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Abstract

Motivated by a factory scheduling problem, we consider the problem of input control

(subject to a specified input mix) and priority sequencing in a multistation, multiclass

queueing network with general service time distributions and a general routing structure.

The objective is to minimize the long-run expected average number of customers in the

system subject to a constraint on the long-run expected average output rate. Under

balanced heavy loading conditions, this scheduling problem can be approximated by a

control problem involving Brownian motion. Linear programming is used to reduce the

workload formulation of this control problem to a constrained singular control problem

for a multidimensional Brownian motion. The finite difference approximation method

is then used to find a linear programming solution to the latter problem. The solution

is interpreted in terms of the original queueing system in order to obtain an effective

scheduHng policy. The priority sequencing policy is based on dynamic reduced costs from

a Unear program, and the workload regulating input policy releases a customer into the

system whenever the workload process enters a particular region. An example is provided

that illustrates the procedure and demonstrates its effectiveness.

Subject ciassification; Production/scheduling: priority sequencing in a stochastic job

shop. Queues: Brownian models of network scheduhng problems.
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Harrison [7] has introduced a Brownian system model that approximates a multiclass

queueing network with dynamic scheduling capability. Under balanced heavy loading

conditions, this model allows a queueing network scheduling problem to be approximated

by a control problem involving Brownian motion. In Wein [20], a particular Brownian

control problem was solved that approximates the problem of input control (subject to a

specified product mix) and priority sequencing in a two-station multiclass queueing network

with general service time distributions and a general routing structure. The objective was

to minimize the long-run expected average number of customers in the system subject to

a constraint on the long-run expected average output rate. The solution to the Brownian

control problem was interpreted in terms of the original queueing system in Wein [21] in

order to obtain an effective input control and priority sequencing policy.

In this paper we extend these results from the setting of a two-station network to a

network with any finite number of stations. The two-station Brownian control problem

was solved in [20] by (1) reformulating the problem in terms of workloads, (2) using linear

programming to reduce the workload formulation to a constrained singular control problem

for a one-dimensional Brownian motion, and (3) finding a closed-form solution to the

constrained singular control problem. The resulting priority sequencing policy was based

on dynamic reduced costs from the linear program, and the input policy depended on a

two-dimensional workload process, which measured the total expected amount of work in

the network for each of the two stations. This worA-ioad regulating input policy released

a job into the network whenever the workload process entered a particular region in the



nonnegative orthant of R^; this region was based on the solutions to both the hnear

program and the constrained singular control problem.

For the general multistation problem considered here, the Brownian control problem

can again be reformulated in terms of workloads ajid linear programming can be employed

to reduce the workload formulation to a constrained singular control problem. Therefore,

the resulting sequencing policy is again based on dynamic reduced costs derived from the

hnear program. However, the constrained singular control problem now involves a multi-

dimensional Brownian motion process, and the problem appezirs to be very difficult to

solve in closed form. Instead, we employ the method of finite difference approximations

(see Kushner [12] for a detailed development) to obtain a numerical solution to the con-

strained control problem. By discretizing both state and time, this technique allows us to

approximate a controlled diffusion (and functionals of the controlled diffusion) by a con-

trolled Markov chain (and functionals of the controlled Markov chain). In particular, if we

ignore the constraints in our constrained singular control problem, then the problem can

be approximated by a controlled Markov chain with a long-run average cost criterion. It

is well-known (see, for example, Manne [15] and Derman [4]) that the latter problem can

be formulated and solved as a linear program. Moreover, we show that under the finite

difference approximation, the constraints in our singular control problem become linear

constraints in the linear programming formulation of the Markov chain control problem.

Therefore, these constraints can simply be added to the linear program for the Markov

chain control problem, and an approximate solution to the constrained singular control

problem can be found by solving a linear program. As in Wein [21], the proposed input

policy is a workload regulating input policy, where the region of release depends on the

solution to a linear program and the approximate solution to the constrained singular

control problem.

In order to rigorously justify the finite difference approximation, one needs to prove

(see Kushner [12]-[13]) that the optimally controlled Markov chain (suitably interpolated)
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converges to the optimally controlled diffusion, cind that the optimal cost of the controlled

Markov chciin converges to the optimzJ cost of the constrained singular control problem.

Such a justification, which is typically based on weak convergence methods, is not at-

tempted here. However, we do show that this finite diff"erence approximation technique,

when applied to the numerical example of a two-station queueing network scheduling prob-

lem considered in Wein [21], agrees with the closed form solution of this problem derived

in Wein [20].

As in Wein [21], the customer release policy and the priority sequencing policy derived

here work together in a coordinated way. The input policy reluctantly pulls work into the

network, in that a customer is released whenever a server is threatened with idleness and

there is not too much work already present in the network. The priority sequencing policy

aggressively pushes this work to the various stations in order to avoid server idleness.

As will be seen in Section 10, the proposed policies offer a significant improvement in

performance over conventional customer release and priority sequencing policies.

This paper is organized as follows. In Section 1, the queueing network scheduling

problem is described, and the workload formulation of the approximating Brownian con-

trol problem is given in Section 2. Linear programming is used in Section 3 to reduce the

workload formulation to a constrained singular control problem, which is described in Sec-

tion 4. The finite difference approximation, which allows the constrained singular control

problem to be approximated by a constrained Markov chain control problem, is given in

Section 5, and a linear programming solution to the latter problem is derived in Section 6.

In Sections 7 and 8, respectively, the solution to the workload formulation is interpreted in

terms of the original queueing system in order to obtain effective priority sequencing and

input control policies, respectively, for the original queueing network scheduling problem.

In Section 9, a heuristic extension to the input policy is described that allows for the de-

cision of which class of customer to next release into the system, not just when to release

the customer. An example is given in Section 10 that illustrates the entire procedirre and
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demonstrates its effectiveness, aiid concluding remarks are offered in Section 11.

1. The Queueing Network Scheduling Problem

The queueing network scheduling problem studied in this paper is motivated by a

scheduling problem that is encountered in many factories; see Wein [21] for a description

of the motivating factory scheduling problem. Consider a queueing network with I single-

server stations and A' customer classes. Class k customers require service at a pcirticular

station s{k) and have service times that are independent and identically distributed random

variables with mean m
jt
and variance s].. A class k customer, upon completion of service at

station s(k), turns next into a class j customer with probability Pkj and exits the network

with probability 1 — Ylj=i Pkj- The Markovian switching matrix P has spectral radius less

than one, and so all customers eventually exit the network with probability one. Because

the number of classes is allowed to be arbitrary, this routing structure is almost perfectly

general.

There are input control and priority sequencing decisions in the scheduling problem.

We assume there is an ample supply of customers who are waiting to gain entry into the

network, and that each of these customers has an exogenously specified class designation.

The class designations are such that qk is the long-run proportion of class k customers

released into the network. The entering class mix vector q = {qk) is such that ^;(.=i 9^ ~

1. We will assume that the class designations are deterministic; however, they could be

Markovian without changing the nature of the analysis. The input decisions are to choose

the non-decreasing process A'^ = {N{t),t > 0}, where N(t) is the cumulative number of

customers released into the network in the time inteval [0,<]. Thus, the input decisions

allow for full discretion over the timing of the release of customers into the system, but

do not allow for the choice of which class of customer to release. In Section 9, we develop



a heuristic scheme that allows the controller to decide which class of customer to release

into the system; this scheme guarantees that the actual mix that is released is sufficiently

close to the desired mix q.

The sequencing decisions are to dynamically choose which class of customer to serve

at each station in the network. Although preemptive resume scheduling is assumed, the

assumptions regarding preemption do not have an impact on the proposed scheduling

policy.

There is a per unit time holding cost Cfc that is incurred when a class k customer is

in the queueing network. Define the throughput rate of the queueing network to be the

number of customer departures per unit of time. Then our queueing network scheduling

problem is to find the input and sequencing policy that minimizes the long-run expected

average holding costs subject to a constraint that the long-run expected average throughput

rate is greater than or equal to the specified lower bound A. If ct = c for k = l,...,/\,

then the objective is to minimize the long-run expected average number of customers in

the network. Since the throughput constraint will be tight in general, this latter objective

is equivalent (by Little's formula) to minimizing the long-run expected average cycle time

of customers, where a customer's cycle time is the length of time it spends in the network.

2. The Workload Formulation of the Brownian Control Problem

Harrison [7] has shown how the queueing network scheduling problem described in the

last section is approximated by a control problem for a Brownian network. In Wein [20], it

is shown how this Brownian control problem is reformulated in terms of workloads. Since

the proposed scheduling policy depends only on the solution to the workload formulation,

we will go directly to the workload formulation of the Brownian control problem that

approximates the queueing network scheduHng problem described in Section 1.
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Let p = {pi) be the /—vector of server utilizations, or traffic intensities, for the / sta-

tions; later in this section, p will be explicitly defined in terms of the problem parameters.

The Brownian approximation assumes the existence of a large integer n such that

\/n{\ — Pi) is positive and of moderate size for i = 1, ..., /. (2-1)

Let Qk = {Qk{t)J ^ 0} be the number of class k customers in the system at time t, for

k = 1,...,A', and let /, = {I,{t),t > 0} be the cumulative amount of time that the server

at station i is idle in the time interval [0,<], for i = 1, ...,/.

With the parajTieter n fixed, define the scaled queue length process Zk = {Zk{t),t > 0}

by

Z^m = ^4^, / > and ^^ = 1,..., a; (2.2)

and the scaled cumuiative idleness process U, = {Ut{t),t > 0} by

U,{t) = ^^^, t>0 and 1=^1,. ..J. (2.3)

Define the one-dimensional scaled centered input process 6 by

Xnt- N(nt)m = ^^-^, i>0, (2.4)

where N{t) is the cumulative number of customers released into the system up to time t

and A is the specified average throughput rate. The processes Z = {Zk),U — (U,), and

axe the control processes in the workload formulation of the Brownian control problem.

Let the AT—vector A = (A^t) de defined by

A = q~X. (2.5)

Since q is the entering class mix vector, it follows that A^ represents the average number

of class k customers that must depart from the system per unit of time in order to satisfy

the throughput rate constraint. Define the A' x A' input-output matrix R = (Rkj) by

Bkj=m-\6,k-Pjk\ (2.6)
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where 8jk = \ \i j — k and 6jjt = otherwise. The term Rkj represents the average rate

at which class k customers axe depleted when class j customers are being served. Since

the routing matrix P is transient, the matrix R is nonsingular and there exists a unique

nonnegative solution /? = (/3t) to the flow balance equations

A = i?/?. (2.7)

Define The I x K resource consumption matrix A = (Anc) by

\ 0, otherwise.

Then the server utilization vector p referred to in condition (2.1) is defined by

p = AI3. (2.9)

Now define the / x A' worA-ioad profile matrix M = (Mjt) by

M = AR-\ (2.10)

The element Mik represents the total expected remaining amount of work for a class

k customer at station i until the customer exits the network. Let the /—dimensional

worA'ioad process W be defined by

W{t) = MZ{t), t > 0, (2.11)

so that Wi{t) is interpreted as the total expected amount of scaled work anywhere in the

network for station i at time t. Now define the /—vector v = {v,) by

V = Mq, (2.12)

so that Vi is interpreted as the expected total amount of time over the long-run that server

i spends on each customer. By Proposition 1 in Wein [21],

/9, =i),Afor i = 1,...,/. (2.13)
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Let the /—vector 7 = (7,) be defined by

-,, = y/^{l-p,)i0Tl = l,...,I. (2.14)

Let C{i) be the set of all customer classes k such that s{k) = i, and define the i^—vector

a = (Qk) by

ak = — for alike C{i). (2.15)

Now define X to be a A'—dimensional Brownian motion process with drift 6 and covairiance

E, where

6 = y/Ti^X - Ra) (2.16)

and
K

^ji = I][c^^"^ir'^itj(<5j7 - Pki) + Qkm-'slRjkRik]. (2.17)

Finally, let B be the /—dimensional Brownian motion process defined by

B{t) = MXit), t > 0. (2.18)

The process B has drift M6 and covariance M'EM'^. It was shown in Wein [21] that the

drift vector MS = —y, where 7 was defined in (2.14).

The Brownian control problem is obtained by letting the system parameter n defined

in the balanced heavy loading condition (2.1) approach infinity. Exactly the same notation

used for the scaled processes Z, U, and 6 are used in defining the Brownian control problem

in order to retain the queueing network interpretation of the Brownian model. Define the

workload formulation of the Brownian control problem as choosing right continuous with

left limit (RCLL) processes Z, U and 6 (K-, I- and one-dimensional, respectively) so eis to

1 /^ ^
minimize limsup— £r[/ > CkZk{t)dt] (2.19)

subject to Z, U and 6 are non — anticipating with respect to A', (2.20)
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U is non — decreasing with U{0) = 0, (2-21)

Z{t) > for all t > 0, (2.22)

limsup-£;[l/,(r)] < 7. for i = 1, ...,/, and (2.23)
T—oo T

MZ{t) = B{t) + U{t) - ve{t) for all t > 0. (2.24)

Problem (2.19)-(2.24) is referred to as the workload formulation because the basic

system state equation (2.24) is in terms of the /—dimensional workload process W defined

in (2.11).

3. Solving For Z in Terms of U

In this section, we express the optimal process Z in the workload formulation in terms

of the control process U . Suppose we are given a process U that satisfies constraints (2.20),

(2.21), and (2.23). Then the optimal Z and processes are found by solving the following

linear program at each time t:

K
min Y CkZk{i) (3.1)

K
subject to ^ A/a-^Jt(<) + v,e{t) = B,it) + Ihit) for i = 1,...,/, (3.2)

fc=i

Zkit) > 0, for k = 1,...,A'. (3.3)

At each time t > 0, this linear program may have a different set of right hand side

values. The dual of this linear program will be easier to analyze, since it has a static

constraint set. Let us define the dual variables 7r(i) = (7r,(i)) and state the duai linear

program to be solved at time t:

I

max y[B,{t) + U,{t)]n,{t) (3.4)

1=1
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subject to y_] M,>7ri(<) < c^ for k — \, ...,K, (3.5)

1=1

/

J2vini{t) = 0. (3.6)

1=1

Before analyzing the dual LP (3.4)-(3.6), let us define the (/— l)-dimensional workload

imbalajice process W = {Wt{t)) by

Wi(t) = piW,{t) - p,Wiit), t > 0, for i = 1, ..., 7-1. (3.7)

By (2.11), (2.13), (2.24) and (3.7), the workload imbalance process can also be expressed

as

W,(t) = pjB,(t) - p,Bi(i) + pjU,{i) - p,Uiitl t > 0, for i = 1, ..., 7-1. (3.8)

Thus, the workload imbalance process does not depend on the control process 6, and is

expressed in terms of the Brownian motion process B and the control process U.

Returning to the dual LP (3.4)-(3.6), use (3.6) to eliminate 7r/(t) from the problem amd

use (2.13) to substitute the utilization levels p for the vector v to obtain the (7 — 1)-variable

dual linear program

/-I

max p7^^W^.(07r.(0 (3.9)
jr,(0,...,T/_i(()

:̂=1

/-I

subject to c^^ y^{piM,k — PtMjk)T^i{t) < pj for k = 1,..., A'. (3.10)

1=1

Denote the solution to (3.9)-(3.10) by (7r*(<), ..., 7rJ_j(<)) and solve for 7rJ(f) using

equation (3.6). Let Ck{t) denote the dynamic reduced cost for the variable Zk{t) in the

linear program (3.1)-(3.3). That is,

c;t(0 = c, -^7r'(f)A/.t. (3.11)

1=1
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We will return to the dynamic reduced costs in Section 4, where the costs become the

basis for our proposed sequencing policy. By the analysis above, it follows that the linear

program (3.1)- (3. 3) can be expressed as

min Y^CkZkit) (3.12)

K
subject to ^{piMik - piMik)Zk{t) = Wi{t) for i = 1, ..., / - 1, (3.13)

it=i

Zk{t)> 0, for Jfc = l,...,A". (3.14)

Denoting the solution to this linear program by Z^(t), we construct the optimal queue

length process Z* from Zl{i),k = 1,...,A', for all / > 0. Notice that this optimal process

does not depend on the control process and depends on the control process U only

through the workload imbalance process W defined in (3.7).

4. The Resulting Control Problem

In this section we substitute the optimal queue length process Z* for Z into the

workload formulation (2.19)-(2.24), and reduce this problem to one of finding the optimal

/—dimensional cumulative idleness process U . By duality theory, it is known that the

optimal value of the primal and dual objectives in problems (3.1)-(3.3) and (3.9)-(3.10)

will be equal, or that
K I-\

Y^ckZi{i) = p-;'Y.w,{t)7^:{t). (4.1)

Define the function h: R''^ -^ R^ by

k=\ «=1

7-1

h{W{t)) = pj''£w,it)n:it). (4.2)

t=i

Then h is a piecewise-linear, continuous function of W{t), and h achieves a minimum of

zero at the point W{t) — 0.

11



Define the (/ — 1)—dimensional Brownian motion B by

B,it) = p,B,(t) - p,Bj(i), < > 0, for i = 1, ..., / - 1. (4.3)

Recalling that the two-dimensioneJ Brownian motion B has drift —7, it follows that B has

drift ft = {fi,), where

Mi = V^ipi - Pl), for t = 1, ...,/- 1. (4.4)

Notice that when the system is perfectly balanced (i.e., p, = p for i = 1,...,/), then the

drift /z = (0, ...,0). Define the (/ - 1) x / matrix T by

T =

/PI
0^/0

V

-PI \
-p2

PI -pi-2

pi -pi-\ /

(4.5)

Then B has (/ - 1) X (/ - 1) covariance matrix a = TMT,M'^T'^.

The resulting control problem is to find a non-anticipating (with respect to the

A'— dimensional Brownian motion A'), non-decreasing, /—dimensional, RCLL process U

to

minimize lim sup — Ej-

T—'oo '
I h{W{t))dt
Jo

subject to hmsup —Ei[Ui(T)] < 7,, for i = 1, ...,/,

W,{t) = B,{t) + piUi{t) - p,Ui{t), for I = 1, ..., / - 1.

(4.6)

(4.7)

(4.8)

In problem (4.6)-(4.8), the controller observes the (/ — 1)— dimensional Brownian

motion process B and exerts the non-anticipating /—dimensional control U = (Ui). The

constraint (4.7) determines an upper bound on the long-run expected average amount of

control exerted. The resulting controlled process is the (/ — 1) — dimensional workload

imbalance process W, and since the optimal process Z* derived in the previous section is
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used, costs axe incurred at a rate h(W{t)). Notice that for i = 1, ..., / — 1, the control Ui

only affects the ith component of W, whereas Uj affects all / — 1 components of W.

Problem (4.6)-(4.8) will be referred to as a constrained singular control problem.

The name "singular" stems from the fact that the state of the controlled process can

be instantaneously changed by the controller and, as a result, the optimal process U is

continuous but singular (that is, the set of time points at which U increases has measure

zero). Problem (4.6)-(4.8) can be viewed as a variant of the Unite-fuel problem for Brownian

motion, in which there is a constraint on the toted cimount of controlling effort that can be

exerted (or fuel that can be consumed). In the traditional finite-fuel problem, the amount

of control exerted is constrained to be finite over some finite or infinite time interval; see

Benes, Shepp, and Witsenhausen [1], Chow, Menaldi, and Robin [3], and Kaxatzas [10] for

variants of this problem. In contrast, the constraints (4.7) are on the long-run expected

average amount of control exerted.

If a solution U* to the constrained control problem (4.6)-(4.8) can be found, then the

optimal 9 process is, via equation (3.2),

K
e'{i) = v;'[B,{t) + U;ii) -Y,MuZ:{t)] for aU i > 0, (4.9)

where Z*{t) is the solution to (3.12)-(3.14). The optimal process 6* is never explicitly used

to develop the proposed sequencing and input control policies.

We now show that the cost function h in the constrained singular control problem is

convex.

Proposition 4.1. The function h{W{t)) defined in (4.2) is convex in W{t).

Proof. By definition,

7-1

h{w) = max pj^ /^ Wi^^i (4-10)
7ri,...,7r;_i ^—f

t=l

subject to
7-1

<^k^^ipi^^tk-piMjk)n, < PI for k = 1,...,A'. (4.11)

1=1

13



Let tt" be the solution to
7-1

max p7^Vu"f7r, (4.12)
ri,...,jr;_i ^-—

'

1=1

,6subject to (4.11), and let ir° be the solution to

7-1

mzix pj^y^ w^iTi (413)
jri,...,ir/_i ^-^

1=1

subject to (4.11). Thus, hiw") = pj^ ^.1=1 "">? and h{w'') = p/' ^fj/ u'^Trf. For some

A € [0, 1], let w^ = (1 — A)u'° + Au'*, and suppose n^ is the solution to

7-1

max pJ^y^w^TTi (4.14)
Tl,...,7r7_i •t-—'

1=1

subject to (4.11); thus, h{w^) = pj^ E[=/[(1 " ^)^? + AtifJTr,^. Therefore

7-1 7-1

(1 - X)h{w'') + Xhiiv'') = (1 - A)p7^ J]u.°< + Ap7^ ^u-fTrf (4.15)

1=1 1=1

7-1 7-1

> (1 - A)p7^ J]u.>,^ + Ap7^ J^zifTT.^ (4.16)

1=1 i=l

= Mti'), (4.17)

where inequality (4.16) holds because n^ satisfies constraint (4.11). |

The goal of the next two sections is to find a solution to the constrained singular

control problem. To that end, we will make one more minor transformation of problem

(4.6)-(4.8). The goal of this transformation is to ehminate the coefficients in front of the

Ui terms in equation (4.8). In the perfectly balanced case where p, = p for i = 1,...,/,

the workload imbalance process W and the Brownian motion B could have been defined

by W,{t) = W,{t) - Wj{t) = E*=,(^^.;t - Mik)ZUt) and B,(t) = B,{t) - B;(0 for

i = 1, ..., / — 1; then equation (4.8) could be expressed as Wi{t) = B,{t) + U,{t) — Ui{t).

When the system is not perfectly balanced, let pi be defined by

7-1

Px= n />;forz = l,...,/-l. (4.18)
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and malce the following definitions:

I I

U:{t)= n PjUi{t) Bind ^: = J] p,7. fori = !,...,/; (4.19)

W°{t) = piW,{t) and B-{t) = p,B,(t) for i = 1, ..., / - 1. (4.20)

Also, define the function h° by h°{W°(t)) = h{W(t)). Notice that h" will be a piecewise

linear, convex, and continuous function with a minimum of zero at zero. Then problem

(4.6)-(4.8) can be expressed as choosing a non-decreasing, non-anticipative (with respect

to X), /—dimensional, RCLL process U° to

r... ,. 1 ^mimmize limsup— r/j-

T— oo T

1

/ h\W\t))dt
Jo

subject to limsup —Ei[U°{T)] < 7°, for i = 1, ..., J,

T->oo T

W°{t) = BUt) + U°{t) - Unt), for I = 1, ..., 7-1.

(4.21)

(4.22)

(4.23)

For ease of notation, we shall drop all of the "0" superscripts and subsequently analyze

the following problem: choose a non-decreasing, non-anticipating (with respect to X),

/—dimensional, RCLL process U to

1 f '.

minimize limsup— £'r / h[\\ {t))dt

subject to \\msup —Ej:[Ui{T)] < 7,, for i = 1,...,/,

W,(t) = B,{t) + U,{t) - Ui{t), for i = 1,...,/- 1.

(4.24)

(4.25)

(4.26)

The drift and covariance of the Brownian motion B will be denoted by the (/— 1)—dimen-

sional vector // = (fj.,)
and the (7 — 1) x (/ — 1) matrix a = (a,j), respectively.

5. The Finite Difference Approximation Method
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One possible approach to analyzing the constrained singular control problem is to

form the Lagrangian relaxation of (4.24)-(4.26), where the constraints (4.25) axe placed in

the objective function and multiplied by the (unknown) Lagrange multipliers / = (/,):

/

min limsup — iTr I h{w{t))dt + yi,u,{T) (5.1)

subject to W,{t) = B,{t) + U,{t) - Ui{t), for i = 1, ..., 7-1. (5.2)

Under the case where the multipliers / are known, the Lagrangian problem has been am-

aJyzed by Taksar [19] for the case / = 2 and by Meneddi et al. [16] for general /. The

optimality conditions for the Lagrangian problem ase to find {V,g,U) such that

i^Tr ^T/ .^T/

Min {TV(x) + h{x)-gj, + -—,...,/;_, + , /, _ Y^
}
= o, (5.3)

where
/-I 1-1 ^2 /-I ^

1=1 J=l ' J ,=1 •

is the generator of B. In (5.3), the potential function V(x) : R'~^ —
> R^ is the cost

incurred under the optimal policy when the initial state of the controlled process ly is x

minus the cost incurred under the optimal policy when the initial state of W is zero. Also,

the gain g appearing in (5.3) is the minimal average cost per unit time, independent of

initial state.

An argument identical to Theorem 5.1 in Wein [20] shows that the constrained problem

(4.24)-(4.26) can be solved by finding a solution (including the approximate multipliers /)

to (5.3)-(5.4) that simultaneously satisfies constraints (4.25). For the special case / = 2,

a closed form solution (V,g, /j , l2,Ui , U2) to (5.3)-(5.4) and (4.25) was found in Wein [20].

Although Menaldi et al. [IG] have shown that (5.3)-(5.4) are sufficient conditions (along

with some regularity conditions) for optimality of the Lagrangian problem (5.1)-(5.2) and

have proven the existence of a solution {V,g,U) to (5.3)-(5.4), there appears to be little
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hope of finding a closed form solution to (5.3)-(5.4). Therefore, finding a closed form

solution {V,g,l,U) to (5.3)-(5.4) and (4.25) does not seem possible.

Thus, our goal is to obtain a numerical solution to the constrained singular control

problem. However, finding a numerical solution {V,g, /, U) also appears to be an arduous

task, since, even if a numerical solution {V,g, U) to (5.3)-(5.4) were obtained for some set

of multipliers / (not an obvious task in itself), a search over the space of / would be needed

to assure that U satisfied constraints (4.25). However, for the case 1 = 2, Wein [20] showed

that the solution (V,gJi,l2,U\, U2) included any nonnegative pair (/i , /a) such that li plus

I2 equaled a particular constant. If a solution {V,g, I, U) to (5.3)-(5.4), (4.25) included any

nonnegative multipliers (/i, ..., //) such that ^,_j U equaled a particular constant (I do not

know if this is true), then a reduction in the space of / would be possible.

Considering these difficulties, a better approach to a numerical solution to this prob-

lem appears to be the finite difference approximation technique developed by Kushner [12].

The basic idea behind this method is to systematically approximate a controlled diffusion

process by a controlled finite state Markov chain, and then to solve the resulting optimiza-

tion problem for the controlled Markov chain. Weak convergence methods are then used

to verify that the controlled diffusion process (and its corresponding optimal cost) can be

approximated arbitrarily closely by the controlled Markov chain (and its optimal cost). In

this paper, the finite difference method is described and two numerical examples are given,

but no weaic convergence proof is provided.

This method is particularly powerful for the control problem (4.24)-(4.26) because of

the existence of constraints (4.25). Although very little is known about multi-dimensional

stochastic control problems with side constraints using a dynamic programming formula-

tion, the finite difference approximation can easily incorporate the side constraints (4.25),

as will be shown in the next section.

We now begin to describe the finite difference method and, for ease of reference, we

will retain most of the notation of Kushner [12]. When there are / stations in the network,
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the state space of W in the control problem is R^~^ . In order to numerically solve the

problem, we need to confine the process W to a bounded set, which will be denoted by G.

The set G needs to be large enough so that W never reaches the boundary of G, which

is denoted by dG. Define h, not to be confused with the cost function in (4.24), to be

the finite difference interval, which dictates how finely the state space R^~^ is discretized.

Let i?[~' be the finite difference grid on R^~^\ a point x € -R/,"^ if there exists integers

ni,...,n/_i such that x = X^,Ji heiUi, where e, is the unit vector in the tth coordinate

direction. The approximating controlled Markov chain, which we denote by {^^,n > 0},

will have state space G/, = Rf,~^ H G. Before we define the transition probabilities for the

controlled Markov chain, the controls, or actions, will be described.

Let U{x) be the action set for the controlled Markov chain {^^,n > 0} when it is in

state X G Gh- Recall that the actions in the Markov chain control problem correspond to

the controls U in the singular control problem. Let u^ = 1 if the control corresponding to

Ui is exerted, and let u^ = if the control corresponding to Ui is not exerted, for i = !,...,/.

Then action u G U{x) is defined by u = (uj, ...,u/), and the cardinality of the action set

is 2 for £l11 X ^ dG. We will not concern ourselves with the action set and transition

probabilities when x € dG, since, in practice, the controlled Markov chain will never reach

the boundary; one just enlcirges the set G if the controlled Markov chain reaches dG.

Let P {x,y;u) denote the transition probability from state x to state y when the

action u = (ui,...,u/) is used in state x G Gh- Define

/-I 7-1 7-1

and assume that
7-1

a„ -
Y^ |a,j| > Ofor z = 1,...,/- 1. (5.6)

As mentioned on page 92 of Kushner [12], if condition (5.G) does not hold, then a trans-

formation to the principal vectors of a can be applied to assure (5.6) in a new coordinate
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system. By definition of u, the action u — (0,...,0) corresponds to exerting no control. In

this case, define the transition probabilities P^[x,y;u) by

>/.,„ .^„ ^...,_«..-E0:;#.}l«.;l+2/^/^.
P\x,x± e,h;u) = '"':,' -^ (5-'^)

af.
P {x,x + Cih + e,/?; u) = P(x,x — Cih — tjh; u) = '"'

for i ^ j, (5-8)

a~
P (x, x — Cih + ejh) = P{x, x + Cih — tjh) = —^ for i ^ j, (5-9)

and P'^{x,y;u) = otherwise. Notice that the transition probabilities P''{x,y;u) are

nonnegative and sum over y to one for each x.

When the action u ^ (0,...,0), then the Markov chain transitions are deterministic,

due to the exertion of controls. In this case,

/-I 7-1

P^{x, x + Y^ e,u,h - Y^ eiuih; u) = 1 (5.10)

1=1 :=1

and P'^{x,y;u) = otherwise.

Define the interpolation interval At by

Af" = -^. (5.11)

Equation (5.11) relates the size of the discretized time intervals to the size of the discretized

space intervals and, together with the transition probabihties P''{x,y]u) in (5.7)-(5.10),

assures that the first- and second-order moments of i^^i — (^, conditioned on ^^, are

consistent with those of the controlled diffusion process W.

Thus, the controlled process W described by equation (4.26) has been approximated

by the controlled Markov chain {^^,n > 0} with transition probabilities given by (5.7)-

(5.10). Since there are no costs on the controls exerted in problem (4.24)-(4.26), the cost

incurred when action u is taken and the controlled Markov chain is in state x is simply given

by h{x), where the function h, which appears in objective (4.24), is defined in (4.2). Thus,
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ignoring constraints (4.25) for the moment, our problem (4.24)-(4.26) is approximated

by a problem of controlling a finite-state, finite action-set Markov chain with a long-run

average cost criterion. In the next section, we show how to express the constraints (4.25) in

terms of the approximating Markov chain control problem, ajid how to solve the resulting

constrained Markov chEiin control problem.

6. A Linear Programming Solution

It is well known that a Markov chain control problem with a long-run average cost

criterion can be formulated and solved as a linear program; readers are referred to Manne

[15] and Dermaji [4] for early work on this subject. We begin this section by formulating

the controlled Markov chain problem described in the last section, which ignored the

constraints (4.25), as a linear program. Suppose that the cardinality of the set G/, is .A/,

and let the states be indexed by x = l,...,Af and the actions indexed by u = 1,...,2^. A

stationary policy for the Markov chain control problem will be described by /? = {0x{u), x =

1, ..., A/; u = 1, ...,2^), where 0z{u) equals the probability that action u is chosen when the

controlled Markov chain is in state x. If ^i(u) equals zero or one for all x = 1, ...,M and

u = 1,...,2^, then ^ is referred to as a pure stationary policy; otherwise, /9 is referred to

as a randomized stationary policy. Let tt = (tt^-u) denote the steady-state probability that

the controlled Markov chain will be in state x and action u will be chosen if policy /3 is

used; thus, tt is policy-dependent and must satisfy

7r^„ > Ofor X = 1,...,A/; u = l,...,2^ (6.1)

M 2'

^ J]7r,„ = l, and (6.2)

r=l u=l

2' M 2'

E^y« = ^^7r,„P''(x,y;u)for j/ = l,...,A/, (6.3)

U=l 1= 1 u= l

where the transition probabilities P'^{x,y\u) were given in equations (5.7)-(5.10). Since
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the expected average cost under policy /3 is 5Zj._i X^„=i T^zuh{x), the Markov chain control

problem is to find tt = (t^zu) to

\f 2'

min V] /_] 7rj.u/i(x) (6-4)

1=1 u=l

subject to constraints (6.1)-(6.3). If tt* = (7r*„) solves the linear program (6.1)-(6.4), then

the optimal policy jS* is

^x(") = ^J^" (6.5)

Thus, the linear program (6.1)-(6.4) solves the problem (4.24)-(4.26) that ignores

constraints (4.25). We now show that under the finite difference approximation, the /

constraints (4.25) can be expressed as / linear constraints on tt = (tTj-u). From equation

(5.10), if the control u in the controlled Markov chain {^n, u > 0} is such that //, = 1, then

the corresponding cumulative amount of control exerted by J7, in problem (4.24)-(4.26)

is increased by the finite difference interval size h. Equation (5.10) also implies that the

steady-state probability that u, = 1 is ^^.-1 X](uu =1) ^'«- Thus, by the finite difference

approximation, the term Wm supj^^^ T~^ Ex[Ui{T)] in (4.25) is approximated by

lim "^^-^^i-=^^"^" for . = 1, ..., /, (6.6)
"-00 nAt '

^ ^

which equals

h

by the critical relationship (5.11) relating the time and space intervals. Therefore the

constraints (4.25) are approximated by

A/ 2'
,

E E ^x« <77^fort = l,...,/. (6.8)

Thus, a solution to the constrained Markov chain control problem and an approximate

solution to the constrained singular control problem (4.24)-(4.26) can be obtained by solv-

ing the Hnear program (6.1)-(6.4), (6.8). The solution to this linear program will yield an
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optimal policy /3 for which the controls for up to / states are rcindomized. Since the cost

function h is convex and achieves a minimum at zero, the optimal policy will be charac-

terized by a bounded region containing the origin. This region is such that u = (0, ...,0)

inside this region and u ^ (0, ...,0) outside of this region. The boundcir}' of the region acts

as a reflecting barrier that keeps the controlled process within the region containing the

origin. The bounded region will play a key role in defining the customer release policy in

Section 8.

The linear program (6.1)-(6.4), (6.8) suffers from the curse of dimensionality that is

so often encountered in control problems. For example, if the grid Gh is such that each

coordinate dimension is discretized into L — l segments, then the cardinality of Gh is L^~^

and the linear program has 2^L^~^ variables and L^~^ +/+ 1 constraints, not including the

nonnegativity constraints (6.1). The size of this problem can be reduced in several ways.

Since the holding costs are convex and have a minimum at zero, any control u -^ (0, ...,0)

that pushes the controlled process further from the origin will clearly be suboptimal and

need not be explicitly considered in the linear program. Also, the linear program can be

solved several times (using smaller values of the finite difference interval h for later runs),

and portions of the state space that the controlled process never reaches can be eliminated

from the subsequent linear programs, as long as the controlled process never reaches the

boundcury of G/,. Moreover, the finite difference interval h can be state-dependent, so that

a finer grid can be used in the sensitive portion of the grid Gh (where the optimal control

is uncertain) and a courser grid cein be used in the insensitive portion (where the optimal

control is known). Finally, some decomposition approaches used in linear programming

may be used to exploit the structure of the constraint set (in particular, the structure in

(5.7)-(5.10) that appears in (6.3)); readers are referred to Kushner and Chen [14] for work

on this topic.

We finish this section with a numerical example that illustrates the accuracy of the

finite difference approximation for solving the constrained singular control problem (4.24)-
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(4.26). The example is taken from Section 7 of Wein [21] and is derived from a particular

two-station queueing network scheduling problem; the scheduling problem is identical to

the problem considered in this paper with 7 = 2 stations. The cost function h{x) in (4.24)

is given by

where hi = .101 and /12 = .3703. The one-dimensional Brownian motion B has drift // =

and vEiriance a = 10.93. The righthand side values in (4.25) are 71 = 72 = -9. The closed

form solution to this problem (see Wein [20]) is characterized by the interval endpoints I

and r, where

and

/ = --

—

—, ^ = -4.771 (6.10)
hi + h2 271 ^

'

r = —^;^ = 1.301. (6.11)
"1 + "2 271

The controlled process W behaves as a one-dimensional reflected, or regulated, Brownian

motion (see Harrison [6] for a detailed development) on the interval [—4.771,1.301] and

the optimal control processes U* and U2 are the local times at the points -4.771 and 1.301,

respectively. The optimal objective function value is given by (see Wein [20])

t"^\ .
= .2409. (6.12)

47i(/!i+/l2)
^ '

To formulate the linear program (6.1)-(6.4), (6.8), a finite difference interval of size

h = 0.05 was used and the bounded set G was taken to be the interval [—5.0,5.0]. Thus

the state space is {—5.0, —4.95, —4.90, ...,4.95,5.0}, and the states are indexed by x =

1,...,201. The action set U{x) consists of the four actions (0,0), (1, 0), (0, 1), and (1,1),

which correspond, respectively, to exerting no control, exerting only Ui, exerting only U2,

and exerting both Ui and U2. The non-zero transition probabilities are

P{x,x + 1;0,0) = P{x,x- 1;0,0) = ^,
(6.13)

P(x,x + 1;1,0) = P{x,x - 1;0,1} = 1, and (6.14)

P(x,x;l,l) = l. (6.15)
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Of course, control u — (1, 1) will never be used and control u = (l,0)(u = (0, 1), respec-

tively) will never be used when the controlled process is positive (negative, respectively).

Since Qh = a hy (5.5), constraints (6.8) are given by

^ A (.05)(.9)E E ^ru <^-j^^ .00412 iovr = h2. (6.16)

1=1 {u:u, = l}

Rather thcin indexing the states by x = 1,...,201, let us denote the state of the

controlled Markov chain by y € [—5.0, —4.95, ...,4.95,5.0]. The solution to the linear

program yields, via equation (6.5),

/?;(0,0) = 1 for yG [-4.7,1.25], (6.17)

/9l4.8(l,0) = l, (6.18)

/3:.75(1,0) = .327, (6.19)

/?;.^5(0,0) = .673,and (6.20)

^r.3o(0,l) = l. (6.21)

The optimal objective function value for the linear program was .2411, which is very close

to the derived value of .2409 appearing in equation (6.12). If we interpolate the policy

(3 at y = —4.75, the approximate solution to the constrained singular control problem

is characterized by the interval [—4.784,1.300], where the controlled process W behaves

as a one-dimensional reflected Brownian motion on this interval and U\ and U2 are the

local times of W at the two respective endpoints. The interval derived from the finite

difference approximation [—4.784,1.300] is very close to the exact interval [—4.771,1.301]

at the rather modest finite difference interval size of h = .05. This particular example was

also solved at the finer interval size of /i = .01. The optimal objective function value for

the linear program was again .2411, and the interpolated interval was [-4.777,1.300]. Thus,

the finite difference approximation method is very accurate, at least for the simple case

where a known solution exists.
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7. The Sequencing Policy

In this section we will interpret the solution to the workload formulation in order to

obtain a priority sequencing policy to the original queueing network scheduling problem.

As in Harrison [7], Harrison and Wein [8], and Wein [21], the policy will be interpreted in

terms of the optimal control process Z*, where Zl(t) is interpreted as the (scaled) number

of class k customers in the system at time t; readers are referred to these previous works

for a more detailed discussion on the interpretation of the solutions to Brownian control

problems. In particular, the sequencing policy is based on the dynamic reduced costs Ck{i)

computed in (3.11). The reduced cost for a class k customer at time t is the increase in the

optimal objective function value of the linear program (3.1)-(3.3) per unit increase in the

righthand side of the nonnegativity constraint Zk{t) > 0. This vcdue can be interpreted as

the extra cost incurred if one were forced to hold a class k customer in queue at time t.

Thus, the higher the value of Ckit\ the more expensive it is to hold a class k customer in

the system at time t.

However, each customer class requires a different amount of expected processing time

before exiting. Therefore, it is natural to consider the amount of effort needed to completely

process a customer, in addition to the cost incurred in holding the customer. As pointed

out by Yang [24], the ratio

-^i^lL- (7.1)

measures how costly a class k customer is at time t per unit of remaining processing time.

Our proposed policy is to give priority at each station to the customer class with the largest

value of this dynamic index. Yajig [24] has shown that this policy, when applied to the

Brownian analysis of a single-server multiclass queue with per unit time holding cost Ck

for class k customers (see also Section 6 of Harrison [7]), reduces to the well-known Cfj. rule

(see, for example, Klimov [11]).
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Complementan' slackness implies that the reduced cost Ck{t) equals zero when Z^{t) >

in (3.1)-(3.3). Thus, the policy proposed in (7.1) will serve a customer from classes with

Zl{t) > only when there are no customers present from classes with Zl(t) = 0. Our

policy is therefore consistent with observations from existing heavy traffic limit theorems

(see, for example, Whitt [22], Harrison [5], Reiman [IS], Johnson [9], Peterson [17], and

Chen eind Mandelbaum [2]) that the normalized queue length process of the lowest priority

customers is positive and the normalized queue length processes of the higher priority

customers vanish; of course, these results assume static (i.e., independent of the state

of the queueing system) priority rankings, whereas we are proposing dynamic (i.e, state-

dependent) priority rankings.

Notice that it is possible for several different customer classes with Zl{t) > (ajid

therefore with Ck{t) = 0) to be served at a common station. At times when only these

customers are present at a particular station, a tie-breaking rule is needed to decide which

of these classes to serve next. We employ the tie-breaking rule proposed in Yang [24], which

attempts to reduce the total expected holding cost X)fc=i ^kZk{t) along a steepest descent

direction. Pleaders are referred to that paper for a derivation of this heuristic tie-breaking

rule; only a description of the rule will be presented here.

Define the (7 — 1) x A' worA'ioad imbaiance proiUe matrix M = {Mik) by

M,k = piM,k - PtMik for I = 1, ..., I-l;k = l, .... A'. (7.2)

Then constrciint (3.13) can be expressed as J2k=\ ^ikZk{t) = W^i(0 fo^ ^ = li---i-^ "" 1-

Let Msit) be the submatrix of the matrix M consisting of the columns that axe in the

optimal basis of the linear program (3.12)-(3.14) at time t. It follows that Mfl(/) is an

(/ — 1) X (/ — 1) invertible matrix for all t. Let the (/ — 1)—dimensional vector AZ(/) be

defined by

AZ{t) = MB\t)n'{t), (7.3)

where n*{t) = {n^{t),...,n'j_^(t)) is the optimal solution to the dual LP (3.9)-(3.10). If
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class k is in the optimal basis at time t, then we denote its component of AZ(t) in (7.3)

by AZk{t) in the obvious way. The dynamic tie-breaking rule is to give higher priority at

time t to the classes with the higher values of AZk{t).

To summarize the priority sequencing policy, we compute a dynamic reduced cost

cic{t) for each class k at each time t using (3.11). If class k is in the optimal basis at time

t, then Ck{t) — and a secondary index AZjt(i) is computed according to equation (7.3).

Recall that C{i) is the set of customer classes that can be served at station i. At time

t, server i gives priority to the customer class k E C{i) with the largest value of Ck(t). If

Ck{t) = for all customers present at station i at time t, then server i gives priority to the

customer class with the largest value of AZk{t).

8. The Input Policy

In this section the solution {Z* ,U* ,6*) to the workload formulation (2.19)-(2.24) is

interpreted in order to obtain an input, or customer release, policy for the original queueing

system. The input policy will be interpreted in terms of all three controls, in contrast to

the sequencing policy, which was interpreted solely in terms of the optimal queue length

process Z*.

We begin by interpreting the Z* control. Notice that only 7—1 constraints in the

dual LP (3.9)-(3.10) will be tight at any time <, and thus, by complementary slackness,

only 7—1 components of the optimal control process Z* can be positive at any time t.

Therefore, since W{t) = MZ*{t) for all < > 0, the 7— dimensional workload process W
stays on the boundary of a polyhedral cone in the nonnegative orthant of R^ . This cone,

which is not necessarily convex, is generated by a number of extreme rays emanating from

the origin, where each ray corresponds to a customer class that is in the optimal basis of

the LP (3.12)-(3.14) for some value of W{t). Thus the number of different extreme rays,
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and hence the number of different (/— 1)—dimensional faces of the cone, equals the number

of extreme points of the dual constraint set (3.10). See Figure 1 for an example with three

stations (that is, 7 = 3) emd six extreme rays.

W, (t)

FIGURE 1. W{t) Stays on the Cone Boundary.
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The workload process W can also be expressed in terms of the other two controls,

U* and 6*. By equations (2.11) and (2.24), the controller in the workload formulation

observes an /—dimensional Brownian motion process B, exerts the optimal controls U*,

which is the /—dimensional scaled cumulative idleness process, and 6*, which is the one-

dimensional scaled centered input process, and obtains the controlled process W, which is

the scaled workload process, via the equations

W,{t) = B,{t) + U*{t) - v,e*{t), for ? = 1, ..., / and f > 0. (8.1)

Recall that the solution U* to the constrained singular control problem is characterized

by a bounded region in R^~^ containing the origin. The boundary of the region acts as a

reflecting barrier that keeps the (/— 1)—dimensional workload imbalance process W within

this region containing the origin. Moreover, the control process J7* is exerted only when

the workload imbalance process W reaches the reflecting barrier. Exerting the control U*

is interpreted as incurring server idleness at station i, for i = 1, ...,/.

The restriction of the (/—I )—dimensional workload imbalance process W" to a bounded

region containing the origin implies the restriction of the /—dimensional workload process

W to a finite portion of the cone boundary. Thus the reflecting boundary in /? , which

was derived in the solution to the constrained singular control problem, essentially trun-

cates the polyhedral cone in R^ . The intersection in R^ of the botmdaxy of the original

polyhedral cone and the reflecting barrier will be referred to as the upper edge of the

truncated cone. See Figures 2 and 3 for typical cases when / = 2 and 3, respectively. In

Figure 2, the reflecting boimdary in R^ is the interval [a, 6], and the upper edge of the

truncated cone consists of two points. The upper edge of the truncated cone is a curve in

R^ in Figure 3 and, in general, is of dimension 1 — 2.

We can now make the following three observations about the optimal solution to the

workload formulation: (1) the /—dimensional workload process W stays on the truncated

cone boundary, (2) the control process U* is exerted only when the workload process W
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W(t)

W (t)

FIGURE 2. The Truncated Cone in a Two-Station Example.

reaches the upper edge of the truncated cone, and (3) when the workload process is not at

the upper edge of the truncated cone, then only the input process 6* is used to keep the

workload process on the truncated cone boundary.

The goal of this section is to develop a customer release policy for the original queueing

system that operationalizes these three observations. AU these observations are developed

under the ideahzed assumptions of the balanced heavy loading condition (2.1). Notice

that in the actual queueing system, the workload process may not reside exactly on the

truncated cone boundary. The actual workload process may reside in the interior of the
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W (t)
2

Upper Edge

W3(t)

W.(t)

FIGURE 3. The Truncated Cone in a Three-Station Example.

truncated cone or, since the extremal rays of {PF|VF = MZ, Z > 0} may not coincide with

the extremal rays generating the truncated cone, may reside outside the truncated cone.

We now attempt to operationalize the control process 9*. In order to see how the scaled
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centered input process 6* is manipulated, recall that by equation (2.13) and the balanced

heavy loading condition (2.1), v, is approximately equal to Vj for i,j = 1,...,/, and so 9*

caji move jdong a direction that is close to the (1,1,...,1) direction in R^ . By definition

(2.4), when 6* is increased and moves in the direction that is close to (1, 1, ..., 1), input is

being increased relative to the nominal input rate A. Similarly, when 6* is decreased emd

moves in the direction that is close to (
— 1,— 1,...,— 1), input is being witliheld relative to

the nominal input rate.

When the workload process W is in the cone interior and not near the upper edge,

then 6* is decreased in order to keep W on the truncated cone boundary. Similarly, when

the workload process W is outside the cone and not near the upper edge, then 9* is

increased in order to keep W on the truncated cone boundary. As in Wein [21], let us

interpret the action "increase ^*" to simply mean "release a customer into the system"

cind the action "decrease ^*" to mean "cease input". The naive policy that emerges from

this interpretation and from observations (l)-(3) above is to only release a customer into

the system at times t when the workload process W[t) is on the outside of the truncated

cone.

A precise definition of what is meant by "outside the truncated cone" will be given

shortly, but first the insights behind observations (l)-(3) will be summarized. When the

workload process leaves the interior of the truncated cone, then the workload process

becomes too imbaJanced (recall the importance of the workload imbalance process W) and

at least one server becomes threatened with idleness. In this case, a customer is released

into the network to avoid server idleness. However, when the workload process reaches

the upper edge of the truncated cone, then there is already ample work in the system and

the controller refuses to release any more customers into the system and is willing to incur

server idleness.

We now return to the issue of defining the term "outside the truncated cone". Let

Rb denote the bounded region in R^~^ that characterizes the solution to the constrained

32



singular control problem in Section 6. Recall that the number of faces on the boundary of

the polyhedral cone in R^ is equal to the number of extreme points in the dual constraint

set (3.10). Let us denote this number by F, and index the faces, and hence the dual

extreme points, by / = 1, ...,F. For each face /, let us define Rf C R^~^ to be the region

in the workload imbalance space where extreme point / is the optimal solution to the dual

LP (3.9)-(3.10). For dual extreme point /, let the customer classes in the optimal basis of

the primal LP be indexed by A;i, ..., kj-i. Then the hyperplane generated by cone face /

is given by

Y,aiW,{t) = 0, (8.2)

1=1

where
W,{t) ... Wi{t)

Mik, ... Mjk,
(8.3){aiW,{t),...,aiWj{t)) = dei

Let r f denote the halfspace in R^ (lying outside of the cone) generated by the hyperplane

(8.2)-(8.3).

The workload regulating input policy will be to release a customer into the network

whenever the /—dimensional workload process W(t) enters the release region Ui</<F.Ry,

where

Rf = {W{t)\(W{t) eRff) Rb) n iW{t) e r; n R+)}, (8.4)

and W{t) is defined in terms of W{t) in (3.7); this region defines the vague term "outside

the truncated cone".

In order to motivate policy (8.4), it is easiest to consider a two-station example, as

in Figure 4, where the upper edge is given by two points; let us denote the lower point

by (a^i,yi) and the upper point by (^2,2/2)5 where xi > t/i and X2 < y2- For the sake

of concreteness and without loss of generality, suppose the queueing network generating

Figure 4 was a balanced system, so that Vi = V2 and 8* moves in the (1,1) direction

or the (—1,-1) direction; then the refiecting boundary [a,b] introduced in Figure 2 is
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[a'2 — y2,^i — yi]- Notice that as long as the workload process W is in the darkly shaded

region in Figure 4 (the intersection of the darkly shaded regions and the gray regions are

along the 45 degree Unes), then 0* alone can be increased to move W to the truncated

cone boundary. When W{t) = (xi,y), where y < j/i, then U2 alone is used to move the

workload process to the truncated cone bovmdary, in this case to the point (a;i,yi). In

the lower (respectively, upper) gray region of Figure 2, some combination of 6* and U2

(respectively, U*) is used to move W to the truncated cone boundary. Therefore, the

release region for this example should be at least the darkly shaded regions and at most

the union of the darkly shaded regions and the gray regions. Although either extreme (or

some compromise between the two extremes) would probably lead to an effective customer

release policy, we have proposed in (8.4) the minimvun release region, which in this example

corresponds to the deirkly shaded regions. This choice does not maintain consistency with

previous work (the policy proposed in Wein [21] was the maximal release region, which

corresponds to the union of the darkly shaded regions and the gray regions in Figure 4);

however, the minimal release region suggested here is more easily generedizable to higher

dimensions.

For the example in Figure 4, the reflecting boundarj' Rb is given by W{t) € [o,i], or

y2 — X2 < Wi(0 ~ ^"^2(0 ^ yi ~ ^1- If the upper face (respectively, lower face) is denoted

by face 1 (respectively, face 2), then (see Wein [20]) i?i is W{t) < 0, or -fj^ < £i = 1,

and i?2 is ^.'
^

> 1. Recalling the definition of rf, it is easily verified that the region

specified in (8.4) corresponds to the darkly shaded regions in Figure 4.

In order to develop an explicit description of the release region, an explicit expression

is required for the (/ — 1)—dimensional bounded region that characterizes the solution

to the constrained singular control problem. However, only a numerical solution to the

constrained singular control problem has been derived in this paper. Thus, the numerical

solution needs to be transformed into an explicit expression for the bounded region. In

Section 10, an example is carried out for a three-station network, and the reflecting bound-
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W2(t)i

W(t)

W,(t)

FIGURE 4. The Release Region in a Two-Station Example.

axy containing the bounded region in R^ is approximated by a piecewise hnear boundary

in order to develop an explicit release region in R^ . Presumably, an approximation in this

spirit is required to develop release regions when / > 3.

Notice that the workload regulating input policy defined above would ignore a differ-

ence that exists between the actual queueing system and the idealized heavy traffic limit.

As pointed out in Wein [21], this difference can be understood by making the following

observation about Figure 4. In the ideaHzed Brownian setting, when the scaled workload

process W is on the lower ray of the cone boundary and Wi{t) < xi, then there are
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zero scaled customers at station 2 and yet station 2 is not idle. This apparent paradox

is due to the rescaling that occurs when passing to the heavy traffic hniit. In the actual

queueing system, there are enough customers at the particular station to avoid idleness,

but when looked at in the scaled space of the heavy traffic limit, these customers vjinish.

This difference may prevent the workload regulating input policy to achieve the desired

throughput.

However, the release rule can be adapted to the actual queueing system by enlarging

the release region. There are two ways this can be achieved. The first way is to slightly

enlarge the region on the inside of the cone boundary. This is done by translating the

vertex of the cone from (0, ..., 0) to (e, ..., e). This translation changes the hyperplcine (8.2)

to

Y,aiW,it) = e(^a,). (8.5)

i-l 1=1

This treinslation, which may be negligible in scaled space, prevents the process W from

straying very far from the original truncated cone bovmdary. The second way to enlarge

the releeise region is to inflate the bounded region derived in Section 6 by a constant

factor K > 1, while still maintaining the relative shape of the bounded region. As e and

K increase, the servers will incur less idleness but the queue lengths may grow as a result.

The workload regulating input policy sets the parameter e and k so that the desired output

rate A is achieved. In an actual queueing system, the setting of e and k will depend upon a

variety of factors, including the amount of variability in the queueing system, the amiount

of time customers spend at non-bottleneck stations, the network topology, and the extent

to which the network is heavily loaded.

Notice that the input policy defined in this section has been described in terms of

the seeded workload process W. Thus, before implementing this policy in an actual

queueing system, the release region needs to be expressed in terms of the actual (un-

sealed) workload process, which is denoted by w{t) = {{wi{t), ...,wj{t)),t > 0}. Then

"^«(0 = Jlk=i ^^ikQki^) for i = 1,...,/ and t > 0, where Qk{t) is the actual number of
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class k customers in the system at time t. By equation (2.2) it follows that

XV [Tit]

Wi{t) = 'y' for 1 = 1, ..., / and < > 0. (8.6)

Since the scheduling problem was solved using the long-run average criterion, the time

scaling can be ignored, and replacing Wi{t) by Wi{t)/y/n in the inequedities defining the

release region (8.4) will lead to an implementable release policy for the original queueing

network.

9. The Workload Balancing Input Heuristic

The customer release policy described in the last section allows for the controller to

decide when to release the next customer into the system, but not to choose the class of

the entering customer. It was assumed that the class designations of entering customers

are exogenously chosen so that q^ is the long-run proportion of class k customers released

into the network. In this section, we develop a workload balancing input heuristic, which

is based on insight gained from the solution to the constrained singular control problem,

that decides which class of customer to release into the system. This scheme appears to

improve the performance of the scheduling policy and is guaranteed to keep the actual mix

of released customers sufficiently close to the desired mix q.

The key idea behind the heuristic is the observation that server idleness is incurred in

the idealized Brownian network only when the (/ — 1)—dimensional workload imbalance

process W reaches the reflecting boundary derived in Section 6. The workload imbalance

process stays within a region containing the origin, but when it reaches the reflecting

boundary, the workload becomes too imbalanced, the control U is exerted, and at least

one server incurs idleness.

Thus, server idleness would be reduced, and hence system performance would be im-

proved, if the workload imbalance process could be discouraged from reaching the reflecting
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boundaries. Recall by equations (3.13) and (7.2) that

K
W,{t) = Y^ M,kZk{t) for z = 1, ...,/- 1 and <> 0. (9.1)

k=\

This equation relates the workload imbaJajice process W to the vector queue length process

Z. Our heuristic will release the customer class k that attempts to balsuice the workload

imbalance process and hence avoid server idleness.

Consider the actual (unsealed) queueing system, where w,{t) is the actual workload

imbalance process at time t and Qk(i) is the actual number of class k customers in the

system at time t; then Wi{t) = ^^=1 ^ikQk(t) for i = l,---,-^ — 1 and t > 0. Suppose

the input poHcy derived in the last section dictates that a customer is to be released into

the system at time t. There are two steps in the workload balancing input heiiristic. The

first step checks to see if the actual mix of customers already released into the network

is sufficiently close to the derived mix q. Let Nk{t) denote the total number of class k

customers released into the system in the time interval [0, t]. Let E — {k = I, ...,K\qk > 0}

be the set of possible entering classes; these classes correspond to the first stage of some

customer type's route. Consider the constraints

9jNj{t) - qkNk{t) < N* for all ;, k e E, (9.2)

where N* is an exogenously specified parameter that specifies how close the actual entering

class mix must stay to the target mix q.

K any of the constraints in (9.2) are violated, then the heuristic releases a class /

customer, where

max {qjNj{t) - qkNk{t)] = q,nNm{t) - qiN,{t). (9.3)
j,keE

That is, we release the customer class that is lagging behind the farthest from its desired

target. If constraints (9.2) are all satisified, then the actual mix of released customers is

suflRciently close to the desired mix, and we can proceed to the second step of the heuristic,

which attempts to balance the workload.
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Let Wi(t) equal the time average value of Wi over the time interval [0,t]. This value

can be easily calculated in a computer simulation model of a queueing network or in an

actual factory that is under computer control; if the factory is not under computer control,

then the value of Wi(t) may be recorded periodically, for example once per shift, and Wi{t)

can be updated accordingly. Let Wikit) be defined by

Wik{t) = w^{t) + Mik for z = 1, ..., J - 1 and k ^ E. (9.4)

Thus, Wiki^) is the zth component of the workload imbalance process that would result

if a class k customer were released into the system at time t. Step two of the workload

balancing input heuristic releases a class / customer into the network, where

1=1 1=1

Thus, step two attempts to push the workload imbalance process toward its long-run

average value, which presumably will not be close to the reflecting boundary. Notice

that the time-average value of w is chosen as the desired target, as opposed to choosing

the origin (that is, the point (0, ...,0)) as the target. This is because, depending on the

workload profile matrix M and the topology of the network, it is possible that the origin

will not be a particularly desirable value of u', in terms of avoiding server idleness.

The workload balancing input heuristic is equally applicable to multiclass closed

queueing networks (see Section 4 of Harrison and Wein [8]) because the same relationship

holds between server idleness and the workload imbalance process. In a closed network, a

new customer is released into the network whenever a customer exits, and this heuristic

can be used to decide which class of customer to release. This heuristic was tested on a

simulation model of the two-station closed network example in Section 6 of Harrison and

Wein [8]. The example there had two customer types, denoted by A and B, and the desired

input mix was 50-50. The workload balancing input heiu-istic offered a 7.8% improvement

in average cycle time (from 54.9 to 50.6; see Table I of [8]) over deterministic input (releas-

ing customers in the order ABABAB...), while maintaining the same average throughput
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rate. Similarly, the heuristic offered a 10.1% reduction in average cycle time (from 38.6 to

34.7) for the controllable input case (see Table I of Wein [21]). For both of these cases,

the exogenous parameter TV* was chosen to guarantee that the resulting class mix wo\ild

be within one-half of 1% of the desired 50-50 mix.

Furthermore, this simple heuristic is probably effective for any factory, regardless of

the timing of its input policy (exogenous, closed, or controllable) or priority sequencing

policy. The (/ — 1)—dimensional workload imbedance process offers a concise and effective

measure of the balance of work tliroughout a complex network, and its crucial relationship

to the server idleness process is exploited by this heuristic.

10. An Example

The procedure described in this paper will be illustrated by means of a three-station

example. The example has three customer types, denoted by A, B, and C, and the specified

product mix is to have equal numbers of aJl three types. Table I describes the deterministic

route of each customer type, and gives the mean processing time (in arbitrary time units)

for each of the various stages of service. All service time distributions are assumed to be

exponential, although our results hold for any service time distribution with finite mean

and variance.

MEAN

CUSTOMER SERVICE

TYPE ROUTE TIMES

A 3^ 1 ^2 G.O 4.0 1.0

B 1-^2-+ 3^ 1^2 8.0 6.0 1.0 2.0 7.0

C 2-^3^ 1 ^3 4.0 9.0 4.0 2.0

Since each customer class corresponds to a type-stage pair, the twelve customer classes
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are designated (and ordered from k = 1,...,12) by (A1,A2,A3,B1,...,B5,C1,...,C4). The

12 X 12 routing matrix P has non-zero entries P12 = P23 = -^45 = -Pse — Pei — Pjs =

Pg jQ = Pjo 11 = Pii,i2 = 1- Calculation of the 3 x 12 workload profile matrix M yields

/4 40 10 22204 44 0\

M=l 11 13 13 777 4 00, (10.1)

\6 1 1 1 11 11 2 2/

where M,jt is the expected remaining processing time at station i for a class k customer

until that customer exits the network. Since 9 = (i00|0000|00 0)'^, equation

(2.12) yields Vi = V2 = U3 = 6, thus implying perfect system balance by equation (2.13).

Therefore, the p values can be factored out of equation (7.2), as mentioned in Section 4,

and the 2 x 12 workload imbalance profile matrix M can be given by

.^. /-2 4 9 1 1 2 -7 -7 2 -2\ .

^^=[-5 1 1 12 12 6 7 7 -7 -11 -2 -2 j
" ^^^'^^

The exogenous output rate is .15 customers per tmit of time, so that, by (2.13), pi = P2 =

P3 = .9, and the system parameter value of n = 100 can be chosen. The holding costs are

cjt = 1 for A- = 1, ..., 12, so that the objective is to minimize the long-run expected average

number of customers in the system (or the long-run expected average cycle time) subject

to meeting the long-run expected average output rate of .15 customers per unit time.

The dual LP (3.9)-(3.10) can be expressed as

max Wiit)ni{t) + W2{t)TT2it) (10.3)

subject to M'^irit) < e, (10.4)

where M is given in (10.2). This problem can be solved graphically for all values of

the workload imbalance process W, and the solution is given in Table II. There are six

extreme points of the constraint set (10.4), and thus the scaled workload process W lives on

a polyhedral cone with six faces. The six extreme points lead to the workload imbalance

space P^ being partitioned into six regions, which were referred to in Section 8 as P/,
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and which axe niimbered in Table II for future reference. For each of the six regions,

dynamic reduced costs are calculated according to (3.11) ajid a priority sequencing policy

is developed according to rules (7.1)-(7.3). The resulting sequencing policy is given in

Table III.

In order to find the workload regulating input policy, a numerical solution is needed

to problem (4.24)-(4.26). The objective function cost h{W{t)) defined in (4.2) is found

from n*{t) in Table II. By (2.14), the righthand side values in (4.25) are 7i = 72 = 73 = 1-

By (4.4), the drift of the two-dimensional Brownian motion process B is (0,0) and the

calculations in (2.7), (2.17), (2.18), and (4.3) yield the covariance matrix

12.333 6.778
a =

6.778 12.444
(10.5)

REGION NUMBER

AND DESCRIPTION

1: t^i(0>0,W'2(0>0,|<{j;^<4;

2: W,it)>0,W,it)>0,^^<p^^<l;

3: Wi{t) < 0,W2{t) > 0;

W,{t)<0,W2{t)^0;

1^1(0 <0,H'2(0<0,^>1;

4: W,ii)<0,W2{t)<0,^<'Mll<i-

5: Wi{t) = 0,W2it) <0;

W^i(0>0,H^2(^)<0,|^>-l;

6: Wi{t)>0,W2{t) = 0\

2(0

i'2(0

H^i(0>0,U2(0>0,^>4;

Wyit)>0,W2ii)<0,p^<-l;

DUAL

SOLUTION

7r*(0 = -^,7r*(0 = A

7rJ(^) = -l,7r»(O =

^m = \^^2ii) = -l

'^KO = ^>'^2(0 = -^

TABLE II. Dual Solution as a Function of Workload Imbalance
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Using a mesh size oi h = 0.5 in the finite difference approximation, the solution to the

LP (6.1)-(6.4), (6.8) gives the reflecting boundary shown in Figure 5. Superimposed on top

of this boundary is the partition of the six regions i?y, / = 1, ..., 6, corresponding to the six

dual LP solutions described in Table IL The workload imbalance process is uncontrolled

when it is strictly within the reflecting boundary, and when it reaches the boundary, the

process is pushed back in (in the direction of the arrows in Figure 5) by at Iceist one of the

three controls (t/*, C/2 > ^3*)- Notice that there axe places on the boundary where more than

one control is used at a given time. In particular, U* and U^ are used at states (0.5,9.5),

(1,9.5), and (1.5,10), and l/j ^^^ ^3 ^^^ both used when the process reaches (3,0), (3,0.5),

(3,1), and (3,1.5).

REGION



W2(t)

-6-5-4-3-2-1 12 3 4 5

FIGURE 5. The Reflecting Boundary in the Constrained Singular Control Problem.
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Using the example network, a simulation study was undertciken to compEire the perfor-

mance of the scheduling policies proposed in Sections 8, 9, and 10 agaiinst several conven-

tional customer release and priority sequencing policies. Two conventional input policies

were tested: deterministic, where the interarrival times axe ail constant, and closed loop

input, where the total number of customers in the network is held constant at A'^; the

latter pohcy is abbreviated by CLOSED(N) in Table IV. For both of these input rules,

customers were released into the network in the order ABCABCABC... Both input pohcies

were tested in conjunction with two priority sequencing rules: first-in first-out (FIFO) and

the shortest expected remaining processing time rule (SERPT), where priority is given to

the customer class k with the smallest value of X^,_2 M,k.

The scheduling policy proposed here is abbreviated in Table IV by WR(e, k),

WBAL(A'^*), and DRC (for dynamic reduced costs), where the workload regulating in-

put policy with parameters e and k dictates via (8.4) when a customer is to be released,

the workload balancing input heuristic with pju-ameter A'^* dictates the class of customer

to be released, and the priority sequencing policy is defined by the dynamic indices in (7.1)

and (7.3).
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statistics for a particular scheduling policy, which is a combination of a customer release

policy and a priority sequencing rule. For each policy tested, 20 independent runs were

made, each consisting of 5000 customer completions. The first 200 time units of each rim

was truncated to reduce the initial bias. The third and fourth coliunns give the average

throughput rate and average cycle time, respectively, over the 20 runs, cdong with 95%

confidence intervals. The parameters N, e, and k were chosen so that all scheduling policies

achieved the average throughput rate of .149 customer completions per unit time, which

corresponds to a server utilization of 89.4%. Recall that the objective is to minimize the

average cycle time subject to a given average throughput rate.

Referring to Table IV, it is seen that the scheduling policy proposed in this paper easily

outperforms all of the conventional scheduling rules. The policy offers a 28.8% reduction

in average cycle time over the (CLOSED,FIFO) case, which was its closest competitor.

It also achieved a 40.7% reduction relative to the (DETERMINISTIC,FIFO) case, even

though it is well known (see Whitt [23], for example) that reducing the variability in the

interarrival times of a queueing network will lead to improved performance.

The parameter value e = 1.5 corresponds to 15.0 units of unsealed work, which in

turn roughly corresponds to the amount of work for each server that is embodied in two

and one-half customers, since ii, = 6 for i = 1,2,3. The parameter value «; = 1.7 means

that the bounded region in Figure 6 was enlarged by 70%. The parameter value A'^* = ^
guaranteed that the actual entering fraction of each customer class was within .003 of the

specified target of g^,. = .333; in the simulation study, the resulting class mix was virtually

equal to the target mix.

11. Conclusions

In this paper we have considered the problem of how to dynamically release jobs
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(when and which class) and prioritize jobs in a multistation multiclass queueing network

with general service time distributions and a general routing structure. The objective weis

to minimize the long-run expected average hnear holding costs of customers, subject to

a specified average input mix and a constraint on the long-run expected average output

rate. Under baJemced heavy loading conditions, the scheduling problem was approximated

by a Brownian control problem, and a numerical solution to the workload formulation of

the control problem was obtained.

This solution was then interpreted in terms of the original queueing system in order to

develop an effective three-part scheduling policy. The first part is the workload regulating

input policy, which releases a job whenever the workload process enters a particular region.

The second part is the workload balancing input heuristic, which releeises the customer

class that will best balance the workload among the various bottleneck stations. The third

part is the priority sequencing policy, which assigns dynamic indices (based on dynamic

reduced costs from a linear program) to each customer class. A computational study was

performed that exhibited the policy's effectiveness.

Two related research topics are to prove a weak convergence result for the finite

difference approximation used in Section 5, and to develop an efficient algorithm to solve

the large linear program posed in Section 6. Also, the close relationship between the

problem addressed in this paper and the problem of priority sequencing in a multistation

multiclass closed queueing network requires further investigation. Finally, more numerical

studies need to be performed to better understand the behavior and robustness of the

proposed scheduling policy.

Appendix

Let the regions il/, / = 1, ..., 6 be defined as in the first column of Table II (with W{t)
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replaced by u'(t)). The release region (8.4) for the example in Section 10 is to release a

customer whenever the workload process w(t) enters ni</<6i?/, where Rj = RfDSf, and:

Si : wi{t) - 4u'2(0 + 42ti'3(0 < 390e, and

Wi{t)-W3{t) < 30k.

^2 : -W2(t) + 13w3it) < 120e,

wi(t) — W3(t) < 35k,

2wi{t) + W2{t) - 3w3{t) < 140k, and

-Wi{t) + 2u>2(<) - lV3{t) < ISOk.

53 : I39wi(t) - 18w2{t) - 44t('3(0 < 770e,

W2{t) — W3{t) < 95k, and

-wi{t) + W3{t) < 0;

or

lZ9wi{t) - I8w2{t) - 44u'3(0 < 770e, and

-Uwi{t) + 5w2{t) + 6w3{t) < 300k.

54 : ll«'i(0-4u)3(0 < 70e,

— u'i(i) + u'3(i) < 55k, and

wi{t) -W2{t) < 25k.

55 : W2{t) < lOe, and

Wi{t) -W2{t) < 15k.

56 : -wi{t) + 4u'2(0 + 2u'3(f ) < 50e, and

Wi(t) — W2{t) < 15k;

or

-wiit) + 4w2{t) + 2iV3{f) <50e,

-W2{t) + iC3{t) < 0, and
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Wi{t)-W3{t) < 30/c.
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