
MIT Open Access Articles

Rateless spinal codes

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. 2011. Rateless spinal codes. In
Proceedings of the 10th ACM Workshop on Hot Topics in Networks (HotNets-X). ACM, New York,
NY, USA, , Article 6 , 6 pages.

As Published: http://dx.doi.org/10.1145/2070562.2070568

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/79676

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/79676
http://creativecommons.org/licenses/by-nc-sa/3.0/

Rateless Spinal Codes

Jonathan Perry, Hari Balakrishnan, and Devavrat Shah
Massachusetts Institute of Technology

Cambridge, MA, USA
{yonch,hari,devavrat}@mit.edu

ABSTRACT
A fundamental problem in wireless networks is to develop
communication protocols that achieve high throughput in the
face of noise, interference, and fading, all of which vary with
time. An ideal solution is a rateless wireless system, in which
the sender encodes data without any explicit estimation or
adaptation, implicitly adapting to the level of noise or inter-
ference. In this paper, we present a novel rateless code, the
spinal code, which uses a hash function over the message bits
to produce pseudo-random bits that in turn can be mapped di-
rectly to a dense constellation for transmission. Results from
theoretical analysis and simulations show that spinal codes
essentially achieve Shannon capacity, and out-perform best-
known fixed rate block codes.

CATEGORIES AND SUBJECT DESCRIPTORS

C.2.1 [Network Architecture and Design]: Wireless com-
munication

GENERAL TERMS

Algorithms, Design, Performance

KEYWORDS

Wireless, rateless, channel code, capacity, practical decoder

1. INTRODUCTION

Achieving high communication rates over wireless net-
works is difficult because wireless channel conditions vary
with time, even at time-scales shorter than a single packet
transmission time. To achieve high throughput, a commu-
nication protocol must not only operate at a high rate given
constant channel conditions, but must also adapt well to varia-
tions in noise, attenuation, interference, and multipath fading.

Current wireless networks, including 802.11 (Wi-Fi) and
various wide-area cellular wireless standards approach this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’11, November 14–15, 2011, Cambridge, MA, USA.
Copyright 2011 ACM 978-1-4503-1059-8/11/11 ...$10.00.

problem by providing a large number of physical layer (PHY)
configurations, including a variety of channel codes, vari-
ous parameters for these codes, several choices of symbol
sets (i.e., constellation) over which to modulate bits, and a
way to map groups of bits to symbols. The link and sub-
network layers implement bit rate adaptation policies to dy-
namically select and configure the discrete choices and pa-
rameters provided by the PHY. The selection of a suitable
bit rate is made by observing channel conditions, such as the
signal-to-noise ratio (SNR) from a preamble [7, 8] or pilot
tones, interference-free bit error rate [19], dispersion in the
constellation space [13], frame loss rate [20], or the time
taken to successfully transmit a frame [2].

The status quo has two shortcomings. First, it greatly in-
creases the complexity of wireless systems because they have
to implement a variety of mechanisms and policies across dif-
ferent layers of the traditional protocol stack. Second, because
this approach is inherently reactive in nature, the resulting per-
formance may be sub-optimal, especially in situations where
fading or interference from other transmitters causes channel
conditions to change quickly or in unpredictable ways.

An alternative approach to these problems is to use a rate-
less code between the sender and receiver, as previous work
has noted [3, 5]. Ideally, with such a code, the sender encodes
and transmits the coded data at a rate higher than what the
channel can currently sustain, and keeps going until the re-
ceiver determines that it has correctly decoded all the data
and informs the sender to move to the next packet. For this
approach to work and achieve a high rate, the sender must
encode and modulate the data in a way that allows the re-
ceiver to efficiently decode the data in the presence of channel
impediments. An ideal rateless code has the property that
communication can occur at a rate close to the capacity of the
channel, but without the sender having to estimate the channel
quality and adapt the bit rate explicitly.

To enable the design of such a rateless wireless system, this
paper introduces spinal codes, a new family of rateless codes.
These codes are designed for both analog channels and digital
channels: i.e., they can code message bits in a packet directly
to symbols for transmission, or to coded bits, which can in
turn be sent using any symbol set. If one has full control
over all the layers of the protocol stack, the first approach is
beneficial because the decoder extracts information from the

1

raw received symbol, avoiding loss of soft information caused
by manipulation by a demapper. If not, one can still use spinal
codes over commodity PHY hardware implementations and
improve the rates and error resilience over the status quo.

At the heart of spinal codes lies the use of a hash function,
which is applied repeatedly in a sequential manner to suc-
cessive segments of the original message bits to produce a
random, nonlinear mapping between message bits and coded
bits. The sequential nature of the hashed map makes the
encoding linear in the message size. If the system has con-
trol over the PHY, the coded bits are then mapped using an
integrated constellation mapping function to an extremely
dense symbol set. Because of the high density, a lot of infor-
mation can be conveyed when noise is low. When noise is
high, robustness comes from the code, which is capable of
operating at SNR values as low as −10 dB. The advantage of
this method is that the sender no longer has to make any deci-
sion of what modulation scheme to use in light of (estimated)
channel conditions, or indeed even bother estimating what
these conditions might be. An alternative, when modifica-
tions to the PHY are infeasible or undesirable, is to transmit
the coded bits directly over a traditional modulation method
designed to transmit bits, in which case spinal codes operate
over a binary channel.

Despite the nonlinearity of spinal codes, we show how the
sequential nature of the encoder enables an efficient prac-
tical decoder, constructed by “replaying” a version of the
encoder over the received symbols (or bits) at the receiver 1.
Our practical decoder has a natural “scale down” property:
it can operate with any amount of computation resource and
attempts to achieve the best performance using the given re-
sources. We present simulation results demonstrating that
the scaled-down decoder, which approximates an ideal de-
coder, achieves nearly optimal code rates with small resource
requirements. We also show that spinal codes significantly
outperform state-of-the-art low-density parity check (LDPC)
codes, especially for small block sizes.

This paper also gives two theorems (without proof, for
want of space), which state that spinal codes are essentially
capacity-achieving codes for the additive white Gaussian
noise (AWGN) channel as well as the binary symmetric chan-
nel (BSC). To the best of our knowledge, spinal codes are the
first rateless codes that essentially achieve capacity over both
AWGN and BSC channels, for which there is an efficient en-
coder and a practical decoder, and the first codes constructed
using hash functions.

2. RELATED WORK

Rateless codes have a long history starting with classical
ARQ schemes, but ARQ generally does not come close to
capacity. From an information-theoretic perspective, rateless
codes for AWGN or BSC, which are characterized by a single
noise or error parameter, are well-understood. Shannon’s ran-

1Replaying the encoder allows inference of the hash input bits using
the hash function; an inverse of the hash function is not required.

dom codebook approach achieves capacity for these channels,
and is inherently rateless, but the approach is computationally
intractable.

The desire for computationally efficient, capacity-
achieving rateless codes led to discovery of Raptor codes
by Shokrollahi [15]. Built upon the LT codes of Luby [10],
they achieve capacity for Binary Erasure Channel (BEC)
where packets are erased (lost) with some probability. There
have been interesting attempts made to extend the Raptor
code or punctured LDPC/Turbo codes for the AWGN chan-
nel [6, 14, 16, 11, 9, 1], but little is known in terms of the
closeness to capacity of these approaches.

A very different and promising approach to design of capac-
ity achieving rateless codes for AWGN channel was put forth
by Erez, Trott, and Wornell [3]. Their “layered approach”
uses existing base codes and combines them to produce trans-
mission symbols in a rateless way. They show that by pro-
ducing rateless symbols using the appropriate selection of
linear combinations of symbols generated by the base codes,
capacity can be achieved by the resulting rateless code as the
number of layers becomes large enough, provided the fixed-
rate base code achieves capacity at some fixed SNR. This ele-
gant construction, in a sense, takes capacity-achieving codes
at a given SNR to produce capacity achieving rateless codes
for any SNR by varying the number of layers. This work,
though primarily theoretical in nature, offers the promise of a
practical design. Indeed, recent work on Strider by Gudipati
and Katti [4, 5] presents the design and implementation of
a code along the principles described by Erez et al. Strider
exhibits good empirical performance and suggests that the
layered approach is practical.

In contrast, spinal codes are not layered codes and do not
rely on existing base codes (such as LDPC). Unlike Strider,
which takes an existing fixed-rate code and symbol set sys-
tem and makes modifications to the lowest physical layer
procedures to achieve linear combinations of symbols, the
construction of spinal codes provides a single mechanism to
overcome channel impediments. As such, we think it might be
a simpler approach because it does not require any other codes
or choice of symbol sets in the system; the code can directly
convert message bits to symbols. That said, our goal here is
not to claim that spinal codes exhibit superior performance—
we don’t yet know—but to show a new and different way of
constructing practical capacity-achieving rateless codes.

We note a superficial similarity between spinal code and
Trellis Coded Modulation (TCM) [18, 17] because TCM
codes bits to symbols. TCM was crafted specifically to
achieve high minimum distance between codewords under
a sparse constellation for convolutional codes, whereas spinal
codes aim to attain higher average distance, obviating the
need for sparse constellations. TCM is not rateless, does not
achieve capacity for AWGN, is not workable (in any obvi-
ous way) for BSC, and is generally specific to convolutional
codes.

3. SPINAL CODES

2

This section describes the encoder and decoder for spinal
codes. We describe them in the context of a system that has
full control of the physical layer, so the encoder produces a
sequence of symbols for transmission and the decoder oper-
ates on the received symbol sequence to produce an estimate
of the original message bits. By slightly modifying the en-
coder and decoder, it is straightforward to apply the code
to a system that has an existing mapping from (coded) bits
to symbols, and analyze the performance under the binary
symmetric channel model.

The encoding procedure takes the input message bits, M =
m1m2 . . .mn, and produces a potentially infinite sequence of
symbols on the I-Q (quadrature) plane. At the receiver, the
PHY receives a stream of symbols on the I-Q plane. The
decoder processes this stream sequentially, continuing until
the message is successfully decoded, or until it (or the sender)
gives up, causing the sender to proceed to the next message.

Spinal codes are rateless: the encoder can produce as many
symbols as necessary from a given sequence of message bits.
It is straightforward to adapt the code to run at various fixed
rates, though we expect the rateless instantiations to be more
useful in practical wireless communication systems.

3.1 Encoding
At the core of the spinal code is a random hash function, h,

which takes two inputs—(i) a real number in [0,1) and (ii) a
bit-string (from the message) of length k bits—and returns a
real number in [0,1). That is,

h : [0,1)×{0,1}k→ [0,1).

Conceptually the input real number and output have infinite
precision, though in practice, they will have some finite preci-
sion. This conceptual abstraction is convenient; because there
are many ways to produce as many output bits as needed, it is
not a problematic assumption (e.g., using repeated hashing
with different known salts, as needed).

We choose h uniformly at random, based on a random
seed, from H , a family of hash functions. The encoder and
decoder both know h and agree on the initial value for the
first argument to h, denoted s0.

Let m̄ = (m1, . . . ,mk) be a k-bit string (k ≥ 1). We make
the following standard assumptions about the random hash
function:

(i) Uniformity. For any (s; m̄),

P
(
h(s; m̄)≤ x

)
= x, for any x ∈ (0,1). (1)

(ii) Independence. For any `≥ 2 with (si; m̄i) for 1≤ i≤ `,

P
(
∩`i=1h(si; m̄i)≤ xi

)
=

`

∏
i=1

xi, (2)

when (si; m̄i) 6= (s j; m̄ j) for 1≤ i 6= j≤ ` with xi ∈ (0,1)
for 1≤ i≤ `. Here by (s; m̄) 6= (s′; m̄′) we mean either
s 6= s′ or m̄ and m̄′ differ in at least one bit.

Spine generation and encoding passes. The encoder takes
a message block M = m1, . . . ,mn as input and generates a

possibly infinite stream of constellation points. To do so, the
encoder first produces the spine of the code, and then makes
one or more passes over the spine to transmit symbols.

The encoder divides the message M into non-overlapping
segments of size k bits each: M = M1,M2, . . .Mn/k with Mt =

m(t−1)k+1m(t−1)k+2 . . .mtk ∈ {0,1}k for 1 ≤ t ≤ n/k. Then,
it computes a series of n/k spine values: st = h(st−1,Mt).
These values s1,s2, . . . ,sn/k are the spine corresponding to M.

The encoder then generates symbols by taking 2c different
bits at a time from each spine value, in order, and mapping
them to a single symbol using a deterministic constellation
mapping function. This mapping is done in passes. In each
pass, the encoder generates n/k new constellation points,
taking the next 2c bits from each successive spine value.

Figure 1 illustrates the encoding process. It shows the
sequential structure of the encoder in which the previous
spine value is an input to the hash function to generate the
next one. When the pass ends, the next pass begins, unless
the receiver informs the sender that the message has been
decoded successfully or the sender decides that too much
time has been spent sending the current message and that it
must be abandoned.

More precisely, in the `th pass (` ≥ 1), the encoder gen-
erates the tth constellation point or coded bit as follows
(1≤ t ≤ n/k):

1. Let the infinite precision bit representation of st be
b1b2b3

2. Let b′1, . . . ,b
′
2c denote the 2c bits in the representation

of st starting from position 2c(`− 1): for ` = 1, it is
b1, . . . ,b2c; for `= 2, it is b2c+1, . . . ,b4c and in general
it is b2c(`−1)+1, . . .b2c`.

3. Use the constellation mapping function, f , to map
b′1, . . . ,b

′
2c to a constellation point. This coded bit or

constellation point gets transmitted. (For a binary chan-
nel, use b′1 as the coded bit.)

There are many possible constellation mappings; in this
paper, we use a simple linear one. Take the 2c bits and
consider the first c bits as the I part and the last c bits
as the Q part. The I (resp. Q) coordinate mapped to the
range [−P∗,P∗] is:

(b′1 . . .b
′
c)→ (−1)b′1

(b′2 . . .b
′
c)

2c−1−1
·P∗ (3)

One can use other constellation mappings in a spinal code.
A promising one that we are currently analyzing and experi-
menting with is a truncated Gaussian function. The value of c
should be large enough so the constellation mapping can sus-
tain high rates when SNR is high. When the SNR is low, the
large c is not needed, although there is no loss incurred by the
extra precision: the decoding process is built to correctly take
into account that MSBs are less likely to be erroneous than
LSBs. In fact, this compensation is inherent to the decoder,
since inference is made using symbols rather than individual
bits.

3

Figure 1: Encoding process.

The description of spinal codes has only one parameter,
k, that we have not yet discussed. As we will see next, the
computational complexity of the decoder grows exponentially
with k, while the maximum rate achievable by the code grows
linearly with k. In the description thus far, the maximum
rate is k bits/symbol, achieved when the receiver decodes
successfully after a single pass, meaning n bits are transmitted
in n/k symbols. We expect k to be a small constant; for
example, over the default 802.11b/g bandwidth of 20 MHz, if
we pick k to be 8 bits/symbol, the maximum link bit rate will
be 160 Megabits/s; if the bandwidth doubles to 40 MHz, the
same k would give us a maximum bit rate of 320 Megabits/s.
In our experiments, we actually obtain rates higher than k
bits/symbol using puncturing, where the transmitter does not
send each successive spine value in every pass.

3.2 Decoding Spinal Codes
In this section, we describe a maximum likelihood (ML)

decoder and a practical “scale-down” version of the decoder
for spinal codes. The ML decoder achieves capacity over
the BSC channel and nearly achieves capacity over AWGN
channels; we state the theorems in the next section. The
ML decoder has exponential decoding complexity, a property
shared by the decoders of some other codes (e.g., classical
sphere decoding). An important consideration in practice
is whether a practical decoder is implementable by starting
from the ideal ML decoder and reducing the resources con-
sumed; we use the term graceful scale-down to refer to this
property, which captures the intuition that we would like the
performance to reduce in a gradual way with the reduction in
the computational resources at the decoder. We show how a
decoder for spinal codes can take advantage of the structure
provided by the hash function to replay the encoder at the
decoder and achieve this property. In section 5, we show sim-
ulation results that demonstrate that modest computational
resources provide performance close to capacity, and out-
perform state-of-the-art fixed-rate block codes across a range
of SNR values.

Suppose the transmitter has made L passes over message
M = m1 . . .mn resulting in transmission of N = Ln/k symbols
in total: Let xt,`(M) be the tth symbol sent in the `th pass,
1 ≤ t ≤ n/k, 1 ≤ ` ≤ L. The receiver sees yt,` = xt,`+wt,`,

where wt,` represents additive noise. For the AWGN channel,
w is an independent and identically distributed (iid) complex
symmetric Gaussian of mean 0 and variance σ2.

At the end of the Lth pass, the receiver, given observations
ȳ =

(
yt,`, 1 ≤ t ≤ n/k, 1 ≤ ` ≤ L

)
, wishes to estimate M ∈

{0,1}n by estimating the corresponding transmitted symbols
x̄ =

(
xt,`(M), 1 ≤ t ≤ n/k, 1 ≤ ` ≤ L

)
. It is well-known

that the ML rule, which minimizes probability of error with
respect to a uniform prior, is

M̂ ∈ arg min
M′∈{0,1}n

(‖ȳ− x̄(M′)‖2). (4)

That is, the estimated message M̂ ∈ {0,1}n is the one such
that the encoded vector, x̄(M̂), is closest (in `2 distance) to ȳ.

For the BSC channel, the ML decoder turns out to be
essentially the same as that for AWGN channel: the estimated
message M̂ ∈ {0,1}n, given the received bit sequence ȳ ∈
{0,1}N , is the one such that the transmitted bit sequence
x̄(M̂) is closest to ȳ in terms of the Hamming distance; i.e.,
replace the `2 distance in (4) by the Hamming distance.

The standard implementation of an ML decoder would
require an exhaustive search over the space of all 2n possi-
bilities. When the decoder has much smaller computational
resources, it is not obvious how to adapt this standard method.
Fortunately, it is possible to construct an ML decoder with
the scale-down property for spinal codes.

Ideal ML decoder for spinal codes. The key idea is to
use the shared knowledge of the hash function to replay the
encoder at the decoder over the set of received symbols and
all possible combinations of k-bit inputs to the hash function
at each stage. Using the same notation as before, let the
tth received symbol in the first pass be yt,1 for 1 ≤ t ≤ n/k.
The decoder knows the initial spine state s0 = 0. It starts
generating a decoding tree starting from s0 as the root of the
tree. Now, the spine value s1 could be one of 2k possibilities:
h(s0,M1) for each M1 ∈ {0,1}k. Generate 2k children of the
root and associate with each one a distinct spine value from
these 2k values. Let x1,1(s1) be the symbol the encoder would
have generated from s1. To each such node of the tree with
spine value s1, upon receiving the first symbol y1,1, associate
a cost equal to ‖y1,1− x1,1(s1)‖2.

Now, recursively grow this tree, with each node having 2k

children and associate a cost to each edge in the tree upon
receiving new symbols, as follows. Given a tree up to level
t − 1, for a node at level t − 1 with associated spine value
st−1, the 2k children have associated spine values h(st−1,Mt)
for Mt ∈ {0,1}k. Let xt,1(st) be the associated constellation
points (symbols). Upon receiving the tth symbol in the first
pass, yt,1, associate a cost of ‖yt,1− xt,1(st)‖2 to the edge
connecting the new node to its predecessor in the tree. In
this way, the tree is expanded all the way up to depth n/k
with each node having degree 2k. Thus the entire tree has
2(n/k)×k = 2n distinct leaf nodes.

The path from the root to the leaf node with the smallest
cost gives the most likely message. For the BSC channel, each

4

edge cost should be replaced with the Hamming distance of
the received bits and the bits obtained from the spine value
produced by hashing the previous spine value (node) and the
k bits corresponding to the edge in the tree.

If the receiver has not successfully decoded the message
after the first pass, the sender moves on to sending the next
pass. The sender continues to send successive passes until
the receiver determines that the message has been decoded
correctly, using a CRC at the end of each pass, for exam-
ple. To decode in pass L, the decoder stores all previously
received symbols and computes the cost on each edge of
the tree as ∑

L
i=1 ‖yt,i− xt,i(st)‖2 (or, for BSC, the sum of the

corresponding Hamming distances).

Practical graceful scale-down decoder. Probabilistically
we expect that most messages will have a much higher cost
compared to the message with maximum likelihood (at least
when we have enough information). This suggests that it is
reasonable to maintain information about a small number of
messages that are likely to have smaller overall cost at each
level of the tree. A simple greedy heuristic, which at each
stage of the tree maintains only a small number of nodes, en-
ables a practical decoder to be built for spinal codes. For each
level of the decoding tree, the practical decoder maintains no
more than B nodes. When it receives the next symbol, it tem-
porarily expands each node to B ·2k possible nodes, calculates
the cumulative path cost to each of these temporary nodes,
and then maintains only the B lowest-cost ones (breaking ties
arbitrarily). As B grows, the rate achieved by the decoder
gets closer to capacity. Interestingly, we show in the next
section that even small values of B achieve high rates close to
capacity. The complexity of this practical decoder is linear
in the message length, exhibiting graceful scale-down (the
complexity is exponential in k, but k is a small constant, ≤ 8
in practice).

4. SOME PROPERTIES OF SPINAL CODES

Nonlinearity and large state space. Unlike most existing
practical codes such as convolutional, turbo, Raptor, etc.,
spinal codes are nonlinear. That is, the output symbols (coded
bits) are not obtained as linear combinations of input message
bits, and the sum of any two codewords is not necessarily a
valid codeword. There are two important benefits of using
nonlinear hash functions. First, the moment two messages
differ in 1 bit, their output coded sequences have a large differ-
ence, making it easier for the decoder to distinguish between
them. Second, they allow good coded sequences to be gener-
ated without requiring complicated encoding operations such
as the multiplication of message bits by a random matrix or
requiring the use of complex graph structures; hash functions
achieve exactly this goal, and we benefit from the wealth of re-
search and practice in developing good hash functions (which
are often developed for more stringent adversarial settings).

THEOREM 1 (AWGN CHANNEL PERFORMANCE).
Let Cawgn(SNR) be the AWGN channel capacity per channel

use, then for any number of passes L such that

L·
[
Cawgn(SNR)−

1
2

log(
πe
6
)
]
> k

the BER goes to 0 as n goes to ∞.

This theorem states that in our rateless setting, the decoder
can start decoding correctly (BER≈ 0), as long as the number
of passes made by the encoder is just sufficient enough. This
is smaller by a constant ∆≡ 1

2 log
(

πe
6

)
≈ 0.25 for all SNR val-

ues compared to the capacity established by Shannon. ∆ is a
small fraction of the capacity for large SNR. For example, for
SNR= 30 dB, the capacity in two dimensions is roughly 10
bits/s/Hz and hence our code achieves approximately 97.5%
of the Shannon capacity. This guarantee may not be tight;
we believe that this loss is in part inherent to the linear con-
stellation mapping (unlike a Gaussian mapping) and in part a
limitation of our proof. For example, at low SNR, we achieve
much higher rates in practice than predicted by the above
result, as shown in the next section. Further, our result is
stronger than what is stated above because for any value of
n when BER is not strictly 0, the erroneous bits are always
in the last few bits, a property that we can use in practice by
adding some known trailing bits to each coded message.

THEOREM 2 (BSC PERFORMANCE). Let Cbsc(p) be
the BSC channel capacity, then for any number of passes
L such that L·Cbsc(p)> k, the BER goes to 0 as n goes to ∞.

That is, the spinal code achieves capacity for BSC with an
ML decoder.

5. SIMULATION RESULTS

We now present some simulation results using the practical
spinal code decoder over an AWGN channel and compare
the performance of the code with the Shannon capacity over
a range of SNR values. We also compare its performance
to various fixed-rate LDPC codes, which are known to have
good performance at certain SNR values. As we shall see,
the spinal code performs near optimally even for small block
lengths with constrained computational power (small B) and
outperforms LDPC codes even under fixed-SNR conditions.

Figure 2 shows the rate achieved by the practical decoder
with B = 16, message length m = 24, k = 8, and c = 10
over an AWGN channel with SNR values between −10 dB
to 40 dB. To simulate quantization of an ADC, the receiver
quantizes each dimension to 14 bits. In these experiments
we assume that the receiver informs the sender as soon as
it is able to fully decode the data; this allows us to isolate
the evaluation of the performance of spinal codes. Indeed,
an eventual system using spinal codes (or for that matter any
rateless code) ought to use a feedback protocol to achieve the
best possible trade-off between throughput and latency.

In the figure, the x-axis shows the SNR (dB), and the y-axis
shows the rate achieved in bits/symbol. The top most curve
shows the Shannon capacity bound. Somewhat surprisingly,
spinal codes achieve rates very close to the Shannon capacity

5

10 0 10 20 30 40
SNR (dB)

0

1

2

3

4

5

6

7

8

9
ra

te
 (b

its
 p

er
 s

ym
bo

l)

Shannon bound

fixed-block approx. bound
(len=24, err.prob=1e−04)

Spinal, m=24, B=16

LDPC, rate= 1

2
, BPSK

LDPC, rate= 1

2
, QAM-4

LDPC, rate= 3

4
, QAM-4

LDPC, rate= 1

2
, QAM-16

LDPC, rate= 3

4
, QAM-16

LDPC, rate= 2

3
, QAM-64

LDPC, rate= 3

4
, QAM-64

LDPC, rate= 5

6
, QAM-64

Spinal 24-bit messages
LDPC 648-bit codewords

Figure 2: Rates achieved by the spinal code for different
SNR with message length m = 24, B = 16, k = 8. “Shan-
non bound” is Shannon capacity; approximate bound is
from [12].

for the entire range of the SNR, getting extremely close to
Shannon’s limitation for small SNR values. At high SNR,
rates higher than k = 8 are achieved using puncturing.

The figure compares the spinal code with LDPC codes
from the high-throughput mode of 802.11n with 648-bit code-
words, decoded with a powerful decoder (40-iteration belief
propagation decoder using soft information). As can be seen
from the figure, the spinal code outperforms LDPC codes,
which are good fixed-rate block codes, across all SNRs. At
low SNR values, the benefits are especially large.

Finally, the spinal code yields, for a wide SNR range,
higher rates than the fundamental upper bound on the perfor-
mance of rated codes with block length 24, and error proba-
bility below 10−4 [12] (the dashed line). That is, the rateless
nature of spinal code allows it to outperform any rated code
of block length 24 for all SNR ≤ 25 dB (we have similar
results for other block lengths, but the SNR thresholds differ
with length). Note that in this picture, the LDPC codes have
a block size > 24 and are therefore not subject to the bound,
but an LDPC code over a block length of 24 would be lower
than the bound shown by the dashed line.

6. CONCLUSION AND FUTURE WORK

This paper introduced spinal codes, a new family of rateless
codes that achieves near-optimal performance across a wide
range of SNR values (−10 dB through 40 dB), as exhibited
through simulations. They are the first class of rateless codes
that have an efficient encoder, essentially achieve capacity
for both AWGN and BSC channel (with ML decoding), and
exhibit the graceful scale-down property enabling practical
decoding at high rates. Spinal codes are practical because
they take advantage of both the structural properties and the
low cost provided by hash functions.

We conclude by mentioning several next steps that need
to be taken to further demonstrate the utility of spinal codes.
First, investigating different constellation mappings other than
the linear one; for example, a Gaussian mapping is likely to
improve performance. Second, developing a feedback link-
layer protocol for rateless spinal codes. Third, developing
the ability to decode multiple concurrent transmissions coded
with spinal codes, and a suitable MAC protocol. Fourth, the
simulation results strongly suggest that one can prove that
a polynomial-time decoder can essentially achieve capacity;
proving that property would be a significant additional con-
tribution, and will likely entail a slightly different decoding
algorithm. Fifth, a detailed comparison with other rated and
rateless schemes that have been developed. And last but not
least, implementing the encoder and decoder in a system to
demonstrate reliable, high-speed operation.

ACKNOWLEDGMENTS

We thank Peter Iannucci for several insightful remarks, and
Tom Richardson and Lizhong Zheng for helpful comments.
Jonathan Perry’s work was supported by the Irwin and Joan
Jacobs Presidential Fellowship and by the Claude E. Shannon
Research Assistantship.

REFERENCES
[1] R. Barron, C. Lo, and J. Shapiro. Global design methods for raptor

codes using binary and higher-order modulations. In IEEE MILCOM,
2009.

[2] J. Bicket. Bit-Rate Selection in Wireless Networks. Master’s thesis,
Massachusetts Institute of Technology, Feb. 2005.

[3] U. Erez, M. Trott, and G. Wornell. Coding for Gaussian Channels. In
ISIT 05-06, journal version on Arxiv, 2007.

[4] A. Gudipati and S. Katti. Automatic rate adaptation. In Hotnets, 2010.
[5] A. Gudipati and S. Katti. Strider: Automatic rate adaptation and

collision handling. In SIGCOMM, 2011.
[6] J. Ha, J. Kim, and S. McLaughlin. Rate-compatible puncturing of

low-density parity-check codes. IEEE Trans. on Info. Theory, 2004.
[7] G. Holland, N. Vaidya, and P. Bahl. A Rate-Adaptive MAC Protocol

for Multihop Wireless Networks. In MobiCom, 2001.
[8] G. Judd, X. Wang, and P. Steenkiste. Efficient Channel-aware Rate

Adaptation in Dynamic Environments. In MobiSys, June 2008.
[9] J. Li and K. Narayanan. Rate-compatible low density parity check codes

for capacity-approaching ARQ scheme in packet data communications.
In Int. Conf. on Comm., Internet, and Info. Tech., 2002.

[10] M. Luby. LT codes. In FOCS, 2003.
[11] R. Mantha and F. Kschischang. A capacity-approaching hybrid ARQ

scheme using turbo codes. In GLOBECOM, 1999.
[12] Y. Polyanskiy, H. Poor, and S. Verdú. Channel coding rate in the finite

blocklength regime. IEEE Trans. on Info. Theory, 56(5), 2010.
[13] S. Sen, N. Santhapuri, R. Choudhury, and S. Nelakuditi. AccuRate:

Constellation-based rate estimation in wireless networks. NSDI, 2010.
[14] S. Sesia, G. Caire, and G. Vivier. Incremental redundancy hybrid ARQ

schemes based on low-density parity-check codes. IEEE Trans. on
Comm., 52(8):1311–1321, 2004.

[15] A. Shokrollahi. Raptor codes. IEEE Trans. Info. Theory, 52(6), 2006.
[16] E. Soljanin, N. Varnica, and P. Whiting. Incremental redundancy hybrid

ARQ with LDPC and Raptor codes. IEEE Trans. on Info. Theory, 2005.
[17] G. Ungerboeck. Channel coding with multilevel/phase signals. IEEE

Trans. on Info. Theory, IT-28(1):55–67, Jan. 1982.
[18] G. Ungerboeck and I. Csajka. On improving data-link performance by

increasing the channel alphabet and introducing sequence coding. In
ISIT, 1976.

[19] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-Layer Wireless
Bit Rate Adaptation. In SIGCOMM, 2009.

[20] S. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust Rate Adaptation
for 802.11 Wireless Networks. In MobiCom, 2006.

6

	Introduction
	Related Work
	Spinal Codes
	Encoding
	Decoding Spinal Codes

	Some Properties of Spinal Codes
	Simulation Results
	Conclusion and Future Work

