increases the computational time increases too. The inequal-

ities that were mostly generated are the GSEC(4.4).

Finally in Figure 4.9 we represent the percentage of optimally solved instances within

the Cpu time. In more detail, the horizontal axis represents the Cpu time in seconds,

70

k n m %RV Opt Nodes GSEC(4.10) GSEC(4.4) (4.13) time

60 180 185 15,0 8,2 13,0 85,0 290,4 123,8 1,0

199 7,4 5,6 36,6 125,0 1929,6 183,8 4,3

212 2,7 3,6 89,8 192,0 4300,4 232,6 12,7

240 246 9,2 6,8 52,0 170,0 1091,8 212,8 4,6

262 3,8 5,0 195,0 242,2 4835,2 300,0 31,4

277 2,5 3,2 216,2 276,2 9012,0 363,6 95,0

360 368 8,3 5,4 153,4 283,8 2406,6 362,6 27,6

387 1,9 3,6 538,4 391,8 13565,6 536,2 552,6

406 1,4 3,2 546,0 471,4 25445,0 618,4 1473,3

480 489 8,3 4,8 119,2 379,2 3214,4 507,6 63,1

511 1,9 3,8(2) 848,8 532,2 25330,0 824,8 2608,6

533 1,0 3,8(5) 682,4 598,6 38760,6 841,6 3610,6

600 611 6,4 4,6 526,4 535,2 7561,6 675,6 532,5

635 2,4 4,4(5) 794,0 660,0 29471,6 908,6 3610,6

660 1,0 5,4(5) 584,2 730,0 32235,6 904,2 3610,6

70 210 216 14,6 9,2 26,6 101,6 879,8 158,4 2,0

230 9,6 8,0 35,0 150,8 1862,6 190,4 5,1

245 6,2 5,8 98,8 199,6 6038,2 279,2 19,5

280 287 12,8 8,2 73,6 175,4 1137,8 246,2 6,4

304 7,0 6,4 178,0 261,2 7880,0 364,0 66,1

320 2,2 4,6 514,4 338,6 21344,4 474,0 589,4

420 429 6,2 6,2 444,8 346,4 4168,0 525,0 99,1

449 2,3 5,2(1) 764,2 445,0 24362,0 730,2 1598,1

470 0,7 4,6(4) 667,0 532,0 41717,8 722,0 3308,1

560 570 5,4 5,2 414,0 495,8 9252,6 698,0 482,5

594 1,5 5,2(5) 750,2 605,2 37025,8 978,4 3610,6

618 0,5 5,4(5) 548,0 701,0 39218,0 922,8 3610,6

700 712 5,2 4,6 961,0 604,2 10274,6 768,8 1111,4

738 1,3 5,2(5) 612,0 747,2 34372,6 1101,6 3610,6

765 1,0 7,2(5) 177,8 758,8 30594,2 653,6 3610,6

80 240 246 16,9 11,6 8,4 103,4 663,8 141,0 1,8

262 5,0 7,8 139,0 209,8 6263,2 319,2 28,4

277 6,1 7,0 229,2 247,8 14087,0 363,6 95,1

320 327 11,8 9,2 73,4 193,6 1936,4 282,8 11,0

345 7,1 7,8 194,6 301,8 9133,4 395,0 102,3

363 2,2 5,6(1) 295,2 367,2 25444,2 437,6 862,1

480 489 10,2 7,6 509,0 379,2 9058,4 612,2 280,1

511 1,8 6,2(4) 824,8 516,2 39485,2 783,0 3211,6

533 1,3 5,2(5) 554,6 564,6 50008,2 783,4 3610,6

640 651 4,4 6,2(1) 665,4 572,2 15514,4 803,0 1377,5

676 2,2 6,2(5) 488,4 690,6 39200,0 956,6 3610,6

702 0,8 6,6(5) 310,4 753,2 40553,8 884,8 3610,6

800 813 4,3 5,6(3) 854,2 720,8 21752,2 1045,4 2627,9

841 1,6 6,8(5) 374,8 809,6 34377,2 978,6 3610,6

869 1,1 − 149,0 866,5 29370,5 811,3 3610,6

Table 4.3: Computational results for Large instances.

71

4. The Generalized Minimum Branch Vertices Problem

while the vertical axis represents the percentage of optimally solved instances within

a fixed Cpu time. This means that as faster is the curve growth, as better is the per-

formance of the Branch and Cut. We can see that the algorithm reaches the 70% of

instances optimally solved in about 64 seconds, and almost the 80% in 7 minutes.

72

Chapter 5

The 2-Edge-Connected Minimum

Branch Vertices Problem

5.1 Introduction

Given an undirected graph G=(V,E), with |V |= n and |E|=m, the 2-Edge-Connected

Minimum Branch Vertices (2ECMBV) problem, consists of determining a spanning

subgraph H = (V,E ′) of G, which satisfies the following properties:

1. H is 2-edge-connected, namely there exist at least 2 edge-disjoint paths between

every pair of vertices;

2. the number of branch vertices in H is minimum, where a vertex v is branch in H

if its degree is greater than 2.

Let us consider the graph G depicted in Figure 5.1(a). In Figure 5.1(b) there is a 2-

edge-connected spanning subgraph of G with one branch vertex having degree four.

Finally, in Figure 5.1(c) is shown the optimal solution to the 2ECMBV problem on

G that is a 2-edge-connected spanning subgraph without branch vertices. Let us note

that, the optimal solution to the 2ECMBV problem on a graph G is zero, if and only

if there exists in G a Hamiltonian cycle, that is a cycle passing once through all its

vertices, and in such a case, G is said to be Hamiltonian. For instance, the graph in

Figure 5.1(a) is Hamiltonian. The existence of a Hamiltonian cycle in a given graph

is a well studied problem, both from the algorithmic and the graph-theoretic point of

73

5. The 2-Edge-Connected Minimum Branch Vertices Problem

(a) (b) (c)

Figure 5.1: (a) An undirected graph G = (V,E). (b) A 2-edge-connected spanning sub-

graph of G with one branch vertex. (c) An optimal solution to the 2ECMBV problem

on G with zero branch vertices.

view. Trivially, if G is a complete graph, it is Hamiltonian. Moreover, if the graph

satisfies any of a number of density conditions a Hamiltonian cycle is guaranteed to

exist.

Applications to the 2ECMBV problem arises in the context of survivable optical net-

works. In the design of optical networks we need to take into account the costs neces-

sary for the construction and the maintenance of the network, and also its survivability.

A great impact on the total cost of the network is given by the the use of electronic

devices with the task of splitting the optical signal. More in detail, whenever a light

signal enters a node having degree greater than 2, it has to be split by a switch before

being sent to the next nodes. Thus, to contain the costs, the number of switches has

to be limited, and since a switch must be located in each branch vertex, it is necessary

to design networks with the minimum number of branch vertices. For this motivation,

Gargano et al. [25] introduced the Minimum Branch Vertices (MBV) problem, which

consists of finding a spanning tree of a given graph with the minimum number of

branch vertices. Carrabs et al. [3] introduced four IP formulations for the MBV prob-

lem, while Silvestri et al. [55] derived some valid inequalities and proposed a hybrid

formulation with both undirected and directed variables, which was solved through a

Branch and Cut algorithm. Landete et al. [38] investigated decomposition methods for

degree dependent spanning tree problems. Finally, Merabet et al. [40] proposed a gen-

eralization of the MBV problem, where it has been introduced the notion of k-branch

vertex, as a vertex with degree greater than k+2.

Furthermore, while dealing with network design problems, we also have to satisfy

some survivability constraints, which regard the capacity of the network of restoring

the service, in the event of node or link failure. Obviously, from this point of view a

74

tree like structure is the worst: whenever an edge fails, the service is over. The need

to introduce k-connectivity requirements has led to the introduction of the 2ECMBV

problem. Let us recall that a graph G if k-edge-connected if there exist at least k edge-

disjoint paths between every pair of vertices. As the parameter k increases the grade of

survivability increases too, but also the total cost of the network. In order to balance

economic aspects and to provide a good level of protection against link’s failure, we

decide to consider the 2-edge-connectivity requirement. To the best of our knowledge,

the 2ECMBV problem has never been introduced before. It is NP-hard, indeed finding

an optimal solution to the 2ECMBV problem on a graph G in polynomial time is equiv-

alent to establishing in polynomial time whether G is Hamiltonian. Grötschel, Monma

and Stoer studied in detail network design problems with connectivity constraints in

[29] and [30]. They proposed a model mixing edge and node survivability require-

ments, examined the dimension of the associated polytope and proved facet results.

Monma et al. [41] introduced Low-Connectivity Constrained Network Design Prob-

lems, where each node v is characterized by an integer rv ∈ {0,1,2}, and min{rv,ru}
node/edge-disjoint paths between every pair of nodes u,v are required. Further de-

tails about Low-Connectivity Constrained Network Design Problems can be found in

Chapter 2.

In this chapter, we introduce an integer linear programming formulation for the 2EC-

MBV problem, some polyhedral results, and a polyhedral-based exact Branch and Cut

algorithm. In Section 5.2 we introduce a mathematical formulation for the 2ECMBV

problem, and we show some properties of the 2-edge-connected subgraphs. Section

5.3 is devoted to the polyhedral analysis: we determine the dimension of polyhedron

and prove facet results for several inequalities. The separation problems for all the in-

equalities are showed in Section 5.4 and are embedded in a Branch and Cut algorithm.

5.2 Mathematical Formulation

The 2ECMBV problem can be formulated as an integer linear program (ILP) as fol-

lows. Let xe be a binary variable equal to 1 if e ∈ E is selected. Moreover, let

yv be a binary variable equal to 1 if v ∈ V is a branch vertex. Given E ′ ⊆ E and

V ′ ⊆V , we denote by x(E ′) = ∑e∈E ′ xe, and y(V ′) = ∑v∈V ′ yv. For S,T ⊆V , we define

E(S : T) = {{u,v} ∈ E : u ∈ S,v ∈ T}. We denote by E(S) = E(S : S) the set of edges

75

5. The 2-Edge-Connected Minimum Branch Vertices Problem

having both extremes in S, and by δ (S) = E(S : V \ S) the set of edges incident on

vertices belonging to S. We define N(S) = {u ∈ V \ S : ∃{u,v} ∈ δ (S),v ∈ S}.When

S = {v}, δ ({v}) becomes simply δ (v), N({v}) becomes N(v), and we denote by d(v)

the cardinality of δ (v). Moreover, given S ⊆ V and v ∈ S, by δS(v) we denote the

subset δ (v)∩E(S), and with ds(v) the cardinality of δS(v). Given W ⊆ V , we denote

by G[W], the subgraph of G induced by W , namely G[W] = (W,E(W)). Finally, given

v ∈V , we denote by G\{v} the subgraph (V \{v},E \δ (v)), and given e ∈ E we de-

note by G\{e} the subgraph (V,E \{e}).
In the following we give an ILP formulation for the 2ECMBV problem:

Minimize y = ∑
v∈v

yv (5.1)

subject to

x(δ (W))≥ 2 W ⊂V,W 6= /0 (5.2)

x(δ (v))−2≤ (d(v)−2)yv v ∈V (5.3)

xe ∈ {0,1} e ∈ E (5.4)

yv ∈ {0,1} v ∈V (5.5)

The objective function (5.1) minimizes the number of branch vertices. Constraints

(5.2) ensure the 2-edge-connectivity. Indeed, according to Menger’s theorem [39], the

number of edge-disjoint paths between a pair of vertices is at least k, if and only if the

smallest cut disconnecting those vertices has size greater than or equal to k. In what

follows, we will refer to constraints (5.2) as Cut Inequalities. Constraints (5.3) ensure

that variable yv is equal to 1 if at least three edges in δ (v) are selected.

5.2.1 2-Edge-Connected Subgraph Properties

In this section we introduce some properties regarding 2-edge-connected subgraphs,

that will be resumed in Section 5.3 for deriving polyhedral results about the 2ECMBV

problem.

Definition 5.2.1. An edge e ∈ E is a bridge in G, if G\{e} is not connected.

Let us consider the graph G shown in Figure 5.2(a). The edge {u,v} is a bridge

76

vu v

u

Figure 5.2: (a) A graph G such that the edge {u,v} is a bridge in G. (b) A graph G

such that the edge {u,v} is essential in G and v is a cut vertex in G.

in G, since G \ {u,v} is disconnected in two components. Let us denote by B(G) the

subset of E containing all the bridges of G,

B(G) = {e ∈ E : e is a bridge}.

The following remark holds:

Remark 6. G is 2-edge-connected if and only if B(G) = /0.

Obviously, if B(G) 6= /0 there is no feasible solution to the 2ECMBV problem on

G. Therefore, in what follows we assume that B(G) = /0. We now introduce the notion

of 2-edge-essential edges of a graph G.

Definition 5.2.2. An edge e ∈ E is 2-edge-essential in G, if the subgraph G\{e} is not

2-edge-connected.

From now on, instead of 2-edge essential, we call these edges essential. Let us

consider the graph G shown in Figure 5.2(b). The edge {u,v} is essential in G, indeed

G \ {u,v} is not 2-edge-connected. From the definition it follows that any essential

edge belongs to every feasible solution to the 2ECMBV problem. We denote by ES(G)

the set of all the essential edges in G,

ES(G) = {e ∈ E : e is essential in G}.

It results that:

xe = 1, for any e ∈ ES(G).

Finally, let us recall the definition of cut vertices of a graph:

Definition 5.2.3. A vertex v ∈ V is a cut vertex in G, if the subgraph G \ {v} is not

connected.

77

5. The 2-Edge-Connected Minimum Branch Vertices Problem

For example, let us consider the graph G shown in Figure 5.2(b): the vertex v is

a cut vertex, since G \ {v} is disconnected in two components. Clearly, a cut vertex

v is branch in any feasible solution to the 2ECMBV problem. Thus, if we denote by

VB(G) the set of the cut vertices in G, it results that any feasible solution satisfies the

following:

yv = 1, for any v ∈VB(G).

Given a vertex v∈V \VB, since G\{v} is connected, there are two possibilities: G\{v}
is also 2-edge-connected, or not. The following lemma holds:

Lemma 5.2.1. If G \ {v} is 2-edge-connected, then there exists a 2-edge-connected

spanning subgraph Gv of G, such that v is not branch in Gv.

Proof. Since G \ {v} is 2-edge-connected, the subgraph Gv = (V,(E \ δ (v))∪{e, f})
is 2-edge-connected, for any e, f ∈ δ (v). Moreover, v is not branch in Gv, as it has

degree two in it.

Let us now investigate the other alternative, that is the subgraph G′ = G\{v} is not

2-edge-connected: this implies that the set of the bridges of G′, B(G′) ⊆ E \ δ (v), is

not empty. Therefore, the subgraph obtained by removing all the edges in B(G′) from

G′ is not connected: let C1, ...,Ct be the connected components of G′ \B(G′). Now we

distinguish two further cases:

(1) |δ (Ci)∩B(G′)| ≤ 2, for any i ∈ {1, ..., t} (see Figure 5.3(a));

(2) there exists i ∈ {1, ..., t}, such that |δ (Ci)∩B(G′)| ≥ 3 (see Figure 5.3(b)).

Let us consider the graph G/v having as many vertices as the number of connected

components in G′ \ B(G′), namely t vertices called u1, ...,ut . There exists an edge

{ui,u j} in G/v if and only if there exists an edge between the components Ci and C j

in G′. Therefore, each edge in G/v corresponds to a bridge of G′, in other words the

edges incident on ui are the edges belonging to δ (Ci)∩B(G′). It is easy to see that G/v

is a tree.

Lemma 5.2.2. If (1) holds, then there exists a 2-edge-connected spanning subgraph

Gv of G, such that v is not branch in Gv.

78

C1

v

(a)

C2 Ct

v

(b)

C1 Ci

Cj

Ct

Figure 5.3: (a) A graph G such that G \ {v} is not 2-edge-connected and |δ (Ci)∩
B(G′)| ≤ 2, for any i ∈ {1, ..., t}. (b) A graph G such that G \ {v} is not 2-edge-

connected and there exists i ∈ {1, ..., t} such that |δ (Ci)∩B(G′)| ≥ 3.

Proof. If (1) holds, the graph G/v is a path and then there are exactly two leaves in

it, namely there are two connected components Ci and C j with i, j ∈ {1, ..., t}, such

that |δ (Ci)∩B(G′)|= |δ (C j)∩B(G′)|= 1, while |δ (Ck)∩B(G′)|= 2, for any k 6= i, j.

Since G is 2-edge-connected, there exists e ∈ δ (v)∩δ (Ci) and f ∈ δ (v)∩δ (C j). The

subgraph Gv = (V,Ev), where Ev = E \δ (v)∪{e, f}, is 2-edge-connected and v is not

branch in it.

For example, let us consider the graph G depicted in Figure 5.4(a). G\{v1} is not 2-

edge-connected, and B(G\{v1}) = {{v2,v3},{v3,v4},{v4,v5}}. The connected com-

ponents of G\{v1}\B(G\{v1}) are C1 = {v2}, C2 = {v3}, C3 = {v4} and C4 = {v5},
and since |δ (Ci)∩B(G\{v1})| ≤ 2, for any i = 1,2,3,4, we are in case (1). Therefore,

the subgraph Gv1
= (V,Ev1

), with Ev1
= {{v1,v2},{v2,v3},{v3,v4},{v4,v5},{v1,v5}},

is a 2-edge-connected spanning subgraph of G, where v1 is not branch. It remains to

examine case (2).

Lemma 5.2.3. If (2) holds, vertex v is branch in any feasible solution to the 2ECMBV

problem.

Proof. When (2) holds, in the graph G/v there exists at least a vertex with degree three

then there are at least three leaves, namely there are three connected components Ci,C j

and Ck such that |δ (Ci)∩B(G′)|= |δ (C j)∩B(G′)|= |δ (Ck)∩B(G′)|= 1. Since G is

2-edge-connected, there exist e∈ δ (v)∩δ (Ci), f ∈ δ (v)∩δ (C j) and g∈ δ (v)∩δ (Ck).

79

5. The 2-Edge-Connected Minimum Branch Vertices Problem

v1

(a)

v2 v3 v4 v5

v1

v2 v3 v4

v5 v6

(b)

Figure 5.4: (a) A graph G = (V,E) such that G\{v1} is not 2-edge-connected and (1)

holds. (b) A graph G= (V,E) such that G\{v1} is not 2-edge-connected and (2) holds.

To ensure 2-edge-connectivity e, f and g must be selected in any feasible solution, thus

v is branch in any feasible 2ECMBV solution.

Let us consider the graph G in Figure 5.4(b). G \ {v1} is not 2-edge-connected,

and B(G\{v1})= {{v2,v3},{v3,v4},{v4,v5},{v4,v6}}. The connected components of

G\{v1}\B(G\{v1}) are C1 = {v2}, C2 = {v3}, C3 = {v4}, C4 = {v5} and C5 = {v6}.
We are in case (2), since |δ (C3)∩B(G\{v1})|= 3. Moreover, |δ (C1)∩B(G\{v1})|=
|δ (C4)∩B(G \ {v1})| = |δ (C5)∩B(G \ {v1})| = 1, thus edges {v1,v2},{v1,v5} and

{v1,v6} must be selected in any 2ECMBV solution, and then v1 is always branch.

It is worth emphasizing that, given a vertex v ∈ V such that G \ {v} is not 2-edge-

connected, to guarantee 2-edge-connectivity must be selected at least an edge in δ (v)∩
δ (C), for any connected component C of G \ {v} \ B(G \ {v}), such that |δ (C) ∩
B(G \ {v})| = 1. Thus, the following inequality holds for any feasible solution to

the 2ECMBV problem:

x(δ (v)∩δ (C))≥ 1. (5.6)

If G\{v} is not 2-edge-connected, we define the subset δb(v)⊆ δ (v), as the subset of

edges of δ (v) containing any edge incident on a connected component C of G \{v}\
B(G\{v}), such that |δ (C)∩B(G\{v})| ≥ 2, namely

δb(v) = {e ∈ δ (v)∩δ (C) : C connected component of G\{v}\B(G\{v}),
|δ (C)∩B(G\{v})| ≥ 2}

For instance, in the graph shown in Figure 5.4(a), δb(v1) = {{v1,v3},{v1,v4}}. If

80

G\{v} is 2-edge-connected, we set δb(v) = /0. The following lemma holds:

Lemma 5.2.4. A vertex v ∈ V is branch in any feasible 2ECMBV solution containing

an edge in δb(v).

Proof. If G\{v} is not 2-edge-connected, since (5.6) holds, at least one edge in δ (v)∩
δ (C) must be selected, for any connected component C of G \ {v} \B(G \ {v}), such

that |δ (C)∩B(G \ {v})| = 1. Furthermore, these connected components are at least

two, thus selecting an edge in δb(v) causes v to be branch.

Therefore, the following inequality is satisfied by any feasible 2ECMBV solution,

for any v ∈V such that G\{v} is not 2-edge-connected:

yv ≥ xe e ∈ δb(v)

To resume, vertex v ∈V is branch in any feasible solution to the 2ECMBV problem, if

at least one of the following occurs:

(a) v ∈VB(G);

(b) G\{v} is not 2-edge-connected and there exists at least a connected component

C in G\{v}\B(G\{v}) such that |δ (C)∩B(G\{v})| ≥ 3.

Let us denote by BR(G), the subset of vertices v ∈V , such that v satisfies (a) or (b):

BR(G) = {v ∈V : v satisfies (a) or (b)}

Therefore, the following inequalities is satisfied by any feasible 2ECMBV solution:

yv = 1, v ∈ BR(G).

Lemma 5.2.5. Given a vertex v∈V , if v /∈BR(G), then there exists a 2-edge-connected

subgraph Gv, such that v is not branch in Gv.

Proof. According to the definition, if v /∈ BR(G), then v satisfies neither the (a), nor

the (b). Therefore, from Lemma 5.2.1 and Lemma 5.2.2 follows the assert.

81

5. The 2-Edge-Connected Minimum Branch Vertices Problem

5.3 Polyhedral Analysis

Let us consider the following polytope,

P(G) = conv{(x,y) ∈R
|E|+|V | : (x,y) satisfies (5.2)− (5.5)}

In this section, we derive some properties of the polytope P(G). Given V ′ ⊆ V , we

represent V ′ by its characteristic vector, yV ′ ∈ B
n, with yV ′

v = 1 if v ∈ V ′, and yV ′
v = 0

otherwise. Analogously, given E ′ ⊆ E, let xE ′ ∈ B
m be its characteristic vector, with

xE ′
e = 1 if e ∈ E ′, and xE ′

e = 0 otherwise. Moreover, we denote by 0 and 1 the vectors

of all zeros and all ones, respectively.

Proposition 5.3.1. Let G = (V,E) be an undirected graph such that P(G) 6= /0, the

affine hull of P(G) is the following:

a f f (P(G)) = {(x,y) ∈R
|V |+|E| : xe = 1,∀e ∈ ES(G),yv = 1,∀v ∈ BR(G)}

Proof. If e ∈ ES(G), then xe = 1, for any (x,y) ∈ P(G). Furthermore, if v ∈ BR(G),

then yv = 1, for any (x,y) ∈ P(G). Let us consider the equation aT x+bT y = c, and let

us suppose that it is satisfied by all points in P(G). We may assume that ae = 0, for any

e ∈ ES(G), and bv = 0, for any v ∈ BR(G). If e /∈ ES(G), then (xE\{e},1) ∈ P(G) and

obviously also (xE ,1)∈P(G), then ae = 0. Therefore, ae = 0, for any e∈E. Moreover,

for any v ∈ V \BR(G), thanks to Lemma 5.2.5, there exists a feasible solution Gv =

(V,Ev) where v is not branch, thus (xEv ,1 \ {v}), (xEv ,1) belong to P(G) and then

satisfy aT x+bT y = c. This implies that bv = 0, for any v ∈V .

Corollary 5.3.2. The dimension of P(G) is equal to |V |+ |E|− |ES(G)|− |BR(G)|.

Corollary 5.3.3. P(G) is full-dimensional if and only if ES(G) = /0 and BR(G) = /0.

Let us note that, if G is 3-edge-connected, then ES(G) = /0. Therefore, in what

follows, we assume that G is 3-edge-connected and BR(G) = /0.

Proposition 5.3.4. Inequality xe ≤ 1 is facet-defining for P(G), for any e = {u,v} ∈ E

such that e /∈ δb(u)∪δb(v).

Proof. Let us consider the proper face F1
e = {(x,y) ∈ P(G) : xe = 1}, and let aT x+

bT y = c be an equation satisfied by all (x,y) ∈ F1
e . Since BR(G) = /0 and Lemma

82

5.2.5 holds, for any w ∈V there exists a feasible solution Gw = (V,Ew) where w is not

branch. Moreover, e /∈ δb(u)∪δb(v), then it is always possible to choose Gw = (V,Ew)

such that e ∈ Ew and w is not branch in it. Thus (xEw ,1 \ {w}) and (xEw ,1) belong

to F1
e . This implies that bw = 0, for any w ∈ V . G is 3-edge-connected, then for any

f ∈ E \ {e}, (xE\{ f},1) ∈ F1
e . Since (xE ,1) belongs to F1

e too, it follows that a f = 0,

for any f ∈ E \ {e}. Therefore, equation aT x+ bT y = c reduces to aexe = c. Finally,

since (xE ,1) belongs to F1
e , ae = c, thus aT x+bT y = c is a multiple of xe = 1.

Proposition 5.3.5. Inequality xe ≥ 0 is facet-defining for P(G), for any e ∈ E, such

that G\{e} is 3-edge-connected and BR(G\{e}) = /0.

Proof. From Corollary 5.3.2 follows that dim(P(G\{e})) = |V |+ |E \{e}|−|ES(G\
{e})|− |BR(G\{e})|= |V |+ |E|−1. Thus, there exist |V |+ |E| affinely independent

incidence vectors which satisfy xe ≥ 0 with equality.

Proposition 5.3.6. Inequality yv ≤ 1, is facet-defining for P(G), for any v ∈V .

Proof. Let us consider the proper face F1
v = {(x,y) ∈ P(G) : yv = 1}, and let aT x+

bT y = c be an equation satisfied by all (x,y)∈ F1
v . For any u∈V \{v}, let Gu = (V,Eu)

be a 2-edge-connected subgraph such that u is not branch. It is easy to see that both

(xEu ,1 \ {u}) and (xEu ,1) belong to F1
v , thus bu = 0, for any u ∈ V \ {v}. For each

e ∈ E, (xE\{e},1) and (xE ,1) belong to F1
v , and this implies that ae = 0, for any e ∈ E.

Therefore equation aT x+ bT y = c reduces to bvyv = c. The vector (xE ,1) belongs to

F1
v , then bv = c and aT x+bT y = c is a multiple of yv = 1.

Proposition 5.3.7. Inequality yv ≥ 0, is not facet-defining for P(G), for any v ∈V .

Proof. Inequality yv≥ 0 is dominated by inequality (5.3), since x(δ (v))≥ 2 holds.

Proposition 5.3.8. Inequality (5.2) is facet-defining for P(G), for any subset W ⊂ V ,

W 6= /0, such that:

1. G[W] and G[V \W] are 3-edge-connected;

2. BR(G[W]) = /0 and BR(G[V \W]) = /0.

Proof. Given W ⊂V , W 6= /0, let FW = {(x,y)∈ P(G) : x(δ (W)) = 2} be a proper face,

and let aT x+bT y = c be an equation satisfied by all (x,y) ∈ FW . BR(G[W]) = /0, then

83

5. The 2-Edge-Connected Minimum Branch Vertices Problem

for any v ∈W there exists a 2-edge-connected subgraph in G[W], GW
v = (W,EW

v), such

that v is not branch in GW
v . Moreover G is 3-edge-connected and BR(G) = /0, then there

exist e, f ∈ δ (W), and at least one of them does not belong to δ (v), let e /∈ δ (v). If

f /∈ δ (v) too, it is easy to see that Gv = (V,Ev), with Ev = EW
v ∪E(V \W)∪{e, f} is

a 2-edge-connected subgraph such that v is not branch in Gv. On the other hand, if

f ∈ δ (v), since BR(G) = /0, it is always possible to remove an edge g ∈ δ (v)∩EW
v ,

and Gv = (V,Ev), with Ev = (EW
v \ {g})∪ E(V \W)∪ {e, f} is a 2-edge-connected

subgraph such that dGv
(v) = 2. Thus, (xEv ,1\{v}) belongs to FW . Moreover, (xEv ,1)

belongs to FW too, then bv = 0, for any v ∈W . Similarly, it can be proven that bv = 0,

for any v ∈ V \W . G[W] is 3-edge-connected, then given e ∈ E(W), G[W] \ {e} is

2-edge-connected. Then, Ge = (V,Ee), with Ee = (E(W)∪E(V \W)∪{ f ,g}) \ {e}
and f ,g ∈ δ (W), is a 2-edge-connected subgraph. Thus, both (xEe ,1) and (xEe∪{e},1)

belong to FW . This implies that ae = 0, for any e ∈ E(W). In the same way, we

can prove that ae = 0, for any e ∈ E(V \W). Thus, equation aT x+ bT y = c reduces

to ∑e∈δ (W) aexe = c. Let us note that there exist at least e, f ,g ∈ δ (W), with e 6=
f 6= g, then Ge, f = (V,Ee, f) and Ge,g = (V,Ee,g), with Ee, f = (E \δ (W))∪{e, f} and

Ee,g = (E \ δ (W))∪{e,g}, are two 2-edge-connected subgraphs in G, such that their

incidence vectors belong to FW . This implies that a f = ag. Since it can be done for

any e, f ,g ∈ δ (W), it follows that ae := a, for any e ∈ δ (W). Finally, (xEe, f ,1) belongs

to FW , thus c = 2a. Therefore, we obtain that equation aT x + bT y = c reduces to

ax(δ (W)) = 2a, that is a multiple of (5.2).

Proposition 5.3.9. Given v ∈ V , inequality (5.3) is facet-defining for P(G) if G \ {v}
is 2-edge-connected and for any e = {u,v} ∈ δ (v), e /∈ δb(u).

Proof. If G\{v} is not 2-edge-connected, it is easy to see that inequality (5.3) is dom-

inated by inequalities involving the edges in δb(v). Given v ∈ V , let us consider the

proper face Fv = {(x,y) ∈ P(G) : x(δ (v))− (d(v)− 2)yv = 2}, and let aT x+ bT y = c

be an equation satisfied by all (x,y) ∈ Fv. Since BR(G) = /0, for any u ∈ V \{v} there

exists a 2-edge-connected subgraph Gu = (V,Eu) in G, such that u is not branch in Gu.

If u ∈ N(v), there exists e = {u,v} ∈ δ (v), but e /∈ δb(u), then it is possible to consider

a subgraph Gu such that all the edges in δ (v) belong to Eu and where u is not branch. It

is easy to see that both (xEu ,1\{u}) and (xEu ,1) belong to Fv. This implies that bu = 0,

for any u ∈ V \ {v}. For each e /∈ δ (v), (xE\{e},1) ∈ Fv. Moreover (xE ,1) belongs to

84

Fv too, thus ae = 0, for any e ∈ E \δ (v). Equation aT x+bT y = c reduces to

∑
e∈δ (v)

aexe +bvyv = c

G is 3-edge-connected, then there exist e, f ,g ∈ δ (v), such that e 6= f 6= g. G \ {v} is

2-edge-connected, thus Ge, f = (V,Ee, f) and Ge,g = (V,Ee,g), with Ee, f = (E \δ (v))∪
{e, f} and Ee,g = (E \ δ (v))∪{e,g}, are two 2-edge-connected subgraphs in G, such

that their incidence vectors belong to Fv. This implies that a f = ag. Since it can be done

for any e, f ,g ∈ δ (v), it follows that ae := a, for any e ∈ δ (v). Moreover, there exist

e, f ∈ δ (v), such that (xEe, f ,1 \ {v}) belongs to Fv, thus c = 2a. Finally, (xE ,1) ∈ Fv,

hence

a d(v)+bv = 2a⇒ bv = a (2−d(v)).

We obtain that equation aT x+bT y = c becomes

a x(δ (v))+a (2−d(v))yv = 2a.

Since it is a multiple of x(δ (v))+ (2− d(v))yv = 2, inequality (5.3) is facet-defining

for P(G).

The following family of valid inequalities has been introduced in [55].

Proposition 5.3.10. Given v ∈V and S⊆ δ (v), with |S| ≥ 3,

x(S)−2≤ (|S|−2)yv (5.7)

is valid for P(G).

Proof. Whenever we take a subset S ⊆ δ (v), if more than two edges in S are selected,

then v must be branch.

Proposition 5.3.11. Given v ∈V and S ⊆ δ (v), with |S| ≥ 3, inequality (5.7) is facet-

defining for P(G), if G\{v} is 2-edge-connected and for any e = {u,v} ∈ S, e /∈ δb(u).

Proof. Since inequality (5.7) is a generalization of (5.3), the proof is almost the same

of the one of Proposition 5.3.9.

85

5. The 2-Edge-Connected Minimum Branch Vertices Problem

Let us introduce a new family of valid inequalities:

Proposition 5.3.12. Given S⊂V , with |S| ≥ 3, and T ⊆ E(S) such that dT (v)∈ {2,3},
for any v ∈ S, inequality

y(S)≥ x(T)−|S|+1 (5.8)

is valid for P(G).

Proof. Let S be a proper subset of vertices, with |S| ≥ 3, and let T be a subset of E(S),

such that dT (v) ∈ {2,3}, for any v ∈ S. We distinguish two cases:

• dT (v) = 2, for any v ∈ S: under this hypothesis T is a cycle with no chords, thus

|T | = |S|. Inequality (5.8) ensures that if all the edges in T are selected, then at

least a vertex in S is branch.

• there exist t vertices, v1, ...,vt ∈ S, such that dT (v1) = 3 = dT (v2) = ...= dT (vt):

in this case |T | = |S|+ t/2, where t is an even number. Inequality (5.8) ensures

that if x(T) = |T |, then in S there are at least t/2+1 branch vertices.

Proposition 5.3.13. Let S ⊂ V , with |S| ≥ 4, be a subset of vertices satisfying the

followings:

1. there exist u,v ∈ S such that dS(u) = dS(v) = 3;

2. dS(w) = 2, for any w ∈ S\{u,v};

3. G[V \S] is 3-edge-connected and BR(G[V \S]) = /0;

4. |E(w : V \S)| ≥ 3, for any w ∈ S\{u,v};

5. |E(u : V \S)|, |E(v : V \S)| ≥ 2.

Inequality,

y(S)≥ x(E(S))−|S|+1 (5.9)

is facet-defining for P(G).

86

Proof. Given S⊂V satisfying hypothesis 1-5, let FS = {(x,y)∈P(G) : y(S)−x(E(S))=

−|S|+ 1} be a proper face. Let us consider the equation aT x+ bT y = c, satisfied by

any point (x,y) ∈ FS. We will proceed by steps:

• Given a vertex w̄∈V \S, since hypothesis 3 holds, there exists a 2-edge-connected

subgraph in G[V \S], Ḡw̄ = (V \S, Ēw̄), where w̄ is not branch. There exist f ,g∈
(δ (u)∪ δ (v))∩ δ (S) such that f ,g /∈ δ (w̄), then the subgraph Gw̄ = (V,Ew̄),

with Ew̄ = E(S)∪ Ēw̄ ∪{ f ,g}, is a feasible 2ECMBV solution where w̄ is not

branch. In such a way the incidence vector (xEw̄ ,1 \ {w̄,S \ {u,v}}) belongs to

FS. Therefore, (xEw̄ ,1 \ {w̄,S \ {u,v}}) and (xEw̄ ,1 \ (S \ {u,v})) belong to FS,

for any w̄ ∈V \S, and this implies that bw̄ = 0, for any w̄ ∈V \S.

• Given e ∈ E(V \S), thanks to hypothesis 3, there exists a 2-edge-connected sub-

graph in G[V \S] not containing edge e, Ḡe = (V \S, Ēe). Thus Ge = (V,Ee), with

Ee = E(S)∪ Ēe∪{ f ,g} and f ,g ∈ (δ (u)∪δ (v))∩δ (S) is a feasible solution not

containing e. Since (xEe ,1\ (S\{u,v})) ∈ FS and (xEe∪{e},1\ (S\{u,v})) ∈ FS,

it results that ae = 0, for any e ∈ E(V \S).

• Let e be an edge in δ (S). Let us consider the subgraph G′ = (V,E ′) of G, with

E ′= E(S)∪E(V \S)∪{ f ,g}, with f ,g∈ (δ (u)∪δ (v))∩δ (S). Since hypothesis

5 holds, it is always possible to choose f ,g 6= e, thus (xE ′ ,1 \ (S \ {u,v}) ∈ FS

and (xE ′∪{e},1\ (S\{u,v})) ∈ FS. It follows that ae = 0, for any e ∈ δ (S).

• Let us consider w,w′ ∈ S. The subgraph Gw = (V,Ew), such that Ew = E(S) \
{u,v} ∪ E(V \ S)∪ {ew,e

′
w}, with e,e′ ∈ δ (w)∩ δ (S), is a feasible 2ECMBV

solution, and (xEw ,1 \ (S \ {w})) belongs to FS. Similarly, Gw′ = (V,Ew′), such

that Ew′ = E(S) \ {u,v} ∪E(V \ S)∪ {e,e′}, with ew′ ,e
′
w′ ∈ δ (w′)∩ δ (S), is a

feasible solution ans (xEw′ ,1\ (S \{w′})) belongs to FS. This implies that bw =

bw′ . Therefore, b := bw, for any w ∈ S. The equation aT x+bT y = c has become:

∑
e∈E(S)

aexe +b y(S) = c.

• Let us consider f = {w,w′} ∈ E(S). The subgraph GS = (V,ES), with ES =

E(S)∪E(V \S)∪{e,e′}, and e,e′ ∈ (δ (u)∪δ (v))∩δ (S), is a feasible solution,

87

5. The 2-Edge-Connected Minimum Branch Vertices Problem

thus (xES ,1\ (S\{u,v})) belongs to FS. Now we build a feasible solution, G f =

(V,E f), which does not contain f . Let us distinguish three cases:

– f = {u,v}: the subgraph G f = (V,E f), with E f = E(S) \ {u,v} ∪E(V \
S)∪{e,e′}, e,e′ ∈ δ (u)∩ δ (S), is such that (xE f ,1 \ (S \ {u})) belongs to

FS. Hence, (xES ,1 \ (S \ {u,v})) ∈ FS implies ∑e∈E(S) ae + 2b = c, while

(xE f ,1 \ (S \ {u})) ∈ FS implies ∑e∈E(S) ae− a{u,v}+ b = c. It results that

a{u,v} =−b.

– f ∈ δ (u) (f ∈ δ (v)): let us suppose that f = {u,w}, with w ∈ S. The

set E f = E(S) \ { f} ∪ E(V \ S)∪ {e,e′}, with e ∈ δ (w)∩ δ (S) and e′ ∈
δ (v)∩δ (S), is such that that (xE f ,1\ (S\{v})) ∈ FS. Thus, again we have

that a f =−b.

– f /∈ δ (u)∪ δ (v): in this case f = {w,w′}, with w,w′ ∈ S \ {u,v}. Choos-

ing E f = E(S) \ { f ,{u,v}}∪E(V \ S)∪{e,e′}, with e ∈ δ (w)∩ δ (S) and

e′ ∈ δ (w′)∩ δ (S), it results that (xE f ,1 \ S) ∈ FS. Therefore, we have that

∑e∈E(S) ae−a f −a{u,v} = c. Furthermore, (xES ,1\ (S \{u,v})) belongs to

FS, then ∑e∈E(S) ae+2b = c. This implies that 2b =−a f −a{u,v}. Since we

have already showed that a{u,v} =−b, we can conclude that a f =−b.

Therefore, the equation aT x+bT y = c has become:

−b x(E(S))+b y(S) = c.

• The subgraph GS = (V,ES), such that ES = E(S)∪E(V \S)∪{e,e′}, with e,e′ ∈
(δ (u)∪ δ (v))∩ δ (S), is such that its incident vector belongs to FS. Therefore,

we obtain

−b (|S|+1)+2b = c→ c =−b |S|+b.

The equation aT x+bT y = c has become:

−b x(E(S))+b y(S) =−b |S|+b,

that is a multiple of (5.9).

88

5.4 Branch and Cut Algorithm

We designed a Branch and Cut algorithm for the 2ECMBV problem based on the ILP

formulation introduced in Section 5.2. A preprocessing procedure can be carried out

before executing the algorithm by using the properties introduced in Subsection 5.2.1.

More in detail, for any e ∈ E, if e ∈ ES(G) we add to the model the constraint xe = 1.

Then, we look for cut vertices in G, and we add to the model the following constraints:

yv = 1, v ∈VB(G)

x(δ (v))≥ 2cv, v ∈VB(G)

where cv is the number of connected components in G\{v}. The steps of the Branch

and Cut algorithm are summarized in Algorithm 3. The initial linear program (LP)

model is the following:

Minimize y = ∑
v∈v

yv

subject to

x(δ (v))≥ 2+ yv v ∈V

x(δ (v))−2≤ (d(v)−2)yv v ∈V

0≤ xe ≤ 1 e ∈ E

0≤ yv ≤ 1 v ∈V

This LP model is obtained by considering only the Cut Inequalities corresponding to

W = {v}, for any v ∈ V , and relaxing the integrality constraints on the variables of

the original formulation. For any subproblem L′, we compute the optimal LP solution

(x∗LP(L
′)) and if it is feasible for the ILP and better than the incumbent solution, then the

incumbent is updated (line 14). Otherwise, if the LP solution is not feasible, we search

for violated constraints (5.2), (5.7) and (5.8) (lines 16-28). We search for violated

constraints (5.8) only if the current LP solution satisfies the Cut Inequalities (lines 20-

24). This procedure is repeated until there exist inequalities violated by the current

LP solution. When improvements are no longer possible, we branch on the variables

using the default parameters of CPLEX (lines 29-31). In the following subsection, we

89

5. The 2-Edge-Connected Minimum Branch Vertices Problem

Algorithm 3: Branch and Cut algorithm for the 2ECMBV problem

Input: integer linear program ILP

Output: optimal solution of ILP

1 L = /0;

2 x′← null; //incumbent

3 z(x′)← ∞; //value of the incumbent

4 L0← first subproblem;

5 L← L0;

6 while L 6= /0 do

7 f ound← true;

8 L′← subproblem from L;

9 while f ound == true do

10 f ound← f alse;

11 x∗LP(L
′)← optimal LP solution of the subproblem L’;

12 if z(x∗LP(L
′))< z(x′) then

13 if x∗LP(L
′) is feasible then

14 x′← x∗LP(L
′); //update incumbent

15 else

16 search for violated constraints (5.2);

17 if violated constraints (5.2) are identified then

18 add them to the model;

19 f ound← true;

20 else if violated constraints (5.2) are not identified then

21 search for violated constraints (5.8);

22 if violated constraints (5.8) are identified then

23 add them to the model;

24 f ound← true;

25 search for violated constraints (5.7);

26 if violated constraints (5.7) are identified then

27 add them to the model;

28 f ound← true;

29 else

30 do the branching→ subproblems L1,L2;

31 L← L1,L2;

90

describe the separation procedures for each class of valid inequalities.

5.4.1 Separation Procedures

Cut Inequalities are separated by computing the minimum cut in a graph with capac-

ities given by the current LP solution. More in detail, to determine the minimum-cut

we use the Gomory-Hu algorithm [27], which requires n− 1 maximum flow compu-

tations. If the capacity of the minimum cut is less than 2, we add the corresponding

violated inequalities (5.2).

The separation procedure for (5.7) was introduced by Lucena et al. [1]. Given a fea-

sible solution (x̃, ỹ) for the LP relaxation, and v ∈V with d(v)≥ 4, let us consider the

set {x̃e1
, ..., x̃ed(v)

} containing the variables associated to the edges in δ (v), ordered in

a non-increasing way. Given k ∈ {3, ...,d(v)−1}, we compute ∑
k
i=1 x̃ei

− (k−2)ỹv: if

this value is greater than 2, we have identified a subset S with |S|= k, for which (5.7) is

violated and that provides the largest value for the left-hand side of the inequality. For

any v ∈V with d(v)≥ 4, we at first search for violated inequalities (5.7) with S⊆ δ (v)

and |S| = 3 and we add a subset of the most violated ones. Then, we apply the de-

scribed procedure for k ∈ {4, ...,d(v)− 1} and add to the model at most one violated

constraint for each k.

We separate inequalities (5.8) heuristically, as described below. Given the current re-

laxed solution (x̃, ỹ), let us consider the following minimization problem:

min{ỹ(S)− x̃(E(S))+ |S| : ∀S⊂V,S 6= /0} (5.10)

It is easy to see that if there exist violated inequalities (5.8), then the minimum value of

(5.10) is less than one. Indeed, if there exist S⊂V , S 6= /0, and T ⊆ E(S), with dT (v) ∈
{2,3}, for any v ∈ S, such that ỹ(S)− x̃(T)+ |S| < 1, it results that ỹ(S)− x̃(E(S))+

|S| ≤ ỹ(S)− x̃(T)+ |S| < 1. On the contrary, if the minimum of (5.10) is greater than

or equal to 1, then there are no violated constraints (5.8). To solve the problem (5.10)

we solve a maximum flow problem on an auxiliary directed graph, G∗ = (V ∗,A∗) with

capacities depending on the current solution, build as follows. The set of nodes V ∗ is

obtained by adding to V a source node s and a sink node t, V ∗ =V ∪{s, t}. Every edge

91

5. The 2-Edge-Connected Minimum Branch Vertices Problem

e = {u,v} ∈ E is replaced in G∗ by two directed arcs, (u,v) and (v,u), with capacities

cuv = cvu =
1
2
x̃e. Finally, source node s is connected to any node v ∈ V , by arcs (s,v),

with capacities csv =
x̃(δ (v))

2
−1, while sink node t is connected to each node v ∈V , by

arcs (v, t), with capacity cvt = ỹv. It is worth noting that cuv ≥ 0, for any (u,v) ∈ E∗,

indeed the current LP solution satisfies Cut Inequalities (5.2).

Given S⊆V , let us consider the cut set {S∪{s} : V ∪{t}\S} in G∗. It results that:

c({S∪{s} : V ∪{t}\S}) = ∑
v∈V\S

(x̃(δ (v))

2
−1

)

+ ỹ(S)+ c(S : V \S) =

= ỹ(S)+ ∑
v∈V

(x̃(δ (v))

2
−1

)

−∑
v∈S

(x̃(δ (v))

2
−1

)

+
1

2
x̃(E(S : V \S)) =

= ỹ(S)+ |S|−∑
v∈S

x̃(δ (v))

2
+

1

2
x̃(E(S : V \S))+ ∑

v∈V

(x̃(δ (v))

2
−1

)

=

= ỹ(S)+ |S|− x̃(E(S))+ ∑
v∈V

(x̃(δ (v))

2
−1

)

Thus, solving the minimization problem (5.10) is equivalent to find a minimum {s, t}-
cut in G∗. Assuming that V = {v1, ...,vn}, to ensure S 6= /0, for any h = 1, ...,n−1 we

solve a maximum flow problem with capacities as defined before, except for cs,vh
=+∞

and, if h≥ 2, we set cv1,t = ...= cvh−1,t =+∞. We record the cut-set that is minimum

over the n− 1 iterations. Once computed the minimum {s, t}-cut in G∗, we have a

subset of vertices S such that ỹ(S)< x̃(E(S))−|S|+1. If dS(v) ∈ {2,3}, for any v ∈ S,

we have identified a violated inequality (5.8), otherwise we check whether there exists

a subset T ⊆ E(S), such that dT (v) ∈ {2,3}, for any v ∈ S, and ỹ(S) < x̃(T)−|S|+1.

For this purpose, starting from the empty set T = /0, for any v ∈ S we add to T at most

three edges e in δ (v)∩E(S), choosing the ones with the highest value x̃e and ensuring

that dT (v)∈ {2,3}. Finally we check if inequality (5.8) corresponding to T is violated,

and if so we add it to the model.

5.5 Computational Results

The Branch and Cut algorithm was coded in C++ on an OSX platform, running on an

Intel Core i7 3.4 GHz processor with 8 GB of RAM. For the model the Concert library

92

of IBM ILOG CPLEX 12.8 was used (default parameters and single thread mode).

5.5.1 Instances Generation

In the literature it does not exist benchmark instances for the 2ECMBV problem,

hence we need to generate a set of instances to test the Branch and Cut algorithm.

Our purpose is to generate a graph G which meets the following features: G is non-

Hamiltonian and G is 3-connected. The request that G is non-Hamiltonian ensures

that the optimal solution to the 2ECMBV problem is greater than zero, while if it is

3-connected it results that ES(G) = /0 and BR(G) = /0, thus the propositions proved

in Section 5.3 hold. Let us note that in this case the preprocessing procedure is use-

less as in G there are no essential edges and no cut vertices. A family of 3-connected

non-Hamiltonian graphs can be generated following the procedure described in Chap-

ter 3. Let G′ = (V ′,E ′) be a complete graph such that |V ′| = n′ ≥ 4. Let us consider

an integer q such that n′ ≥ 3q, and let W1, ...,Wq ⊆ V ′ be q disjoint subsets of vertices

such that |Wi| = 3, for any i = 1, ...,q. Given q disjoint sets of vertices T1, ...,Tq, with

|Ti| ≥ 3, for any i = 1, ...,q, we build the graph G(G′,W1, ...,Wq,T1, ...,Tq) = (V,E),

where V =V ′∪T1∪ ...∪Tq and E = E ′∪{{u,v} : u ∈ Ti,v ∈Wi}i=1,...,q. In Chapter 3

we showed that G(G′,W1, ...,Wq,T1, ...,Tq) is 3-connected and non-Hamiltonian.

We generated two sets of instances: Small instances with n′ ∈ {15,20,25,30} and

Large instances with n′ ∈ {35,40,45,50}. We denote by n̄ the sum ∑
q
i=1 |Ti|, that is the

total number of vertices added to the complete graph G′. The integers n̄ and q are cho-

sen as follows: n̄ ∈ {⌊0.5×n′⌋,⌊0.8×n′⌋,n′,⌊1.5×n′⌋,⌊2×n′⌋,⌊2.5×n′⌋,⌊3×n′⌋}
and q ∈ {⌊n̄/5⌋,⌊n̄/3⌋}. For each combination of n′, n̄ and q we have a different

scenario and for each scenario we generated five instances, thus the total number of

instances is 560. Therefore, each line in the tables represents a scenario composed

on 5 instances with the same characteristics and different topologies and the results

reported in each line are the average values on these 5 instances.

Tables 5.1 and 5.2 show the computational experiments with the Branch and Cut al-

gorithm on the set of Small instances, while the computational results for the set of

Large instances are reported in tables 5.3 and 5.4. The heading of the tables is the fol-

lowing. In the first five columns we reported the informations about the instances: the

93

5. The 2-Edge-Connected Minimum Branch Vertices Problem

number of vertices of the graph G′ (n′), the cardinality of T1∪ ...∪Tq (n̄), the integer

q, the number of vertices of the instance (n) and the number of edges (m). In column

Opt is reported the value of the optimal solution computed within the time limit, in

column Nodes there is the number of nodes of the Branch and Bound tree. The next

three columns contain the informations about the added cuts: column CutIneq reports

the number of inequalities (5.2) and columns (5.7) and (5.8) contains the number of

the corresponding added inequalities (5.7) and (5.8). Finally column time reports the

computational time in seconds. If in a scenario there are a instances that were not op-

timally solved within the time limit, (a) appears close to the solution value.

All the Small instances are solved to optimality within the time limit, and it requires

at most 407,2 seconds. The Large instances seem to be more difficult, indeed 91 out of

280 of them are not optimally solved within the time limit. Let us point out that for the

instances not solved to optimality the percentage gap between the upper and the lower

bound in most cases is lower than 20% and the optimal solutions could be reached by

setting a time limit of 2 hours. The computational complexity is related to the param-

eter n′, indeed as it increases the computational time increases too. For instance, let

us compare the scenario having n′ = 25, q = 8 and n = 100 with the scenario having

n′= 40, q= 8 and n= 100: the first one is optimally solved in 1,3 seconds, while in the

second scenario two instances are not solved to optimality within the time limit. The

largest number of violated cuts generated corresponds to the valid inequalities (5.7).

Finally, to evaluate the effect of the valid inequalities (5.8) used in our Branch and

Cut approach, we performed an experiment consisting of comparing the complete al-

gorithm described in Section 5.4 (Complete B&C) with another version (Basic B&C)

where the violation checking test for the valid inequalities (5.8) is not performed. Fig-

ure 5.5 displays the percentage of optimally solved instances within the Cpu time. In

more detail, the horizontal axis represents the Cpu time in seconds, while the vertical

axis represents the percentage of optimally solved instances within a fixed Cpu time.

Thus, it is easy to see that as faster is the curve growth, as better is the performance of

the Branch and Cut. The blue curve is associated with the Complete B&C, while the

green one with the Basic B&C. The separation of the valid inequalities (5.8) reduces

the computational time. Indeed, by adding those cuts the Branch and Cut algorithm is

able to solve to optimality 32 additional instances and takes substantially less time to

94

n’ n̄ q n m Opt Nodes CutIneq (5.7) (5.8) time

15 7 1 22 126 2 4,8 2,6 12 0 0,0

2 22 126 2 4,2 4,4 12 0 0,0

12 2 27 141 3,8 31,4 10 118,2 2,8 0,1

4 27 141 3,8 40,4 12 156,8 4,2 0,1

15 3 30 150 4,6 60,4 14,8 239,4 4 0,1

5 30 150 4,8 75,8 15,4 288,4 6 0,1

22 3 37 171 5,2 47 11,2 196,6 2,4 0,1

5 37 171 5,8 45,6 10,8 272,8 3,8 0,1

30 3 45 195 7,2 72,8 9,8 409,8 2,6 0,2

5 45 195 5,8 25,2 9,4 166 2,2 0,1

37 3 52 216 7,6 72,4 10,6 385,6 2 0,2

5 52 216 7,2 178,8 10,6 507 1,6 0,6

45 3 60 240 7,4 110 11,4 494,6 2 0,6

5 60 240 7 45 7 294,6 6,2 0,2

20 10 2 30 220 3,4 20,4 10,2 59,4 0 0,0

3 30 220 3 22,8 13 67,4 0 0,0

16 3 36 238 4,6 133,2 19,8 481,6 9 0,7

5 36 238 4,8 99,4 19,6 377,6 6,8 0,5

20 4 40 250 6,6 450,2 20,2 763,2 10,2 4,8

6 40 250 6,4 309,4 16,6 559,4 7,8 3,3

30 4 50 280 7,8 199,2 18,2 657,6 1 1,1

6 50 280 8 238,8 22,4 866,6 10 1,5

40 4 60 310 7 77,4 17,8 375,2 1,8 0,5

6 60 310 8 136,6 23,8 681,8 9,2 0,8

50 4 70 340 9,4 184,4 24,8 931,6 1,8 1,9

6 70 340 8,8 220 25,4 880 3,4 2,2

60 4 80 370 7,6 101,8 19,8 531 1,8 1,4

6 80 370 10,2 220,8 26,6 1076 3,4 1,7

Table 5.1: Computational results for instances with n′ = 15 and n′ = 20.

n’ n̄ q n m Opt Nodes CutIneq (5.7) (5.8) time

25 12 2 37 336 3,6 60 22,2 170,2 4,6 0,2

4 37 336 3,8 71,8 29,2 231,8 6,8 0,2

20 4 45 360 6,6 593,4 59,6 1211,8 5 11,6

6 45 360 6,8 221 34,4 510,8 2,4 3,1

25 5 50 375 7,8 1610,2 37,8 1913,4 10,8 71,9

8 50 375 8 2343 36 2516,6 11,4 107,2

37 5 62 411 8,8 304,6 37,8 1543,6 7,6 4,8

8 62 411 8,6 734,4 39,8 1363,8 1,8 21,4

50 5 75 450 11,2 507,6 53,4 1972,4 6 8,1

8 75 450 8,8 145,4 39,6 779,4 5,8 1,2

62 5 87 486 12,6 965,2 61,6 2389 2,2 16,3

8 87 486 9,8 488,2 46,6 1560,2 4,2 15,8

75 5 100 525 13,6 1389,4 76,8 2891,8 4 28,7

8 100 525 10,2 115 31,2 807,2 1,6 1,3

30 15 3 45 480 4,8 80,2 28,4 332,6 5,4 0,4

5 45 480 4,6 104 33,4 425,6 7,8 0,5

24 4 54 507 7 162,4 48 791,4 17,6 2,2

8 54 507 7,6 237,8 61,2 1075,2 26,4 3,3

30 6 60 525 10 790,6 68,4 3148,2 50,2 52,9

10 60 525 8,4 413 66,8 1567,2 15,6 16,0

45 6 75 570 10,4 400,6 65,6 1839,8 4 19,1

10 75 570 11 2940,8 65,8 4541,8 17,8 305,6

60 6 90 615 13,4 3391,8 119,2 5000 5,8 191,8

10 90 615 12,4 1592,8 108,6 3070,4 2,4 33,0

75 6 105 660 12,6 764 109,4 2955 1,8 367,2

10 105 660 14,4 1525,6 95,8 3907 11,4 65,5

90 6 120 705 18,2 3229,2 202 6538,8 4,4 407,2

10 120 705 11,2 170 61,4 1240,2 1 3,7

Table 5.2: Computational results for instances with n′ = 25 and n′ = 30.

95

5. The 2-Edge-Connected Minimum Branch Vertices Problem

n’ n̄ q n m Opt Nodes CutIneq (5.7) (5.8) time

35 17 3 52 646 5,4 190,4 69,2 714 1,2 3,4

5 52 646 5,2 146,4 50,8 503,8 0,8 2,4

28 5 63 679 8 5013,2 193,6 2448 8,2 668,0

9 63 679 8,8 7548,6 269 3462,6 12 996,8

35 7 70 700 10,6(2) 3659,8 108,8 4514 13,4 1464,1

11 70 700 10,8(3) 4809,8 88 5688 14,4 2181,24

52 7 87 751 12,6 4382 141 4473,2 7,2 758,5

11 87 751 12,2(2) 7394,8 160 6232 15,6 1568,5

70 7 105 805 14 4244 219,8 4982 4,2 406,4

11 105 805 14,6(1) 10461,4 309,6 7733 13,8 1383,9

87 7 122 856 16,2 8704,4 286 7238,8 5,4 794,3

11 122 856 14,6 2327,8 166,6 3993 4,6 62,8

105 7 140 910 16,2 14006,2 311 5425,6 0,6 699,7

11 140 910 17,2 20252,6 352,8 7127,8 1,4 1209,8

40 20 4 60 840 6,8 539,6 136,6 1341,2 4,2 26,9

6 60 840 7,2 412,2 97,2 952,6 3,2 18,0

32 6 72 876 8,8(2) 3869 277,8 3287,2 9 1446,9

10 72 876 9,8(3) 5706,8 389 4524,2 8,2 2167,7

40 8 80 900 12(2) 1281,8 66 4614,4 21,4 1447,8

13 80 900 12,4(3) 3149,8 227,4 7739 22,2 2326,7

60 8 100 960 13,8(2) 2913,8 181,8 7469,2 14,8 1485,1

13 100 960 13,8(2) 4387,8 217,8 10312,6 42,6 1934,6

80 8 120 1020 14,6(1) 2368,6 224,4 6259,4 1,6 841,3

13 120 1020 19(1) 14961,4 428,6 11592,6 2,4 1643,9

100 8 140 1080 20,4(3) 28239,6 280,8 13372,2 2,2 2775,1

13 140 1080 15,8(1) 14144,2 431,8 7027,6 7,6 852,7

120 8 160 1140 15,8 6773,8 282,8 5434,2 3 602,6

13 160 1140 21(1) 28405,8 571 11412,6 2,8 1711,4

Table 5.3: Computational results for instances with n′ = 35 and n′ = 40.

n’ n̄ q n m Opt Nodes CutIneq (5.7) (5.8) time

45 22 4 67 1056 6,4 487,6 112,6 1298 9,4 22,6

7 67 1056 6,4 671,8 132 1757,8 14 33,4

36 7 81 1098 11 921,8 177,2 3864 50 113,5

12 81 1098 10,4 949,4 174,2 3080,2 36 109,7

45 9 90 1125 14,2(3) 3580,8 211,8 8129,8 9,4 2577,8

15 90 1125 13,6(2) 2227,6 214,6 7074 11,2 1562,6

67 9 112 1191 15,4(2) 2804 231,2 9427,8 10,6 1663,2

15 112 1191 15,8(2) 4810,2 369 10965,2 6,4 1841,2

90 9 135 1260 19,2(2) 4572,2 283 9537,2 11,2 1470,8

15 135 1260 20,6(3) 6031,4 338 13823,4 9,8 2350,5

112 9 157 1326 19,2(2) 12685 300,8 9478,6 2,6 1530,6

15 157 1326 20,6(2) 9736,2 384,6 12299,4 18,4 2014,6

135 9 180 1395 22,6(3) 19345,2 519,8 12977,8 3,6 2351,5

15 180 1395 20(2) 8398,8 317,2 9071,8 2,2 1473,8

50 25 5 75 1300 7,2 803,6 175,8 2548,8 27,6 127,0

8 75 1300 6,8 308 93,6 1281,8 17,2 12,4

40 8 90 1345 10,6(2) 4105,4 444,2 7227,8 57,6 1964,5

13 90 1345 11,4(2) 2401,8 221 6832,6 62,6 2103,3

50 10 100 1375 12,2(3) 3420 406,8 6942 70,4 2222,6

16 100 1375 15,8(5) 2653 190,6 11444,8 110,2 3610,6

75 10 125 1450 12,2(3) 2570,2 369,8 6083,8 43 2196,6

16 125 1450 15,8(4) 2524,8 197,2 11312,8 99,2 3125,4

100 10 150 1525 13,4(4) 2645,8 327 8974 74 2968,0

16 150 1525 14,6(3) 2863,2 240,6 9213,8 68 3024,1

125 10 175 1600 14,6(4) 2277,8 187,6 8581,6 63,4 2896,6

16 175 1600 13,4(3) 1734 221 7647,8 55,6 2207,5

150 10 200 1675 14,6(3) 1953 177,8 9201,8 76,8 2440,6

16 200 1675 13,4(3) 2207 253,8 7912,2 78,2 2250,7

Table 5.4: Computational results for instances with n′ = 45 and n′ = 50.

96

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

%
 I

n
st

a
n

c
e

s
o

p
ti

m
a

ll
y

 s
o

lv
e

d

Cpu Time (seconds)

Complete B&C

Basic B&C

Figure 5.5: Percentage of optimally solved instances within the Cpu time for the Com-

plete B&C (blue) and the Basic B&C (green).

solve the most of the other instances, causing a reduction in computational time of the

21,4%.

97

Conclusions

In this thesis we introduced two network design problems, the Generalized Minimum

Branch Vertices problem, and the 2-Edge-Connected Minimum Branch Vertices prob-

lem. These problems have the same objective function, that is the minimization of the

number of branch vertices, which are vertices with degree greater than two in the net-

work. The Generalized Minimum Branch Vertices problem is defined over a clustered

undirected graph and a feasible solution is a tree spanning exactly one vertex for each

cluster. While the 2-Edge-Connected Minimum Branch Vertices problem concerns the

search for a spanning subgraph which provides protection against the failure of a single

edge. The conclusions are presented with respect to each chapter.

Generation of 3-Connected non-Hamiltonian Graphs

(Chapter 3)

In this chapter, we provided an overview of some conditions according to which a

graph is Hamiltonian or not. Even if deciding whether an undirected graph G is Hamil-

tonian is a NP-complete problem, there are several results stating sufficient and neces-

sary conditions for a graph to be Hamiltonian. Furthermore, we introduced a procedure

for the generation of a class of 3-connected non-Hamiltonian graphs, which were used

in the computational experiments of Chapter 5.

99

The Generalized Minimum Branch Vertices Problem

(Chapter 4)

In this chapter, we provided a mathematical formulation for the Generalized Minimum

Branch Vertices problem and we introduced several properties characterizing any fea-

sible solution to the problem. Some properties were used to develop a preprocessing

procedure with the aim of detecting useless vertices, namely vertices which do not

belong to any feasible solution. We studied the facial structures of the polytope corre-

sponding to the given model: we derived its dimension, several facet-defining inequal-

ities and a new family of valid inequalities. To solve the Generalized Minimum Branch

Vertices problem we designed a Branch and Cut algorithm. The computational results

showed the effectiveness of the preprocessing procedure, as it allowed us to optimally

solve the 6,4% of additional instances and to reduce the overall computational time.

Furthermore, the Branch and Cut approach was able to solve almost the 80% of the

instances in 7 minutes. As future works we could focus on finding new valid inequal-

ities to integrate into the Branch and Cut algorithm, as well as on the development of

heuristic approaches for the problem.

The 2-Edge-Connected Minimum Branch Vertices Prob-

lem (Chapter 5)

In this chapter, we studied the 2-Edge-Connected Minimum Branch Vertices problem.

We proposed an integer linear programming formulation for the problem and investi-

gated some properties useful to characterize a feasible solution. We studied the poly-

hedron associated with the proposed formulation obtaining its dimension and some

facet results. Furthermore, we introduced a new class of valid inequalities and studied

the relative separation problem. A Branch and Cut approach has been developed to

solve the 2-Edge-Connected Minimum Branch Vertices problem. To test the algorithm

we used a set of 3-connected non-Hamiltonian instances, generated as described in

Chapter 3. The computational results showed that the introduction of the new valid

100

inequalities allowed to optimally solve the 5,7% of additional instances with a reduc-

tion of the 21,4% in computational time. Future research can be conducted to improve

the Branch and Cut algorithm by introducing new effective classes of valid inequali-

ties. However, given the hardness of this problem, an exact approach is not suitable for

large instances, therefore a further research direction could be the study of heuristic

algorithms to solve it.

101

Appendix A

Tables A.1-A.5 report the detailed computational results of the Branch and Cut algo-

rithm for the GMBV problem, described in Chapter 4. The heading of the tables is the

following. In the first three columns we reported the informations about the instances:

the number of clusters (k), the number of vertices (n), and the number of edges (m). In

column %RV is reported the percentage removed vertices, in column Opt is reported

the value of the optimal solution computed within the time limit, in column Nodes

there is the average of number of nodes of the Branch and Bound tree. In the next

three columns there are the informations about the cut added: column GSEC(4.10) re-

ports the average of the number of inequalities (4.10), column GSEC(4.4) reports the

average of the number of inequalities (4.4), and column (4.13) contains the average of

the number of constraints (4.13) added. Finally column time reports the average of the

computational time in seconds. When a ”−” is reported, no feasible solution has been

found.

103

k n m %RV Opt Nodes GSEC(4.10) GSEC(4.4) (4.13) time

12 36 38 13,9 1 2 31 3 8 0,1

36,1 2 2 9 0 12 0,1

8,3 1 5 21 21 12 0,1

25,0 0 0 8 0 0 0,0

13,9 1 2 14 5 14 0,1

44 5,6 0 1 40 0 0 0,1

5,6 1 2 35 59 35 0,1

13,9 1 5 30 16 27 0,1

13,9 1 4 18 26 17 0,1

8,3 0 0 18 0 0 0,1

50 13,9 1 3 19 7 13 0,1

0,0 0 0 55 0 0 0,1

0,0 0 0 21 7 0 0,1

0,0 0 0 19 7 0 0,1

2,8 0 0 28 9 0 0,1

12 48 50 10,4 0 0 14 0 0 0,1

29,2 1 3 14 8 18 0,1

6,3 1 1 42 23 28 0,1

22,9 1 6 29 9 16 0,1

22,9 1 4 21 22 31 0,1

57 16,7 1 3 33 42 29 0,1

12,5 0 0 26 0 0 0,1

8,3 0 0 41 0 0 0,1

8,3 1 7 48 46 46 0,1

10,4 0 0 32 7 0 0,1

64 6,3 0 0 57 0 0 0,1

6,3 0 0 63 11 0 0,2

8,3 1 3 47 65 11 0,2

8,3 0 0 36 4 0 0,1

25,0 2 9 38 49 29 0,1

12 72 75 41,7 1 2 32 8 16 0,3

29,2 0 0 13 0 0 0,2

8,3 1 7 55 32 66 0,2

27,8 1 3 41 23 8 0,2

19,4 1 4 48 24 6 0,2

83 4,2 0 0 63 7 0 0,2

12,5 0 0 82 32 0 0,3

27,8 0 0 52 0 0 0,2

9,7 0 0 66 10 0 0,2

22,2 0 3 71 42 0 0,4

92 2,8 0 0 87 38 0 0,2

4,2 0 0 49 3 0 0,3

6,9 0 0 77 3 0 0,3

2,8 0 0 81 6 0 0,2

8,3 0 0 58 0 0 0,3

12 96 99 11,5 0 0 64 0 0 0,2

14,6 0 0 57 0 0 0,2

19,8 1 6 68 63 58 0,3

25,0 0 0 42 0 0 0,2

21,9 1 3 71 77 27 0,3

109 22,9 0 0 70 9 0 0,3

24,0 0 0 80 0 0 0,4

20,8 0 0 94 22 0 0,5

12,5 0 0 99 14 0 0,5

9,4 0 0 112 25 0 0,4

119 9,4 0 0 84 5 0 0,6

9,4 0 0 91 0 0 0,5

4,2 0 0 114 0 0 0,4

5,2 0 0 133 70 0 0,5

3,1 0 0 35 0 0 0,4

12 120 124 15,8 1 5 94 28 29 0,4

16,7 0 1 84 7 0 0,3

29,2 1 5 84 37 22 0,5

17,5 0 0 52 0 0 0,4

30,0 1 5 65 77 31 0,4

135 12,5 1 1 122 156 36 0,8

13,3 0 0 113 4 0 0,5

17,5 0 0 92 4 0 0,6

18,3 0 0 86 0 0 0,6

10,8 0 0 101 0 0 0,5

146 5,0 0 0 151 11 0 0,8

10,0 0 0 131 19 0 0,9

8,3 0 0 123 0 0 0,9

8,3 0 0 106 0 0 0,5

11,7 0 0 169 16 0 1,1

k n m %RV Opt Nodes GSEC(4.10) GSEC(4.4) (4.13) time

16 48 50 31,3 2 2 13 23 15 0,1

29,2 1 2 7 0 6 0,1

4,2 2 3 28 13 36 0,1

16,7 2 2 14 0 21 0,0

16,7 2 3 27 24 16 0,1

57 0,0 1 9 46 65 33 0,1

8,3 1 6 39 35 16 0,1

14,6 1 3 29 23 56 0,1

2,1 1 6 51 110 15 0,2

6,3 0 0 13 6 0 0,1

64 2,1 0 0 38 0 0 0,1

0,0 0 0 35 0 0 0,1

2,1 1 3 56 43 28 0,2

0,0 0 0 30 7 0 0,1

2,1 0 0 59 6 0 0,1

16 64 67 7,8 0 0 18 0 0 0,1

26,6 2 3 33 0 37 0,1

20,3 1 2 41 33 21 0,1

20,3 1 4 39 42 46 0,1

23,4 2 3 28 9 21 0,1

75 1,6 0 0 46 0 0 0,1

0,0 1 3 51 27 62 0,2

1,6 1 7 70 57 46 0,2

9,4 1 6 68 145 43 0,3

3,1 1 15 83 80 11 0,3

83 15,6 1 4 63 55 43 0,3

4,7 0 0 99 0 0 0,2

3,1 1 6 75 157 41 0,2

0,0 1 6 65 101 62 0,3

15,6 1 4 45 97 43 0,3

16 96 99 22,9 1 4 56 39 27 0,3

17,7 1 9 77 49 55 0,3

27,1 1 4 57 20 32 0,3

26,0 2 10 47 8 32 0,3

13,5 1 6 72 67 62 0,3

109 4,2 1 10 101 198 81 0,6

11,5 1 4 109 132 36 0,7

10,4 1 10 88 205 40 0,7

4,2 0 0 76 0 0 0,3

2,1 0 0 80 11 0 0,3

119 4,2 0 0 90 8 0 0,3

6,3 0 0 116 3 0 0,5

0,0 0 0 137 36 0 0,7

8,3 0 0 108 0 0 0,8

0,0 0 0 88 0 0 0,5

16 128 132 34,4 1 13 64 10 71 0,4

17,2 1 13 92 139 74 0,8

15,6 1 4 94 55 79 0,6

18,8 1 16 94 142 51 0,9

20,3 1 3 78 23 14 0,3

143 10,2 1 10 124 97 48 1,3

5,5 0 0 100 22 0 0,5

10,9 1 7 115 181 32 1,4

13,3 1 5 115 79 32 0,8

4,7 1 23 165 249 31 1,6

155 3,1 0 0 138 0 0 0,8

0,8 0 0 176 15 0 1,2

3,9 0 0 78 0 0 0,7

7,8 0 0 165 72 0 1,2

0,8 0 0 72 14 0 0,8

16 160 165 24,4 1 10 112 104 95 1,1

8,1 1 9 128 58 132 0,9

26,3 1 9 104 100 72 1,0

34,4 1 5 82 53 28 0,8

28,8 1 4 96 36 49 0,8

177 7,5 0 0 95 0 0 1,3

10,6 0 0 136 13 0 1,0

5,0 0 0 99 0 0 0,8

12,5 0 0 163 3 0 1,2

7,5 0 0 151 30 0 1,1

190 7,5 0 0 169 3 0 1,5

8,1 0 0 188 0 0 1,5

8,8 0 0 201 27 0 1,6

5,0 0 5 220 123 0 1,7

5,0 0 0 224 115 0 2,0

Table A.1: Computational results for instances with k = 12 and k = 16.

104

k n m %RV Opt Nodes GSEC(4.10) GSEC(4.4) (4.13) time

20 60 62 13,3 2 6 32 56 48 0,1

30,0 3 4 21 37 33 0,1

16,7 3 5 30 34 40 0,1

10,0 2 3 34 53 32 0,1

8,3 2 5 35 31 60 0,1

70 8,3 1 3 48 23 39 0,1

10,0 1 3 31 62 19 0,1

31,7 3 3 41 42 24 0,1

13,3 2 3 32 88 27 0,1

6,7 2 4 49 70 35 0,2

78 0,0 1 26 80 237 93 0,4

0,0 1 40 101 229 30 0,4

3,3 1 6 61 127 67 0,3

0,0 1 12 73 194 48 0,4

13,3 1 3 52 70 28 0,2

20 80 83 13,8 1 9 61 71 38 0,2

26,3 2 5 29 28 54 0,2

21,3 3 3 42 40 46 0,1

11,3 3 7 55 24 50 0,2

26,3 2 4 36 38 43 0,2

92 3,8 1 7 76 92 84 0,4

2,5 0 0 55 0 0 0,3

7,5 1 3 68 134 34 0,3

3,8 1 7 65 71 53 0,4

2,5 1 8 83 71 39 0,5

101 0,0 1 11 100 248 59 0,6

11,3 1 4 99 188 70 0,5

0,0 1 8 95 241 38 0,6

16,3 1 3 62 170 24 0,7

11,3 1 3 77 58 30 0,3

20 120 124 15,8 2 18 91 129 82 0,6

19,2 1 3 77 47 38 0,5

12,5 1 7 87 142 71 0,6

26,7 1 15 82 89 65 0,6

5,8 1 5 91 36 46 0,5

135 3,3 1 6 127 105 50 0,9

4,2 1 33 148 315 73 1,5

7,5 1 6 125 231 114 1,1

11,7 1 10 120 225 60 1,6

0,8 0 0 123 0 0 0,6

146 6,7 1 22 156 275 65 1,7

0,0 0 0 163 5 0 0,8

3,3 1 27 162 484 64 2,5

5,8 0 0 103 0 0 0,7

3,3 0 0 155 11 0 0,7

20 160 165 30,0 2 4 88 59 50 1,0

13,8 2 11 114 57 72 0,9

18,1 1 6 113 86 60 0,9

19,4 1 3 95 46 66 0,8

19,4 1 4 122 76 52 0,9

177 5,0 1 26 171 196 76 2,2

10,6 1 9 145 225 62 2,1

9,4 1 14 177 509 87 2,9

13,8 0 0 117 0 0 1,5

14,4 1 40 151 339 88 2,7

190 3,1 0 0 180 20 0 1,9

1,9 0 2 191 50 0 2,2

5,6 0 0 193 27 0 1,5

3,8 1 19 226 618 33 6,7

6,9 1 53 225 735 96 5,2

20 200 206 7,5 1 33 175 266 154 2,8

27,5 1 44 152 310 70 2,6

12,0 1 3 139 165 39 1,8

17,0 1 12 133 139 92 1,8

17,5 1 23 156 292 184 2,2

220 7,0 1 19 206 272 80 3,8

16,0 1 17 176 432 153 3,6

10,0 1 34 212 269 77 4,3

13,5 1 17 212 339 63 3,7

8,5 1 38 226 550 85 6,5

234 3,5 0 52 302 899 50 11,1

1,5 1 88 276 830 114 13,1

2,0 1 60 293 902 136 25,6

6,5 1 11 305 119 131 20,9

1,0 1 89 290 954 144 10,7

k n m %RV Opt Nodes GSEC(4.10) GSEC(4.4) (4.13) time

30 90 93 36,7 5 3 20 0 22 0,1

14,4 5 4 40 79 51 0,2

15,6 4 17 55 163 52 0,3

20,0 3 12 36 141 72 0,2

16,7 4 3 54 58 38 0,2

103 18,9 3 10 54 161 99 0,3

0,0 2 28 106 499 103 0,8

10,0 2 3 60 62 36 0,3

11,1 3 16 64 383 67 0,4

14,4 2 28 76 293 55 0,6

112 15,6 2 7 64 284 96 0,5

8,9 2 6 69 204 71 0,4

0,0 2 10 83 383 47 0,7

1,1 1 3 83 90 24 0,4

11,1 1 66 93 854 169 0,9

30 120 124 23,3 3 3 81 59 47 0,4

15,8 4 12 60 137 99 0,5

20,0 4 7 59 170 77 0,5

15,0 4 7 88 47 86 0,5

19,2 2 19 63 175 88 0,6

135 12,5 3 44 116 365 145 1,3

12,5 2 3 86 150 72 0,7

25,0 2 3 64 221 34 0,9

18,3 4 19 107 247 103 1,3

11,7 3 5 99 104 70 0,9

146 0,0 1 40 174 535 91 1,8

4,2 1 23 153 817 94 2,1

0,0 1 106 148 1448 202 2,9

0,0 1 4 117 320 133 1,3

0,0 1 106 160 1113 223 3,0

30 180 185 12,2 3 30 141 482 136 2,1

7,2 2 3 134 104 102 1,3

6,7 2 8 150 111 112 1,6

5,0 2 28 138 435 185 1,9

9,4 2 4 128 171 87 1,7

199 2,8 2 98 202 1288 199 6,5

3,9 2 34 171 613 194 3,9

2,2 2 75 176 1052 171 6,7

1,1 1 28 184 545 183 3,6

3,3 2 30 178 888 133 4,3

212 0,6 1 177 242 1792 239 11,5

2,2 1 70 230 2156 201 14,1

0,6 1 124 275 2316 214 14,1

3,3 2 81 209 1774 285 10,5

2,2 1 356 251 2553 189 31,9

30 240 246 10,4 2 11 160 426 197 3,7

10,4 2 10 160 351 95 3,6

13,3 3 34 185 413 204 4,5

13,8 2 5 177 124 114 2,9

14,6 2 32 185 429 165 4,1

262 4,2 1 24 260 206 109 5,6

8,3 2 37 254 1212 173 9,8

10,0 2 119 255 1531 251 17,8

2,9 1 31 260 1133 166 7,9

4,2 1 95 258 1241 341 11,7

277 1,3 1 82 316 1434 183 14,2

2,5 1 73 295 1607 174 15,6

5,0 1 251 329 2794 247 32,8

2,5 2 409 322 4510 418 89,8

2,5 1 642 359 4284 321 65,6

30 300 307 15,7 2 11 212 499 126 7,0

20,3 2 24 187 333 163 6,7

7,7 1 73 254 843 227 9,1

10,3 2 9 214 447 109 5,5

15,0 2 11 222 621 157 6,4

324 6,3 1 40 276 1187 187 15,8

4,3 1 303 327 2633 407 42,6

6,3 1 241 311 3058 362 66,2

1,3 1 72 336 1187 239 15,8

4,3 1 8 277 576 89 11,4

342 2,7 2 100 411 7042 343 1396,3

1,0 0 0 354 229 0 8,2

2,7 1 245 418 4288 413 128,1

1,7 1 220 398 3748 404 89,7

2,7 1 166 394 1660 154 51,9

Table A.2: Computational results for instances with k = 20 and k = 30.

105

k n m %RV Opt Nodes GSEC(4.10) GSEC(4.4) (4.13) time

40 120 124 19,2 6 3 49 123 70 0,4

15,0 6 5 58 152 56 0,4

23,3 6 4 48 141 81 0,3

8,3 4 9 77 185 80 0,5

10,8 6 9 60 121 98 0,5

135 8,3 5 17 78 327 122 0,6

2,5 3 7 98 516 85 0,9

13,3 5 35 90 464 100 1,0

5,8 4 23 109 1006 137 1,3

2,5 4 43 123 884 135 1,6

146 5,0 2 8 112 528 133 1,2

5,8 3 53 129 1486 133 2,6

3,3 2 57 118 1459 158 2,4

0,8 2 30 111 666 140 1,6

2,5 2 40 147 978 151 1,9

40 160 165 8,8 5 14 121 236 111 1,2

14,4 5 7 86 140 98 0,9

16,9 5 6 82 125 99 0,8

10,6 4 6 83 208 133 0,9

21,3 5 25 98 175 102 1,0

177 4,4 3 37 165 1093 186 3,9

4,4 3 134 183 1647 313 6,0

6,9 4 28 140 530 136 2,4

5,0 3 18 132 476 133 2,1

1,9 2 57 160 1905 183 4,8

190 1,9 2 51 183 1978 220 5,2

3,1 2 59 181 1748 194 4,7

0,0 2 130 219 3229 246 12,5

0,6 2 106 204 2340 221 7,8

3,1 2 55 211 2069 218 6,4

40 240 246 7,9 4 42 194 802 215 4,7

6,7 3 18 172 435 184 3,8

10,8 4 29 182 359 165 3,5

11,3 5 34 181 532 189 4,5

16,7 4 8 147 151 183 3,0

262 1,7 3 122 276 3196 228 23,3

5,0 3 203 269 2318 398 19,4

2,1 3 102 243 2275 243 13,7

4,6 2 48 244 1869 239 10,9

3,8 2 45 256 2032 204 14,7

277 0,0 2 139 296 2591 296 17,3

1,7 2 103 294 3893 305 32,9

0,4 2 333 337 6204 388 356,8

0,0 1 42 253 1324 171 10,7

0,8 2 199 312 4529 310 61,1

40 320 327 16,3 3 102 236 1312 290 12,1

18,1 3 14 223 723 198 8,2

14,7 4 347 259 903 381 13,5

10,6 2 45 245 1250 234 9,6

8,8 3 170 279 2143 308 18,1

345 5,6 2 111 324 2344 307 34,8

1,3 2 292 344 4480 427 62,0

1,9 2 229 366 5879 341 226,6

0,9 2 155 328 2782 415 41,4

1,3 2 257 343 3746 377 54,9

363 1,9 2 264 369 6275 344 595,2

1,6 2 306 424 8159 360 201,1

1,3 1 288 424 7434 340 138,2

0,9 1 250 379 5984 391 136,5

1,9 1 445 413 7916 558 190,7

40 400 409 6,5 2 126 362 1731 428 30,7

6,8 2 51 322 1242 325 21,1

8,8 2 46 310 1593 319 19,7

10,0 3 209 363 2280 543 38,3

7,8 2 63 330 1396 401 26,7

429 2,5 2 362 417 5151 573 220,1

3,8 1 27 386 1565 203 35,1

7,3 2 384 431 7292 339 212,1

3,3 2 127 364 4934 356 101,7

3,3 2 229 432 4997 353 107,1

449 5,0 1 489 530 8613 509 298,1

1,3 2 1361 561 16320 801 3610,6

2,5 1 259 452 6573 344 3103,1

2,5 2 656 502 11009 517 2726,3

3,8 1 532 504 10263 607 3610,6

k n m %RV Opt Nodes GSEC(4.10) GSEC(4.4) (4.13) time

50 150 155 7,3 7 49 118 1247 160 1,8

9,3 6 19 103 710 100 1,1

17,3 8 13 63 329 97 0,7

24,7 7 10 42 158 60 0,5

12,7 7 8 80 324 108 0,8

167 4,7 5 73 134 2434 218 4,7

11,3 7 33 128 549 160 1,6

5,3 4 12 88 647 114 0,9

6,7 4 31 124 1362 170 2,5

6,7 6 73 144 1540 145 3,1

179 1,3 3 47 157 2017 221 6,2

0,0 3 112 186 3191 224 6,9

4,7 3 43 137 1209 203 2,7

7,3 4 31 139 1632 131 2,8

4,7 3 39 165 1803 105 3,9

50 200 206 7,0 6 67 159 973 258 3,5

20,0 5 4 104 179 151 1,7

13,0 5 41 118 758 146 2,2

8,0 6 46 144 491 173 2,5

11,5 5 3 118 443 124 1,6

220 5,5 4 43 178 1697 213 6,1

14,5 5 5 138 365 116 2,1

4,0 4 63 200 2143 235 7,2

3,0 3 20 170 651 129 3,7

2,5 3 203 224 4571 251 19,9

234 1,5 4 60 233 2643 195 17,0

0,5 4 308 282 6146 290 59,8

0,5 2 63 222 3379 274 14,4

1,0 3 68 251 3533 229 18,2

1,0 4 91 230 3449 303 19,1

50 300 307 11,7 4 6 202 589 182 6,9

9,7 5 95 241 661 259 10,4

6,7 4 84 238 1863 349 14,7

7,3 5 89 213 2129 271 12,8

3,3 5 199 280 2010 423 18,2

324 2,3 4 285 362 6674 449 120,6

5,0 2 79 275 2551 303 20,4

9,7 4 131 280 3326 399 30,0

2,3 3 65 278 2184 295 22,6

1,7 3 280 328 6124 499 101,6

342 3,0 2 408 383 12114 484 233,7

1,7 3 364 393 11868 381 387,0

0,3 3 870 388 15449 381 864,9

0,7 2 291 348 10898 604 237,9

0,0 3 792 402 21092 621 1011,3

400 409 5,8 4 118 327 2795 352 35,4

7,0 4 254 329 2990 516 44,0

5,3 4 388 340 3367 489 68,0

9,8 4 104 321 2590 308 36,2

9,5 5 230 337 2867 634 51,5

429 4,0 2 91 401 4178 378 69,8

3,8 3 265 423 7087 394 208,6

1,0 2 230 427 10335 576 220,0

3,3 3 587 456 9808 453 468,6

5,0 3 155 402 6037 447 152,1

449 0,5 2 171 459 6327 407 165,4

0,8 3 446 436 14196 426 1010,8

0,3 3 1016 567 30758 595 3610,6

1,8 2 310 480 9042 484 932,5

0,8 2 1367 544 21353 644 3610,6

50 500 510 4,4 4 166 454 2908 505 67,3

7,8 3 113 410 3445 418 113,7

6,0 3 125 448 4691 467 90,3

12,8 3 147 399 3195 478 54,0

5,6 4 199 450 4546 602 96,5

532 2,2 2 250 490 10003 677 543,7

1,2 3 1180 515 16631 803 2328,3

2,4 2 310 517 8218 749 340,0

3,0 1 404 510 14165 733 1411,8

4,0 3 1220 484 15104 648 1327,2

554 2,2 2 717 626 25949 631 3610,6

3,2 2 580 617 20775 776 3610,6

2,4 3 737 621 37630 986 3610,6

0,6 4 521 660 19049 641 3610,6

0,8 3 900 612 26666 793 3610,6

Table A.3: Computational results for instances with k = 40 and k = 50.

106

k n m %RV Opt Nodes GSEC(4.10) GSEC(4.4) (4.13) time

60 180 185 7,8 7 4 99 384 137 1,1

20,6 10 11 83 223 104 0,8

20,0 9 4 79 223 89 0,8

9,4 8 46 103 576 172 2,0

17,2 7 0 61 46 117 0,6

199 7,2 6 38 131 1563 158 3,7

1,7 4 53 128 3717 218 6,9

17,8 7 4 77 906 117 1,4

1,1 4 36 169 2094 187 5,8

9,4 7 52 120 1368 239 3,5

212 6,1 4 68 169 4687 214 8,3

2,2 3 41 178 2698 169 7,8

2,2 5 74 202 3681 232 14,1

0,0 3 178 223 7308 286 25,9

2,8 3 88 188 3128 262 7,4

60 240 246 18,8 7 50 143 905 179 3,0

4,2 6 25 149 622 163 3,3

8,8 7 38 185 1068 215 4,8

8,3 7 47 180 830 194 4,4

5,8 7 100 193 2034 313 7,3

262 5,4 6 178 235 3413 326 24,7

3,8 6 410 253 7071 292 56,6

4,2 5 164 246 4754 299 25,4

0,8 5 108 259 5699 333 34,9

4,6 3 115 218 3239 250 15,3

277 5,4 3 88 227 4961 288 21,0

1,3 4 256 284 10206 347 107,7

3,8 3 241 296 10508 414 175,4

1,7 4 341 297 11471 343 116,6

0,4 2 155 277 7914 426 54,4

60 360 368 10,3 6 100 273 1049 392 13,5

8,1 5 175 310 4236 452 39,4

8,1 5 36 269 2412 239 23,3

6,1 5 13 272 1292 276 12,4

8,9 6 443 295 3044 454 49,3

387 2,5 4 661 437 19451 641 755,8

1,9 5 430 403 11311 561 461,1

1,9 3 361 379 11914 463 398,4

1,9 3 265 348 10595 442 236,3

1,1 3 975 392 14557 574 911,7

406 0,8 4 1017 479 34247 670 3431,0

0,3 3 522 480 32976 700 1398,9

4,2 3 317 470 19646 605 639,9

0,6 3 582 486 28645 714 1237,4

1,4 3 292 442 11711 403 659,3

60 480 489 4,6 4 71 390 3159 376 53,9

5,8 4 88 376 3051 571 57,7

17,3 5 114 353 2987 494 53,4

3,3 5 115 389 3234 556 66,4

10,2 6 208 388 3641 541 83,8

511 2,9 5 1155 547 29134 839 3610,6

2,5 3 499 533 19571 850 3404,4

1,3 4 654 511 22051 739 1134,3

1,9 4 1558 529 30260 937 3610,6

1,0 3 378 541 25634 759 1254,5

533 1,0 5 463 541 29731 826 3610,6

2,5 4 1036 644 42034 1082 3610,6

0,2 3 630 589 42891 768 3610,6

0,2 4 705 613 39095 906 3610,6

0,8 3 578 606 40052 626 3610,6

60 600 611 6,0 4 264 533 8319 634 271,9

6,3 4 163 539 6521 610 207,9

6,3 6 1691 570 10755 925 1736,3

5,8 5 192 517 5587 554 180,0

7,5 4 322 517 6626 655 266,2

635 0,7 4 820 651 26194 834 3610,6

3,0 5 562 652 29810 864 3610,6

1,8 4 916 662 32083 893 3610,6

2,5 5 691 679 29484 883 3610,6

4,2 4 981 656 29787 1069 3610,6

660 1,8 5 340 701 30877 961 3610,6

1,7 4 528 701 29013 865 3610,6

0,2 8 764 740 29240 963 3610,6

0,3 5 612 768 35164 905 3610,6

1,2 5 677 740 36884 827 3610,6

k n m %RV Opt Nodes GSEC(4.10) GSEC(4.4) (4.13) time

70 210 216 15,7 9 15 88 576 157 1,9

13,3 9 17 115 698 148 1,8

10,0 8 50 113 1359 192 2,6

16,2 10 20 106 526 149 1,7

17,6 10 31 86 1240 146 1,8

230 7,1 9 32 167 1876 210 6,3

4,8 6 27 164 3283 225 7,6

19,0 10 8 107 846 141 2,1

8,6 8 41 140 1671 155 4,3

8,6 7 67 176 1637 221 5,4

245 5,7 6 64 186 4844 313 15,5

6,2 4 103 191 8710 257 24,1

9,5 8 124 193 6576 235 20,8

3,3 4 67 214 4406 325 13,0

6,2 7 136 214 5655 266 24,2

70 280 287 12,5 8 266 171 1626 307 11,3

12,9 7 18 157 1013 224 4,2

13,2 9 46 200 1579 269 6,9

6,4 8 34 208 999 284 6,6

18,9 9 4 141 472 147 3,1

304 5,7 7 45 259 4670 336 23,5

5,7 7 211 278 7915 327 56,6

10,7 7 102 223 3735 313 17,2

5,4 5 279 282 12281 427 130,1

7,5 6 253 264 10799 417 103,0

320 3,9 5 277 318 16685 406 238,4

1,1 5 125 332 10291 357 82,9

1,8 5 504 321 16356 400 282,6

1,8 4 1271 367 41822 798 1993,0

2,5 4 395 355 21568 409 349,9

70 420 429 2,9 5 393 355 6176 774 137,6

4,5 6 220 334 3269 383 53,7

5,2 6 44 339 2417 367 31,7

6,9 7 770 348 6337 587 189,6

11,4 7 797 356 2641 514 82,9

449 1,4 6 1057 469 40694 821 3610,6

4,5 5 600 446 17877 708 851,0

0,5 5 361 442 18567 754 684,8

1,9 5 1528 471 30734 838 2416,8

3,1 5 275 397 13938 530 418,1

470 0,2 7 908 573 53119 665 3610,6

0,5 5 912 535 45673 724 3610,6

1,4 3 315 487 23914 573 3610,6

0,7 3 546 503 34593 798 2049,8

0,7 5 654 562 51290 850 3610,6

70 560 570 5,9 5 881 511 17623 787 1437,0

8,8 5 273 473 6244 539 203,2

4,1 5 303 495 8863 806 301,8

4,8 5 342 495 6015 662 186,1

3,4 6 271 505 7518 696 284,1

594 2,1 7 703 659 38444 1114 3610,6

1,3 5 704 554 36598 722 3610,6

0,9 5 700 584 35608 771 3610,6

1,8 4 956 600 38917 1174 3610,6

1,4 5 688 629 35562 1111 3610,6

618 0,4 6 353 669 40980 768 3610,6

0,4 6 600 730 40373 1131 3610,6

0,7 4 450 706 38045 948 3610,6

0,4 6 810 717 35625 804 3610,6

0,7 5 527 683 41067 963 3610,6

70 700 712 6,7 4 3020 554 12027 946 3205,6

5,9 4 260 626 7298 835 312,7

2,1 5 674 642 13633 749 833,0

7,6 5 229 574 6254 576 292,5

3,7 5 622 625 12161 738 913,3

738 2,1 5 588 679 38454 1124 3610,6

1,6 4 487 703 27806 1164 3610,6

1,0 6 762 766 31543 958 3610,6

1,6 3 654 784 38278 1099 3610,6

0,4 8 569 804 35782 1163 3610,6

765 1,3 4 225 763 33933 824 3610,6

0,6 10 157 749 31815 567 3610,6

1,4 9 142 745 28829 675 3610,6

0,7 7 237 820 27736 643 3610,6

1,1 6 128 717 30658 559 3610,6

Table A.4: Computational results for instances with k = 60 and k = 70.

107

k n m %RV Opt Nodes GSEC(4.10) GSEC(4.4) (4.13) time

80 240 246 14,6 11 9 105 359 133 1,5

15,8 11 5 101 447 109 1,7

25,8 14 6 76 506 108 1,3

16,7 12 12 103 951 171 1,9

11,7 10 10 132 1056 184 2,8

262 7,1 8 96 206 5430 256 21,3

5,8 8 75 195 4230 252 15,0

3,8 7 358 217 10573 420 60,0

2,5 7 52 211 3710 318 14,1

5,8 9 114 220 7373 350 31,6

277 5,4 7 431 287 16261 387 152,8

2,5 8 207 264 14048 393 134,5

5,0 5 166 242 12668 351 62,5

4,6 6 154 246 14211 369 74,2

12,9 9 188 200 13247 318 51,7

80 320 327 19,7 9 68 160 2021 272 6,8

9,1 9 15 209 540 247 5,9

18,1 10 17 169 999 170 6,5

5,3 8 154 211 4690 399 23,0

6,9 10 113 219 1432 326 12,9

345 3,4 8 245 338 11587 383 130,0

8,4 8 72 276 6060 306 41,9

8,4 8 97 271 6094 397 40,6

10,3 8 335 316 10438 379 152,6

5,0 7 224 308 11488 510 146,2

363 0,6 6 114 371 11902 375 127,6

1,6 7 835 440 68133 668 3610,6

2,2 6 180 352 17764 348 223,0

2,5 5 201 364 15469 487 207,0

4,1 4 146 309 13953 310 139,4

480 489 3,5 7 379 392 9438 585 201,3

21,9 8 172 309 3765 460 43,0

5,6 8 641 416 11572 648 413,6

12,7 8 483 375 9993 657 290,2

7,3 7 870 404 10524 711 452,5

511 2,5 5 556 472 25564 610 1570,1

1,7 6 1032 543 43908 809 3610,6

0,2 7 744 514 42920 773 3610,6

3,3 7 842 529 46750 791 3610,6

1,0 6 950 523 38284 932 3610,6

533 1,0 5 601 538 41747 773 3610,6

0,8 5 458 562 52189 776 3610,6

1,9 5 827 564 51096 968 3610,6

2,7 5 407 543 51828 747 3610,6

0,2 6 480 616 53181 653 3610,6

80 640 651 1,9 6 1347 596 27308 799 3610,6

5,8 7 481 556 15477 910 977,8

3,4 7 803 585 10982 733 1154,5

4,2 6 429 568 14852 838 725,2

6,6 5 267 556 8953 735 396,3

676 2,3 7 634 716 39936 1013 3610,6

1,1 5 508 706 41310 962 3610,6

1,7 7 335 669 40064 833 3610,6

3,9 6 517 683 35386 907 3610,6

1,9 6 448 679 39304 1068 3610,6

702 0,6 7 258 753 39520 1120 3610,6

0,8 7 328 779 40107 852 3610,6

0,8 7 228 701 42868 758 3610,6

1,4 7 486 784 42085 954 3610,6

0,6 5 252 749 38189 740 3610,6

80 800 813 3,8 7 952 750 25410 1240 3610,6

4,1 6 1534 700 20023 1058 3610,6

4,8 5 530 694 16605 801 1443,1

6,1 5 464 704 13710 1063 744,9

2,6 5 791 756 33013 1065 3610,6

841 2,0 6 455 782 37557 919 3610,6

0,9 6 364 871 34850 941 3610,6

1,5 8 399 841 35964 1286 3610,6

0,3 8 373 818 32165 1037 3610,6

3,5 6 283 736 31350 710 3610,6

869 1,5 13 121 841 31719 678 3610,6

0,6 8 158 920 28065 780 3610,6

1,1 11 122 820 26944 950 3610,6

0,5 9 195 885 30754 837 3610,6

1,6 - 3610,6

Table A.5: Computational results for instances with k = 80.

108

References

[1] L. Simonetti A. Lucena, N. Maculan. Reformulations and solution algorithms for

the maximum leaf spanning tree problem. Computational Management Science,

7(3):289–311, 2010.

[2] J.A. Bondy and V. Chvàtal. A method in graph theory. Discrete Mathematics, 15

(2):111 – 135, 1976.

[3] F. Carrabs, R. Cerulli, M. Gaudioso, and M. Gentili. Lower and upper bounds for

the spanning tree with minimum branch vertices. Computational Optimization

and Applications, 56(2):405–438, 2013.

[4] V Chvàtal. On hamilton’s ideals. Journal of Combinatorial Theory, Series B, 12

(2):163 – 168, 1972.

[5] V. Chvàtal. Tough graphs and hamiltonian circuits. Discrete Math., 5(3):215–

228, 1973.

[6] V. Chvàtal and P. Erdös. A note on hamiltonian circuits. Discrete Mathematics,

2(2):111 – 113, 1972.

[7] Carlos Contreras-Bolton, Gustavo Gatica, Carlos Rey Barra, and Vı́ctor Parada.

A multi-operator genetic algorithm for the generalized minimum spanning tree

problem. Expert Systems with Applications, 50:1 – 8, 2016.

[8] Alexandre Salles da Cunha, Luidi Simonetti, Abilio Lucena, and Bernard Gen-

dron. Formulations and exact solution approaches for the degree preserving span-

ning tree problem. Networks, 65:329–343, 2015.

109

REFERENCES

[9] G. A. Dirac. Some theorems on abstract graphs. Proceedings of the London

Mathematical Society, s3-2(1):69–81, 1952.

[10] M. Dror, M. Haouari, and J. Chaouachi. Generalized spanning trees. European

Journal of Operational Research, 120(3):583 – 592, 2000.

[11] J. Edmonds. Submodular functions, matroids and certain polyhedra. Combina-

torial structures and their applications, pages 69–87, 1970.

[12] Kapali P. Eswaran and R. Endre. Tarjan. Augmentation problems. SIAM Journal

on Computing, 5(4):653–665, 1976.

[13] C. Feremans. Generalized spanning trees and extensions. PhD thesis, Université

Libre de Bruxelles, 2001.

[14] C. Feremans, M. Labbé, and G. Laporte. A comparative analysis of several for-

mulations for the generalized minimum spanning tree problem. Networks, 39(1):

29–34, 2002.

[15] C. Feremans, M. Labbé, and G. Laporte. The generalized minimum spanning

tree problem: Polyhedral analysis and branch-and-cut algorithm. Networks, 43

(2):71–86, 2004.

[16] Corinne Feremans, Martine Labbé, and Gilbert Laporte. Generalized network

design problems. European Journal of Operational Research, 148:1–13, 2003.

[17] Corinne Feremans, Martine Labbé, Adam N. Letchford, and Juan-José Salazar-

González. Generalized network design polyhedra. Networks, 58(2):125–136,

2011.

[18] Cristiane Maria Ferreira, Luiz Ochi, Victor Parada, and Eduardo Uchoa. A grasp-

based approach to the generalized minimum spanning tree problem. Expert Syst.

Appl., 39:3526–3536, 2012.

[19] M. Fischetti, J. J. Salazar González, and P. Toth. The symmetric generalized

traveling salesman polytope. Networks, 26(2):113–123, 1995.

110

REFERENCES

[20] M. Fischetti, J. J. Salazar González, and P. Toth. A branch-and-cut algorithm for

the symmetric generalized traveling salesman problem. Operations Research, 45

(3):378–394, 1997.

[21] Bernard Fortz and Martine Labbé. Polyhedral Approaches to the Design of Sur-

vivable Networks, pages 367–389. Springer US, Boston, MA, 2006.

[22] Tetsuya Fujie. The maximum-leaf spanning tree problem: Formulations and

facets. Networks, 43:212–223, 2004.

[23] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[24] M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing

steiner minimal trees. SIAM Journal on Applied Mathematics, 32(4):835–859,

1977.

[25] Luisa Gargano, Pavol Hell, Ladislav Stacho, and Ugo Vaccaro. Spanning Trees

with Bounded Number of Branch Vertices, pages 355–365. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2002.

[26] Bruce Golden, Saahitya Raghavan, and Daliborka Stanojevic. Heuristic search

for the generalized minimum spanning tree problem. INFORMS Journal on Com-

puting, 17:290–304, 08 2005.

[27] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society

for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[28] Martin Grötschel. On the monotone symmetric travelling salesman problem:

Hypohamiltonian/hypotraceable graphs and facets. Mathematics of Operations

Research, 5(2):285–292, 1980.

[29] Martin Grötschel and Clyde L. Monma. Integer polyhedra arising from certain

network design problems with connectivity constraints. SIAM J. Discrete Math.,

3:502–523, 1990.

111

REFERENCES

[30] Martin Grötschel, C. Monma, and M. Stoer. Polyhedral and computational inves-

tigations for designing communication networks with high survivability require-

ments. Operations Research, 43, 1995.

[31] Stoer M. Grotschel M., Monma C. Design of survivable networks. Handbooks

in OR/MS, 7 on Network models:chap 10, pp 617–672, 1995.

[32] Gregory Gutin and Daniel Karapetyan. A memetic algorithm for the generalized

traveling salesman problem. Natural Computing, 9(1):47–60, Mar 2010.

[33] Henry-Labordere. The record balancing problem: A dynamic programming so-

lution of a generalized traveling salesman problem. RAIRO Operations Research,

B2:43–49, 1969.

[34] F. K. Hwang and Dana S. Richards. Steiner tree problems. Networks, 22(1):

55–89, 1992.

[35] E. Ihler, G. Reich, and P. Widmayer. Class steiner trees and vlsi-design. Discrete

Applied Mathematics, 90(1–3):173 – 194, 1999.

[36] Hervé Kerivin and A. Ridha Mahjoub. Design of survivable networks: A survey.

Networks, 46(1):1–21, 2005.

[37] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society, 7(1):

48–50, 1956.

[38] Mercedes Landete, Alfredo Marı́n, and José Luis Sainz-Pardo. Decomposition

methods based on articulation vertices for degree-dependent spanning tree prob-

lems. Computational Optimization and Applications, 68(3):749–773, Dec 2017.

[39] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10

(1):96–115, 1927.

[40] Massinissa Merabet and Miklós Molnár. Generalization of the Minimum Branch

Vertices Spanning Tree Problem. Research report, Nanyang Technological Uni-

versity, Singapore, November 2016.

112

REFERENCES

[41] Clyde L. Monma and David F. Shallcross. Methods for designing communica-

tions networks with certain two-connected survivability constraints. Operations

Research, 37(4):531–541, 1989.

[42] Young-Soo Myung, Chang-Ho Lee, and Dong-Wan Tcha. On the generalized

minimum spanning tree problem. Networks, 26(4):231–241, 1995.

[43] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial optimization. Wi-

ley, New York, NY, USA, 2014.

[44] Temel Öncan, Jean-François Cordeau, and Gilbert Laporte. A tabu search heuris-

tic for the generalized minimum spanning tree problem. European Journal of

Operational Research, 191(2):306 – 319, 2008.

[45] Manfred W. Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the

resolution of large-scale symmetric traveling salesman problems. SIAM Review,

33:60–100, 1991.

[46] P. C. Pop, O. Matei, and C. Sabo. A new approach for solving the generalized

traveling salesman problem. In Marı́a J. Blesa, Christian Blum, Günther Raidl,

Andrea Roli, and Michael Sampels, editors, Hybrid Metaheuristics, pages 62–72,

Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[47] Petrică C. Pop. The generalized minimum spanning tree problem: An overview

of formulations, solution procedures and latest advances. European Journal of

Operational Research, 2019.

[48] Petrica C. Pop, W. Kern, and G. Still. A new relaxation method for the gener-

alized minimum spanning tree problem. European Journal of Operational Re-

search, 170(3):900 – 908, 2006.

[49] Petrică C. Pop, Oliviu Matei, Cosmin Sabo, and Adrian Petrovan. A two-level

solution approach for solving the generalized minimum spanning tree problem.

European Journal of Operational Research, 265(2):478 – 487, 2018.

[50] R. C. Prim. Shortest connection networks and some generalizations. The Bell

System Technical Journal, 36(6):1389–1401, 1957.

113

REFERENCES

[51] Jacques Renaud and Fayez F. Boctor. An efficient composite heuristic for the

symmetric generalized traveling salesman problem. European Journal of Opera-

tional Research, 108(3):571 – 584, 1998.

[52] J. P. Saskena. Mathematical model of scheduling clients through welfare agen-

cies. Journal of the Canadian Operational Research Society, 8:185–200, 1970.

[53] A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York, NY,

USA, 1998.

[54] John Silberholz and Bruce Golden. The Generalized Traveling Salesman Prob-

lem: A New Genetic Algorithm Approach, pages 165–181. Springer US, Boston,

MA, 2007.

[55] Selene Silvestri, Gilbert Laporte, and Raffaele Cerulli. A branch-and-cut algo-

rithm for the minimum branch vertices spanning tree problem. Computers and

Operations Research, 81:322 – 332, 2017.

[56] R. Sousselier. Probı̀eme no. 29: Le cercal des irascible. Rev. Franc. Rech. Op-

erat., 7:405–406, 1963.

[57] R.C. Garg P. Sen S.S. Srivastava, S. Kumar. Generalized traveling salesman prob-

lem through n sets of nodes. CORS Journal, 7:97–101, 1969.

[58] M. Stoer. Design of survivable networks. Lecture Notes in Mathematics, vol.

1531, 1992.

[59] L.A. Wolsey. Integer Programming. Wiley, Hoboken, New Jersey, 1998.

114

	Contents
	List of Figures
	List of Tables
	1 Basic Concepts: Combinatorial Optimization and Polyhedral Theory
	1.1 Graph Theory
	1.2 Polyhedral Theory
	1.3 Branch and Cut Algorithm

	2 Network Design Problems
	2.1 The Spanning Tree Problem
	2.1.1 Related Problems

	2.2 Generalized Network Design Problems
	2.3 Survivable Networks
	2.3.1 Low-Connectivity Constrained Network Design Problems

	3 Generation of 3-Connected non-Hamiltonian Graphs
	3.1 Hamiltonian Graphs
	3.2 A Class of 3-Connected non-Hamiltonian Graphs

	4 The Generalized Minimum Branch Vertices Problem
	4.1 Introduction
	4.2 Definition of the Problem and Notation
	4.3 Mathematical Formulation
	4.4 Properties of the Clustered Graphs
	4.4.1 v-Connection
	4.4.2 Generalized Cut Vertex

	4.5 Polyhedral Analysis
	4.6 Branch and Cut Algorithm
	4.6.1 Preprocessing Phase
	4.6.2 Separation Procedures

	4.7 Computational Results
	4.7.1 Instances Generation
	4.7.2 Preprocessing
	4.7.3 Medium and Large Instances

	5 The 2-Edge-Connected Minimum Branch Vertices Problem
	5.1 Introduction
	5.2 Mathematical Formulation
	5.2.1 2-Edge-Connected Subgraph Properties

	5.3 Polyhedral Analysis
	5.4 Branch and Cut Algorithm
	5.4.1 Separation Procedures

	5.5 Computational Results
	5.5.1 Instances Generation

	Conclusions
	Appendix A
	References

