

i-w-vrvico - UtWfcr

/:>T

HD28
.M414

Oewey

MIT LIBRARIES

3 9080 00932 7468

Detection of Courtesy Amount
Block on Bank Checks

Arun Agarwal

Len. M. Granowetter

Amar Gupta

P.S.P. Wang

WP #3770 May 1993

PROFIT #93-09

Productivity From Information Technology

"PROFIT" Research Initiative

Sloan School of Management

Massachusetts Institute of Technology

Cambridge, MA 02139 USA
(617)253-8584

Fax: (617)258-7579

Copyright Massachusetts Institute of Technology 1993. The research described

herein has been supported (in whole or in part) by the Productivity From Information

Technology (PROFIT) Research Initiative at MIT. This copy is for the exclusive use of

PROFIT sponsor firms.

Productivity From Information Technology
(PROFIT)

The Productivity From Information Technology (PROFIT) Initiative was established
on October 23, 1992 by MIT President Charles Vest and Provost Mark Wrighton "to
study the use of information technology in both the private and public sectors and
to enhance productivity in areas ranging from finance to transportation, and from
manufacturing to telecommunications." At the time of its inception, PROFIT took
over the Composite Information Systems Laboratory and Handwritten Character
Recognition Laboratory. These two laboratories are now involved in research re-

lated to context mediation and imaging respectively.

'.•iASSACHuSEl-TS
hMSnrUTEOF TECHNOLOGY

^^y 231995

UBRAR/ES

In addition, PROFIT has undertaken joint efforts with a number of research centers,

laboratories, and programs at MIT, and the results of these efforts are doamiented
in Discussion Papers published by PROFIT and/or the collaborating MIT entity.

Correspondence can be addressed to:

The "PROFIT" Initiative

Room E5 3-3 10, MIT
50 Memorial Drive
Cambridge, MA 02142-1247
Tel: (617) 253-8584
Fax: (617) 258-7579
E-Mail: profit@mit.edu

EXECUTIVE OVERVIEW

Financial enterprises rely heavily on paper-based documents to conduct

various operations; this is true both for external operations involving customers

and other financial institutions, as well as internal operations involving various

departments.

Researchers at MIT have looked at the possibility of taking information

directly from paper documents, especially handwritten documents, to computer-

accessible media. Automated reading involves several steps as follows:

(i) Scanning of document;
(ii) Location of area to be "read";

(iii) Decomposing the selected area into separate characters;

(iv) Adjusting size and slant of each character;

(v) Recognizing each character; and
(vi) Testing whether input has been correctly read.

Based on several years of sustained research, the researchers have attained

very high "reading" speed and accuracy, even in situations where the quality of the

input material is poor. Patent rights for some of the new techniques have been

applied for. Sponsor companies are eligible to test the new techniques in their

respective environments at no charge.

The work performed so far is described in a number of published paper and

working papers. The list of working pap)ers is as follows:

IFSRC # 107-89 Optical Image Scanners and Character

Recognition Devices: A Survey and New
Taxonomy

IFSRC # 123-90R An Improved Structural Technique for

Automated Recognition of Handprinted Symbols
Revised October 1990

IFSRC # 124-90 Integration of Traditional Imaging, Expert

Systems, and Neural Network Techniques for

Enhanced Recognition of Handwritten
Information

IFSRC # 151-91 Handwritten Numeral Recognition Using

Dynamic Programming Neural Networks on an
Off-Line Basis

IFSRC # 1 62-91R Algorithms for Thinning and Rethickening

PROFIT 93-03 Binary Digital Patterns

Amar Gupta
Sanjay Hazarika
Maher Kallel

Pankaj Srivastava

Patrick S. P. Wang
Amar Gupta

Evelyn Roman
Amar Gupta
John Riordan

Ronjon Nag
Alexis Lui

Amar Gupta

M. Nagendraprasad

Patrick S. Wang
Amar Gupta

IFSRC # 173-91 A New Algorithm for Slant Correction of Vanessa C Feliberti

Handwritten Characters Amar Gupta

IFSRC # 214-92 An Algorithm for Segjnenting Handwritten

Numeral Strings

IFSRC # 21 5-92 A New Algorithm for Correcting Slant in

Handwritten Numerals

IFSRC # 218-92 A System for Automatic Recognition of Totally

Unconstrained Handwritten Numerals

IFSRC # 219-92 A Collection of Papers on Handwritten Numeral
Recognition

IFSRC # 261-93 An Adaptive Modular Neural Network with

Application to Unconstrained Character

Recognition

IFSRC # 287-94 An Integrated Architecture for Recognition of

PROFIT 93-04 Totally Unconstrained Handwritten Numerals

IFSRC # 288-94 Detection of Courtesy Amount Block on Bank
PROFIT 93-09 Checks

IFSRC # 289-94 A Knowledge Based Segmentation Algorithm For

PROFIT 94-1 4 Enhanced Recognition of Handwritten Courtesy
Amounts

Peter L. Sparks

M. V. Nagendraprasad
Amar Gupta

M. V. Nagendraprasad
Amar Gupta
Vanessa Feliberti

M. V. Nagendraprasad

Amar Gupta

LikMui
Arun Agarwal
P. S. P. Wang

Amar Gupta
M. V. Nagendraprasad
A. Liu

Amar Gupta
S. Ayyadurai

Arun Agarwal
Len M. Granowetter

Amar Gupta
P. S. P. Wang

Karim Hussein
Amar Gupta
Arun Agarwal
Patrick Shen-Pei Wang

The research has been funded by a number of organizations, via the

International Financial Services Research Center (IFSRC) and the Productivity from

Information Technology (PROFIT) Initiative. Individuals in such sponsor

companies should contact their designated contact person at MIT to receive copies of

the papers, and the software developed at MIT.

The Principal Investigator for the imaging area is Dr. Amar Gupta, Co-

Director, "PROFIT" Initiative, MIT Sloan School of Management, Room E53-311, 77

Massachusetts Avenue, Cambridge, MA 02139, USA; Telephone: (617)253-8906; Fax:

(617)258-7579; e-mail: agupta@mit.edu. Your comments and suggestions are

encouraged.

Detection of Courtesy Amount Block on

Bank Checks

Arun Agarwal* Len M. Granowetterj Amar Gupta*

P. S. P. Wangt

Abstract

This paper presents a multi-staged technique for locating the cour-

tesy £iinount block on bank checks. In the case of a check processing

system, mfiny of the proposed methods are not acceptable, due to the

the presence of mainy fonts and text sizes, eis well as the short length

of many text strings. This paper will describe pzirticular methods cho-

sen to implement a Courtesy Amount Block Locator (CABL). First,

the connected components in the image are identified. Next, strings

are constructed on the basis of proximity and horizontal alignment of

characters. Finally a set of rules and heuristics are applied to these

strings to choose the correct one. The chosen string is only reported

if it passes a verification test, which includes an attempt to recognize

the currency sign.

1 Introduction

Trillions of dollars change hands each year in the form of handwritten or

machine printed bank checks. Currently, several steps involved in processing

the check are done by computers. The number of the account from which a

'Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA
02139.

' Department of EE and CS, Massachusetts Institute of Technology, Cambridge, MA
02139.

^College of Computer Science, Northeastern University, Boston, MA 02115.

check has been drawn and the bank code are encoded in magnetic ink at the

bottom of a check to facilitate this process. One step in the process that is,

for the most part, still done by people is the identification of the dollar (or

other unit of currency) amount for which the check has been written. Bank

employees read the amount, usually from the courtesy doUar amount box,

enter these data into a computer system, which then prints the amount in

magnetic ink at the bottom of the check. From this point on, processing can

be automated.

In recent years, Optical Character Recognition (OCR) technology has

evolved to a level that would allow automation of the process of converting

the written or printed image of the numerals in the courtesy dollar amount

box to a machine understandable form [15] [4] [12]. The implementation

of OCR systems tailored to the job of recognizing the courtesy amount on

checks would greatly facilitate the design of a completely automated check

processing system.

One reason why the use of such systems has not become widespread in

this country is that checks do not conform to a single standard. Checks come

in a variety of sizes, ajid the courtesy amount is not located in the same place

on all checks. Some courtesy amount recognition systems under development,

including the one being developed by MIT's OCR group [11, 18, 17, 16], will

achieve reasonably accurate results when the input presented is either the

image of the courtesy amount only, or an image of the entire check along

with explicit information as to the exact location of the courtesy amount

block.

The purpose of this paper is to describe a Courtesy Amount Block Lo-

cator (CABL) subsystem for use in a robust, completely automated amount

recognition system. The CABL has been designed to construct a high level

representation of the structure of a check image, and to locate the courtesy

amount. Once these tasks are accomplished, the rest of the system can seg-

ment the amount into individual digits and symbols, and recognize the digits

and determine the amount for which the check had been written. Actually,

the CABL not only performs the task of locating the amount, but also sim-

plifies the preliminary phase of the segmentation task, that is, identification

of the connected components of the amount [18].

The processing of bank checks is one application of the broader technology

of document understanding. Section 2 describes methods currently used in

Document Understanding Systems (DUS's). Section 3 provides a description

of the CABL subsystem that has been designed for use in MIT's OCR group's

check processing system. Section 4 discusses some of heuristics that can be

applied to the specific problem of locating the courtesy amount block within

a check image. Section 5 outlines the performance of the CABL on actual

check data, in terms of both speed and accuracy.

2 Document Analysis

2.1 Background

There are a variety of document forms that may constitute the input to a

Document Understanding System (DUS). The DUS may be designed to uti-

lize certain known constraints on the document format. Many forms restrict

the writer to using black pens. Often there are guidelines to help align written

text with the margins of the page, and to fix the location where a particular

piece of information is to be recorded. Sometimes there are boxes to con-

streiin the length of a piece of data, or the height of individual characters.

More constraining than this, there may be individual boxes for characters,

with instructions to print one character per box. A guide to forming letters

in print may appesir, restricting the general shape of a letter or number, but

not removing variation due to a particular person's penmanship. If the DUS
were designed to understand the information a writer is trying to convey

in a totally unconstrained document, there would be no restriction on the

information that is presented in the document. The system would have to

account for meiny different stylus types and colors, variations in size of print,

texture of the surface, location of important data, a^ well as other variables.

Most forms that aire subject to machine analysis fall between these two

extremes. Before such documents cjin be analyzed and understood, several

preprocessing steps, namely binarization [20], noise reduction [10] and form

line removal [2] stages have to be applied to reduce the amount of redundant

information.

2.2 Extraction of Data

Since the purpose of this paper is to develop a system that recognizes the

courtesy amount on checks, attention will be focused on existing methods

that extract just text. Two approaches are now discussed that are available

to locate bits of relevant text in an image.

2.2.1 Bottom-Up Segmentation

In a bottom-up method [19, 20, 9], characters are first located. These char-

acters are then grouped together to form words and lines. Bottom up ap-

proaches, however, may be more robust when faced with noise, and document

skew [8]. The character location process and the character grouping process

are discussed in the following sub-sections.

Character Location There are two typical methods for locating charac-

ters: a stroke method and a connected component method. The rest of this

sub-section describes these two methods in more details.

Stroke Method: An algorithm suggested by Srihari [19] first computes run-

lengths. These runs represent a horizontal slice of a verticcd or slanted

handwritten stroke (assuming that most of the data on the page is

handwritten or printed text). If one now examines the length of all of

the horizontal runs which have lengths between 3 and 20 pixels, one

can determine the average thickness of a handwritten stroke on that

particular document. Next, sets of 3 or more runs that approximate

this length, and are vertically connected to each other, are grouped

together to form complete strokes. These primitive strokes are then

grown by adding adjacent runs that satisfy a more relaxed criterion.

The length of these additional runs need not be as close to the average

stroke width as the runs that make up the original backbone of the

stroke. This process is repeated until no stroke can be grown any

further. Strokes are then grouped together to form characters, words

and blocks on the basis of proximity atnd size.

Connected Component Method: Other common bottom-up segmenters start

by identifying the connected components in the image [20, 9]. This

can be accomplished using a depth first search of black pixels, using

8-connectivity or 4-connectivity as an adjacency criterion. These con-

nected components can be represented by their minimum bounding

rectangles (MBR's). An MBR is the smallest rectangle whose sides are

Figure 1: Minimum Bounding Rectangles (MBR's) for Several Characters

peirallel to the boundaries of the image that encloses the component

(See Figure 1).

Depending on a particular application, some components may be re-

jected based on their size or shape. For instance, a component with

an aspect ratio (height / width) of .02 cannot possibly be a character.

In addition, if most of the components in the image have cin area of

about 500 pixels, a component that has an area of 10,000 pixels can be

discarded as a graphic or other non-character piece of data. Fletcher

and Kasturi [9] accept or reject each component as a character on the

ba^is of its size, black pixel density, aspect ratio, area, and position in

the image.

Character Grouping:
The next step is the grouping of characters to form words and lines. One
simple way is to just group together characters that are adjacent to each

other horizontally, and are of similar shape and size [20]. If there is skew

in the image, however, or if the document is sloppily handwritten so that

neighboring cheiracters are not necessarily directly horizontally adjacent, a

different approach is necessary.

The Hough transform [7, 10] can be applied to the centroids of all of the

characters. Through this method, one can determine which characters in the

image are nearly coUinear. Characters which aire closer thain some threshold

distance to each other, and are also nearly collinear can be assumed to belong

to the same string, or line of text [9].

2.2.2 Top-down Approaches

In a top-down method, the system tries to determine the overall structure

of a page, then breaks this down into regions, lines, words, and possibly

characters. Top down approaches tend to be less computation«dly intensive,

since they deal mainly with image blocks that are larger, but fewer in number.

Two techniques that are useful in this process are smearing and smooth-

ing. Downton and Leedham [5, 6] have developed a system to locate the

address block on a piece of mail. As a first step, the image is smeared

horizontally. The effect here is that adjacent characters and words become

smeared into one another. Now, when connected components are extracted,

they will be few and large. Fisher et al. [8] suggest choosing the smearing

factor dynamically, based on the average interline and intercharacter spac-

ings in the image, to be sure that image items are grouped together in the

optimal manner.

Smoothing is similar to smearing. If the resolution of the image is lowered,

and the values assigned to the new larger pixels are determined as a function

of the values of the high resolution pixels they encompass, the connected

components in the low resolution image will represent the large elements of

the image, such as words or blocks.

Many of these common document understanding methods discussed above

assume that the input document consists mostly of dense lines of text, in a

small number of type sizes. Since a check does not fit this description due

to the presence of many fonts and text sizes, as well as the short length of

many text strings. Therefore, modification of these methods was necessary.

The next section will describe particular methods chosen to implement a

Courtesy Amount Block Locator (CABL). In actuality, the GAEL is a small

part of a much larger system designed to determine the amount for which a

check has been written, given only the image of the check as input.

3 A Courtesy Amount Block Locator

The job of locating the courtesy amount block was divided into several steps,

designed to systematically decrease the amount of information required to

represent a check, so that computation becomes manageable. A check is

initially represented by its bitmap. If the resolution of scanning is 300 dots

per inch (DPI), a typical check involves 1.5 million pieces of information.

A set of connected components in the image is generated, so that there are

typically only about 300 chunks to deal with. Finally, the components are

grouped into strings, of which there may be about 30. Once the check is

characterized by a manageable amount of data (the list of about 30 strings),

the heuristics described in Section 4 can be applied.

3.1 Extraction of Components

Assuming good thresholding, most of the black pixels in a check image will

correspond to text characters. Text characters wiE, in general, be individual

connected components, islands of black pixels in a sea of white. Therefore,

identifying connected components in the image is a good way to start the

process of developing a high level representation of the information on the

check.

The method chosen to extract connected components from the image was

a depth first search. A Depth First Search (DFS) for blocks of black pixels

can be computationally intensive, so an intermediate representation of the

image was used. The bitmap was converted to a set of horizontal runs of

black pixels, before the DFS was applied. Section 2.2.1 described the use

of run length representation for a slightly different purpose by Srihari. This

is a common way of reducing the amount of information used to represent

the image [13]. Since black pixels on a check are relatively sparse, there

might only be 10,000 runs, as opposed to the 1.5 million pixel intensities.

Moreover, as DFS is linear in the number of pieces of information through

which to search, computational complexity is decreased markedly through

the use of this representation.

The DFS implemented is a modification of the generic Depth First Search

algorithm described in [3, p. 478]. The pseudocode for implementing the DFS
is shown below.

DFS(runlist)

•C

ListOfComponents = NULL;

for (each run R in runlist)

R->status = NOT.SEEN;

for (each run R in r\mlist)

if (R->status == NOT.SEEN)

•c

Component = EmptyComponentO ;

Visit (R, Component, runlist);

/* Sets Component to be the connected component containing R */

AddToList (ListOfComponents, Component)

;

}

}

Visit (R, Component, runlist)

c

R-> status = SEEN;

AddToComponent (Component , R)

;

CurrentRow = R->row;

for (each rain Rl in runlist such that

Rl->row == CurrentRow +111 Rl->row == CiirrentRow - 1)

/* all runs in the row above R, and the row below R */

if (Rl->8tatU8 == NOT_SEEN kk Adjacent (R, Rl))

{

AddToComponent (Component , Rl)

;

Visit (Rl, Con^onent, runlist);

}

>

Adjacent (Rl, R2)

<

startRl = Rl->left;

startR2 = R2->left;

finishRl = Rl->right;

finishR2 = R2->right;

if (finishRl >= startR2 - 1 ft* startRl <= fini8hR2 + 1)

8

a)

b) c) d)

Figure 2: a,b,c) Examples of adjacent runs, d) One connected component.

/* The +1 and -1 implements the check for 8-connectivity rather than

4-connectivity */

return (TRUE)

;

else

retum(FALSE)

;

The horizontal rows above sind below the current run are scanned for

runs that are adjacent to the current run, Jind have not been seen yet. The
adjacency criterion for two runs is described pictorially in Figure 2. A DFS
through the list of runs with these criteria is equivalent to a DFS through

the set of original pixels, using 8-connectivity as the adjacency criterion.

The result of this computation is a set of connected components in the

check image. Most of these components correspond to individual characters,

either handwritten or machine printed. Some will actually be pieces of a

character that were somehow not connected to the rest of the character,

others will be comprised of several characters that touch each other, and

still others will consist of graphics, lines, or other non-text items. It is also

possible that some characters may be grouped together with blacks lines

9

m
Figure 3: Non-character connected components

which they touch. Figure 3 depicts connected components corresponding to

different image elements.

An attempt is made to weed out non-text components, by eliminating

components with an aspect ratio (width/height) larger than 15. This should

exclude the long lines on a check from consideration. This pruning value was

not made too small, in order to reduce the likelihood of incorrectly removing

any piece of the courtesy amount from consideration. If any digits touch a

line or box around the amount, the aspect ratio of the associated component

may be quite high. However, it is unlikely to be greater than 15.

It may seem as though components whose aspect ratios are too small

should also be eliminated. This is not done, for feax of removing the digit

'1' from the courtesy amount. We also do not try to remove very small

components which could represent noise in the input, for fear of eliminating

a decimal point from the courtesy amount, the presense of which may later

be a strong indication that a particular string is the courtesy amount.

3.2 Generation of Strings

Many of the character grouping methods described in Section 2.2.1 may not

be well suited to the check understanding problem. On a document such as

a page of text, there are usually just one or two fonts or type sizes. There

are also many lines of text, words and characters. Therefore one can use the

10

average intercharacter gap and interword gap to classify characters as part

of distinct strings. On a check, there may be ten or more fonts, in many
different sizes. In addition, handwriting size may vary depending on the

amount of space given for a particular piece of handwritten data. For these

reasons, the intercharacter gap and interword gaps may not be well defined

entities. This makes character grouping a difficult endeavor.

Lam et aJ. [14] recognized a similar problem in the domain of automated

reading of newspaper text. Like check images, newspaper pages contain many
different type sizes. Lam et al. take a loccd average of the intercharacter

and interword gaps in different areas of the page, and use these data to set

dynamic proximity thresholds for character grouping. Even this method is

not well suited to the check problem. The check understanding problem has

the added difficulties that there may be some fonts which are represented

only by three or four characters, and that text is sparse, as compared to text

on a newspaper page.

The use of the Hough transform is suspect as well, due to the fact that

many of the strings on a check are just two or three characters long. Any two

characters will be collinear, not just the ones that together comprise a string.

Moreover, a handwritten string of just three or four characters, such as the

components of the date, or the courtesy amount, may not exhibit enough

collinearity to be selected as part of the same string by a Hough transform

based method. Mathematical methods like this are better suited to problems

that involve many data points, such as characterizing a fuzzy edge, filling in

the gaps in a broken line [10], or grouping together many characters of the

same size and font that make up an entire line of text on a page.

The available approaches for grouping characters into strings make de-

cisions on the bases of horizontal alignment of characters and proximity of

adjacent characters. They differ only in their methods of determining these

characteristics. The approach chosen for this system takes advantage of sev-

eral pieces of information. First, it is not necessarily important that individ-

ual words are discovered. If a person's name appears on a check, it does not

matter much whether first, middle and last names are grouped together eis

one string or not. The only important thing is that the digits And symbols in

the courtesy amount be grouped together into one string, and that the string

does not contain any characters that are not pairt of the courtesy amount.

For these reasons, the following methods were chosen. As a measure of

horizontal collinearity of two characters, that is, whether or not they are

11

part of the same line of text, the only requirement is that the centroid of one

of them horizontally projects onto some part of the other. An aJternative

test that was considered was, whether any part of one character horizontally

projects onto any part of the other. This approach was not chosen due to

the high likelihood that it wiU erroneously group together two strings that

do not belong together.

The other variable that needed to be measured was proximity. As men-
tioned above, in order to be considered part of the same string, the proximity

that two characters must have to each other depends on the font, and type

size of the characters. Since there are so many different sizes and fonts on

a check, a global proximity threshold was not used. Instead, a proximity

threshold that depended on the size of the characters involved was consid-

ered. Characters in smaller typefaces need to be closer together in order to

be considered part of the same string, as compared to characters in a larger

font.

It was determined that the height of a character was a more accurate

representation of its size than its width, for several reasons: first, certain

letters or numbers, e.g. i, I and 1 have widths that do not accurately reflect

the font size. Second, it is possible that some of the connected components

are not really characters, but rather two or more characters that overlap or

touch each other. These components will have a height, but not a width

that accurately reflect the size of the font. As a result, a possible proximity

criterion would be that a connected component must be within a distance

equal to its height from its closest neighbor, to be considered part of the

same string as that of its neighbor.

At first glance, this appears to be an appropriate proximity threshold;

however, a problem exists when a period or decimal point is encountered.

These components have very smcdl height, so it is unlikely that there will

be any neighboring characters within this distance from it. Given the high

likelihood that a decimal point occurs within the courtesy amount, and the

importance of correctly grouping the connected components that comprise

the coiixtesy amount, this problem was treated directly.

The approach that was finally chosen for computing a proximity threshold

is outlined below.

TliresholdCConponent , ConiponentList)

12

a) b)

Figure 4: a) Distance between digits, b) Distance between MBR's

Avg = Average height of all connected components in ComponentList;

emswer = 2/3 * Avg + 1/3 * Height (Component)

;

retum(ans9er)

;

A global proximity threshold is not used, rather, a threshold is computed

for each chajacter, as the weighted average of the character's height, and the

average height of all of the characters in the image. A character C is put into

a string with its neighbor if the neighboring character is horizontally aligned

with it, and the distance between them is less than the proximity threshold

associated with C. Therefore, characters in a larger font caji be farther apart

than characters in a smaller font, emd still be grouped together.

Once a definition of the proximity threshold was achieved, the method of

measuring distance between two characters was considered. It was decided

that proximity would mean horizontal distsmce between the MBR's of the

characters, as opposed to the minimum horizontal distance between pixels

actually on the digits. The reason for this is shown in Figure 4. In the

number i7, if the crown of the 7 is higher than that top of the 1, the minimum

horizontal distsmce between pixels on the digits will be much larger than the

real intercharacter gap of the typeface.

13

The proximity and horizontal coUinearity criteria described above were

implemented as follows. An image was created conteiining only rectangular

boxes representing the MBR's of the originail image (see Figures 6 and 5).

This image will be referred to as the highlight image. Before the highlight

image is created, connected components that have a width to height ratio

greater than 15 are discarded. In order to locate the strings in the image

according to the horizontal alignment and proximity criteria outlined above,

the following smearing algorithm was applied.

SmeeurCHighlightlmeige, Con^onentList)

•c

for (each con^onent C in ComponentList)

{

Thresh = Threshold(C, ComponentList);

VertCenter = (C->bottoni + C->top) /2;

/* Search right */

for (X = C->right + 1 to C->right + Thresh)

if (PixellsSet (Highlight Image, X, VertCenter))

C

/* then there is another MBR aligned and close enough.

Draw a line connected the two MBR's */

AddRundmage, (right+1, VertCenter) (right + Thresh, VertCenter));

}

/ Search left */

for (X = C->left - 1 to C->left - Thresh)

if (PixellsSet (Highlight Image, X, VertCenter))

C

AddR\m(Image, (left - Thresh, VertCenter) (left - 1, VertCenter));

}

>

>

Horizontal lines were added to the highlight image connecting MBR's of

characters that should be grouped into the same string. (See Figure 7).

This process is reminiscent of a smearing process such as the ones described

14

in section 2.2.2, in that its object is to create larger connected components
which represent entire strings in the image.

For each connected component in the smeared highlight image, a string

is constructed by grouping connected components from the originai image
together, if their MBR's are contained within the connected component.

Before the strings are built up, any connected components in the smeared
highlight image that have too small of a height to be anything but noise are

removed. We no longer have the danger of inadvertently throwing away
periods or decimal points, since those meaningful marks must occur within

strings, and will be part of a connected component that is much larger.

Once the grouping process is complete, the check is represented by a list

of strings. The grouping of characters into strings can be seen in Figure 8.

4 Understanding Image of Bank Check

Before implementing a system to recognize the courtesy amount block on

a bank check, one must decide what assumptions can be made about the

input, for what problems one must account in the process, and around what

constraints one must work. Unfortunately, the format of checks is not so

strictly regulated as to make the amount recognition process, or even the job

of locating the courtesy amount block, trivial. Most checks fcdl vathin certain

size restrictions, although there is no specific size that a check must be. In

the United States, there are at lejist three accepted sizes for bank checks;

however if one is considering checks from Jiround the world, many other sizes

are possible. This makes it impossible to just look at one particular location

in the input image to obtain the courtesy amiount block.

In the United States, a check is valid only if it contains the date, the

amount of the check in words and numerals, a signature, and an indication as

to whom the check has been written. Most checks also contadn the account

number of the writer, machine printed in magnetic ink by the bank who
issued the checks. In other nations, these constrciints may not be valid, or

cJternatively, may be too weak. In France, for example, the amount for which

the check is being drawn must be written in numerals in two sepairate places.

Mainy countries require that the courtesy amount block appear on the right

hcdf of the check. There axe exceptions to this rule as well.

15

m

amsm
iisl
DQ S B)

"

aSsi

u-r

ta

^

w

Sis

ED
m

CD

Figure 5: MBR's of Connected Components Overlaid on Original Image

16

u
1 1

n

[]

l]

M
11

D

m
[]

c:
CD

C]

c:
CD

c:

C 3

CD
C3

Figure 7: The 'Smeared' Highlight Image

18

Figure 8: Boxes around Strings of Components

19

4.1 Heuristic Rules

In order to simplify the implementation of a courtesy amount block recogni-

tion system, as well as to boost the accuracy of the system, it is necessary

to provide a context which will guide the system's search. This context will

take the form of heuristic rules.

The heuristics have been divided into two categories. The first set is for

distinguishing between handwritten and machine printed text. The second

set is for identifying the courtesy amount block, irrespective of whether the

amount has been machine printed or handwritten. Problems foreseen in using

each heuristic are also described.

4.1.1 Locating Handwritten Strings

1. If adjacent connected components overlap, then the block is handwritten

Machine printed text consists of characters separated by vertical lines

of white pixels. Therefore, the MBR's surrounding adjacent charac-

ters will be non-overlapping. In unconstrained handwritten numerical

strings, however, the right end of a character may appear in the same

vertical column as the left end of the next character (See Figure 9). In

this case, the MBR's surrounding the two characters will overlap (Fig-

ure 10). This overlap is a strong indication that a particular string is

handwritten.

An exception to this occurs when there is a large skew in the input.

Then, MBR's of adjacent machine printed characters may overlap (See

Figure 10). To prevent this, skew correction [1] can be done prior to

the application of this rule.

2. There is less regularity in handwritten text than in machine printed text

This regularity is manifested in many ways. The bottommost points of

ail of the characters in a machine printed string will lie on a straight

line. Methods for determining whether there is enough regularity in a

string to say that it is indeed machine printed include the use of the

Hough transform [9] and histograms [20]. Some measure of regularity

may also be used with respect to the width of characters, the height of

characters, and the average pixel density.

20

a) b)

Figure 9: a) Vertical overlap in handwritten characters, b) A vertical line of

white space between printed characters.

*">

a) b)

Figure 10: a) Intersecting MBR's. b) Intersecting MBR's of printed charac-

ters with large skew.

21

3. Handwritten text is in a different color than machine printed text

Any check contains material preprinted on it by machine. This includes

the guidelines on which to write, the number of the check, the century

indicator on the date line, and the bank account information at the

bottom. In a gray scale image, one can obtain a histogram to determine

the most common intensity level of text on the check. If one assumes

that the most common intensity level will correspond to the color of

the machine printed text, text that has a significantly different intensity

level can be assumed to be handwritten.

4. Some characters are connected to each other in handwritten text

Unconstrained handwriting can be very sloppy. When writing quickly,

adjacent characters can be inadvertently connected to each other. If

this occurs, the two will be identified together as one character by a

connected component extraction algorithm. This character will have a

width that is much larger than the widths of the other characters in

the string.

This heuristic is risky as weU. Due to imperfections in the scanning,

smoothing and other preprocessing of a check image, it is possible for

two adjacent machine printed characters to appear connected when

they are in fact merely very close to each other.

4.1.2 Identifying the Correct Block

In this section, heuristics are outlined for labeling one of the strings on the

check as the courtesy amount block. If the check is handwritten, the heuris-

tics above can be used to locate all of the handwritten strings. Then the

following heuristics can be applied to only those strings that are handwrit-

ten. If the check is machine printed, they may be applied to all of the strings,

since the handwriting locators above would have failed to eliminate any string

from consideration.

1. The courtesy amount should have at least 2 characters

In US, the courtesy amount usually includes the dollar and cent values

for which the check has been written. Therefore the amount contains

at least two characters, usually at least three, since checks are seldom

22

written for less than a dollar. Even when other units of currency are

used, there is usually an integer part and a fractional part.

2. A box may surround the courtesy amount

On many check formats, a rectangle denotes the area on the check where
the courtesy amount should be written. If this rectangle is a black box
that is dark enough to be identified as a connected component, the

courtesy amount block can be chosen as the one string that appears

completely within another connected component. The difficulty with

this heuristic arises when the written amount overlaps, departs from,

or makes contact with the box. Then, the offending character(s) will

be grouped together with the box as one connected component. In this

ca^e, the form lines must be removed [1].

Usually, the rectangle will be light enough so that it will be considered

to be a part of the background by the thresholding algorithm. In this

case, the rectangle can still be identified if the origincd gray scale image

is used.

3. A decimal point may appear in a courtesy amount

A decimal point is fairly easy to distinguish within a string. It may be a

connected component within a string that has smaller dimensions than

the others. It also must appear in the bottom portion of the string.

Unfortunately, small stray marks or noise may be identified as decimal

points AS well.

4. There are two digits after the decim,al point in courtesy amount

This heuristic combats, to some extent, the problem described with

the last heuristic. The decimal point in a courtesy amount is not in a

random location, as a stray mark may be, but rather to the left of the

rightmost two characters in the string.

5. Some digits may be smaller than others

Very often, a person will write the numerals denoting the fraction

amount in a smaller size than the whole zmiount. For example, the

cents amount (or fractions of other units of currency) may also occur

23

above other characters, e.g., ^. By analyzing the positions of the var-

ious characters in the string, and their relative sizes, one can determine

whether a fraction appears in a string.

6. Other Blocks May Be In Cursive

Handwritten portions of the checkin areas other than the courtesy

amount block may be written in cursive style. Examples are the signa-

ture, the payee, and the courtesy amount in words. Cursive strings will

be extracted as single connected components, rather than as strings of

adjacent components. Since the courtesy amount will be a string of

adjacent characters, these longer cursive components can be rejected.

7. The date will appear above the courtesy amount

On most checks, the date appears above the courtesy amount block.

Even if it is not directly above the amount, the date is usually closer

to the top of the check. Therefore if two strings are both likely to be

numeric strings about 6 characters long, the one further down from the

top of the check is more likely to be the courtesy amount.

8. The date has distinguishing characteristics

The date on a check has two characteristics that distinguish it from the

courtesy amount. First, the date may contain several short handwritten

strings of one to four digits, separated by a machine printed string.

(Many checks print the first two digits of the year on the check.) In

addition, the date may be written in a smaller size than the courtesy

amount, and generally contains shorter strings.

9. The courtesy amount is in a particular general location

This heuristic vnil only work for checks of certain countries. Many
countries, including the US, have the courtesy amount appearing on

the right half of the check, and near the center of the check in the

vertical direction.

24

4.2 Using Redundant Information

4.2.1 Arriving at a Consensus

The preceding section listed many heuristics that can be applied when at-

tempting to locate the courtesy amount block. Though only few of them
may suffice to identify the correct block, the use of redundant information

serves to improve the chances that the chosen block is the correct one.

The likelihood that a particular string is indeed the courtesy amount
depends on the number of tests that the string passes. It is possible that

one, or even several of the heuristics will point to an incorrect choice. When
many rvdes are applied, however, the hope is that the correct choice will be

clear. If no block is clearly of a higher likelihood than the others, the check

can be transmitted for analysis by human operators, without a choice being

made. The use of redundant information is necessciry because significant

variability exists, and the consequences of an incorrect choice are severe.

As the system is tested on check data, it can be determined what heuris-

tics are most accurate at locating the correct block. The results of those

heuristics can be given a greater weight in choosing the courtesy amount

block.

4.2.2 Verification

Once a choice has been made, further verification can take place. Again, this

is warranted by the fact that these heuristic methods are subject to a great

degree of variability, headed by the problems described above with each rule.

The following rule can be used to verify the choice of string: A dollar sign,

or other special character will appear to the left of the courtesy

amount
Most checks will have a machine printed dollu sign, (or pound mark,

etc.) on the check. In addition, a number of individuals write their own

dollar sign out of force of habit.

When a string has been chosen, the system can find the string to the left

of the chosen string, Jind determine if that string contains only one character.

If only structural information is to be used, the verification routine can use

the knowledge that there is indeed a lone symbol to the left of the chosen

block. The foUoMring algorithm may be used to determine which string is the

one to the left of the chosen string.

25

GetLeft (string, Stringlist)

{

LeftString = NULL;

VertCenter = (String->top + String->bottom) / 2;

for (each string S in Stringlist)

C

if (VertCenter is Between S->top emd S->bottom tk

S->right < String->left)

if (LeftString == MULL I I

S->right > LeftString->right)

LeftString = S;

}

retiim (LeftString)

;

}

Alternatively, a simple symbol recognizer can be used on that lone symbol

to determine if it is indeed a currency notation symbol such as a dollar sign.

A neural network can be trained to recognize a dollsir sign, <is well as currency

symbols from other nations. The neural network can be of the same variety

that will eventually be used to recognize individual digits of the courtesy

amount.

5 Results and Discussion

5.1 Choosing a Block

Once the set of strings is determined Section 3, application of the heuristics

described in Section 4 can begin. Associated with each string is a likelihood

value, representing the likelihood that that pairticular string is the courtesy

amount block. InitizJly, all likelihood values are set to zero. As the heuristics

are applied to each string, the string's likelihood value is incremented for each

test passed by the string.

Heuristics 1 and 2 from the handwritten string location set have been

implemented from the data structures involved. For Heuristic 2, the test for

regularity involves determining whether the bottom of any character in the

string deviates from the bottom of any other by more than 1/4 of the average

26

character height. Heuristic 3 could not be applied, since color or gray scale

images were never used. Heuristic 4 was determined not to be reliable enough

for use in the system. Machine printed characters too often appeared to be

connected due to low image resolution.

From the correct block identification set, the result of Heuristic 6 is

achieved implicitly through the implementation of Heuristic 1. Strings writ-

ten cursively should contain only one connected component. This string will

fail the test of having at least 2 or 3 components. Most of these heuristics

are based on the structure of the string, or of the connected components

contained within it, and therefore involve simple computation of sizes, po-

sitions, and numbers of characters. The heuristics involving distinguishing

characteristics of the date were not implemented due to the variations in the

appearance of the date. Depending on how it is written, it may appear as

one, two or three separate strings.

5.2 Verification of Block Choice

After all of the heuristics above are applied, the string with the highest likeli-

hood value is extracted. This string S becomes the subject of the verification

process described here. If the choice is verified, S is returned by the CABL
as the correct courtesy amount string. If it is not, NULL is returned.

Verify(String, StringList)

c

/* String has a higher likelihood than any other in StringList */

Left = GetLeft (String, StringList);

if (Left ->NuinberOfCharacters ==1)

<

TheChar = FirstCharacter(Left)

;

if (AspectRatio (TheChar) is between .5 and 2.0)

<

/* there is a character to the left of the chosen string

that has the dimensions of a currency sign */

String->likelihood = String->likelihood -• 1;

if (IsCurrencySign(TheChar))

retum(VERIFIED) ;

27

/* Check if the first cheuracter of String is a currency sign */

First = FirstCh8a"acter(string)

;

if (IsCurrencySign(First)

)

return (VERIFIED);

else

c

/* Ceoi't find a currency sign. Verify only if no other string has

a likelihood within 3 of String's likelihood */

for (each S in Stringlist besides String)

c

if (String->likelihood - S->likelihood < 3)

retum(NOT_VERIFIED)

;

>

return (VERIFIED)

;

}

}

First, the string closest to the left of S is determined, using the algorithm

described in Section 4.2.2. If this string contains only one chairacter, and

that character hcis an aspect ratio that makes it likely to be a doUar sign or

other special currency symbol, the likelihood of that string is incremented.

Now, one would like to verify whether or not this single character is indeed

a doUar sign. A neural network recognizer was trained to recognize dollar

and other currency signs. If the results suggest that it is indeed a correct

sign, the choice is verified.

If the recognizer can find no currency sign, another decision must be made.

Is the CABL confident enough in its answer even without this verification,

to report that string S is the courtesy amount? If the difference between

the likelihood of string S ajid any other string is less than 3, the confidence

level is not very high. String S is not a clear choice so the string is rejected.

However, if no other string has a likelihood within 3 of that of string S, S is

verified.

28

5.3 Testing

Preliminary testing of the CABL described in Section 3 was conducted in the

following manner. Test images of US and British Checks were input to the

system. Key features of the image were varied among the tests. For example,

some of the courtesy amounts included decimal points, while others included

fractions. The dates were written in several different fashions. The dollar

amount in words sometimes included a fraction, and sometimes contained a

line at the end of it. Often, words or digits extended below form lines on the

check. The payee was written in either cursive style or in print.

Results of these preliminary tests were very promising. Out of 54 U.S.

checks, the dollar amount was correctly located 51 times. On the three

checks, the string generator did not correctly group together all digits in the

dollar amount. The four digits of the integer dollar amount were grouped

together, and that string was reported as the dollar amount. The cents part,

which was written in the form of a fraction, was grouped as a separate string.

The CABL correctly located the courtesy amount block on 9 of the 10

British checks. The decimal point followed by two digits was a strong cue in

that check, however only an integer amount appeared on the check which was

not correctly analyzed. The CABL reported that a choice could not be made
from this image. In no case was a string reported as the courtesy amount

that had been incorrectly identified.

5.4 Performance

The images were originally scanned at 300 DPL A typical check is approx-

imately 2.75 inches by 6 inches, so that at least 1.4 million bits are needed

to store the image. If gray scale is used, that number increases to about

1.5 million bytes. The CABL was implemented in C on UNIX workstations.

The time necessary just to read Jin image file 1.5 megabytes long from disk

was approximately 30 seconds. The application of the all of the algorithms

and heuristics took several minutes to complete. Since it takes a human an

average of 4-8 seconds to locate and recognize the courtesy amount [15], these

times are unacceptable.

In order to decrease both computational intensity Jind storage required for

the image files, the images were converted to 100 DPI. The CABL required

a more reasonable several seconds to correctly locate the courtesy amount in

29

an image of this size.

5.5 Future Improvements

5.5.1 Generation of Strings

Improvements can be made on many of the methods used in the implemen-

tation of the CABL. Currently, the only way these lines are eliminated from

consideration is by discarding connected components that have a width/height

ratio greater than a threshold value. However, if some text character touches

a line, or passes through it, it will be part of a connected component with the

line, and may be discarded as well. Therefore, line removal as a preprocessing

step would add to the robustness of the system.

One place where improvement may be necessary is in the grouping of

connected components to form strings. An optimal solution to this problem

must involve feedback from a character recognizer. This can be verified by

looking at the highlight image of a check, that is, an image containing only

MBR's of characters that appeeired in the original check image. When one

looks at such an image, which is devoid of semantic information, it is often

impossible for a human to decide which MBR's should be grouped together

into a string.

5.5.2 Application of Heuristics

The likelihood value associated with each string depends on which tests the

string passes. A weighting factor was given to each heuristic, based on an

informal survey of types of checks and types of writing that are likely to be

encountered. A more rigorous method of assigning weighting factors to the

heuristics would make the heuristics more reliable.

There is also room for improvement in the heuristics themselves. More

complicated heuristics can be developed to try to classify each string on the

check as part of some structural piece of the image, e.g. the date, courtesy

amount, signature. In this way, the CABL can be less likely to return a

partial string, incorrect string, or string that includes parts of more than one

structural element of a check.

The neural net that was trained to recognize dollar and pound signs could

be further trained to recognize currency symbols from other nations, or other

30

special symbols. In this way, verification would be possible for more checks.

5.6 Summary

Bottom up information from connected component extraction was combined

with the top down method of smearing, in order to segment the check im-

age into text strings accurately, while minimizing computationcd complexity.

Dynamic information was used in the grouping of characters into strings.

Top level information about the likely format of the check and the handwrit-

ten courtesy amount was encoded in the heuristics that were applied to the

strings.

The methods used by the CABL were chosen to be general, wherever pos-

sible, so that changes in the problem domain do not necessitate implementing

an entirely new system; however, any constraints specific to the check under-

standing problem were accounted for at each step, so ais to make the system

accurate as well as robust.

References

[1] Richard Casey, David Fergueson, K. Mohiuddin, and Eugene Walach.

Intelligent forms processing system. Machine Vision and Applications,

5(3):143-155, Summer 1992.

[2] Edward Cohen, Jonathan J. Hull, and Sargur N. Srihari. Understjmding

handwritten text in a structured environment: Determining zip codes

from addresses. In P.S.P. Wang, editor, Character and Handwriting

Recognition: Expanding Frontiers, pages 221-264. World Scientific Pub-

lishing Co., 1991.

[3] Thomas H. Cormen, Charles E. Leiserson, and RonjJd L. Rivest. Intro-

duction to Algorithms. The MIT Press, and McGraw-Hill Book Com-

pany, 1991.

[4] Y. Le Cun, 0. Matan, B. Boser, J.S. Denker, D. Henderson, R.E.

Howard, W. Hubbard, L.D. Jackel, and H.S. Baird. Handwritten ZIP

code recognition with multilayer networks. In Proceedings of the 10th In-

31

temational Conference on Pattern Recognition, volume 2, pages 35-40,

Atlantic City, New Jersey, June 1990.

[5] A. Downton and C. Leedham. Preprocessing and presorting of enve-

lope images for automatic sorting using OCR. Pattern Recognition,

23(3/4):347-362, 1990.

[6] A. Downton, R. Tresidso, and C. Leedham. Recognition of handwritten

British postal addresses. In From Pixels to Features III, pages 129-144.

Elsevier Science Publishers, 1992.

[7] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis.

WUey, 1973.

[8] J. Fisher, S. Hinds, and D. D'Amato. A rule based system for document

image segmentation. In Proceedings of the 10th International Conference

on Pattern Recognition, volume 2, pages 567-572, Atlantic City, New
Jersey, June 1990.

[9] L. Fletcher and R. Kasturi. A robust algorithm for text string sepa-

ration from mixed text/graphics images. IEEE PAMI, 10(6):910-918,

November 1988.

[10] Rafael C. Gonzales and Paul Wintz. Digital Image Processing. Addison-

Wesley, 1987.

[11] Amsir Gupta. A collection of papers on handwritten numeral recognition.

Technical Report IFSRC 219-92, MIT Sloan School of Management,

1992.

[12] I. Guyon. Applications of neural networks to character recognition. In

P.S.P. Wang, editor, Character and Handwriting Recognition, Expanding

Frontiers, pages 353-382. World Scientific Publishing Co., 1991.

[13] S. Hinds, J. Fisher, and D. D'Amato. A document skew detection

method using run length encoding and the hough transform. In Pro-

ceedings of the 10th International Conference on Pattern Recognition.,

volume 2, pages 464-468, Atlantic City, New Jersey, June 1990.

32

[14] Stephen Lam, Dacheng Wang, and Sargur Srihari. Reading newspaper

text. In Proceedings of the 10th International Conference on Pattern

Recognition, volume 2, pages 703-708, Atlantic City, New Jersey, June

1990.

[15] Jean-Vincent Moreau. A new system for automatic reading of postal

checks. In From Pixels to Features III, pages 171-184. Elsevier Science

Publishers, 1992.

[16] Lik Mui, Arun Agarwal, Amar Gupta, and P. S. P. Wang. An adap-

tive modular neural network with application to unconstrained charac-

ter recognition. Technical Report IFSRC 261-93, MIT Sloan School of

Memagement, 1993.

[17] M.V. Nagendraprasad, Alexis Liu, and Amar Gupta. A system for auto-

matic recognition of totally unconstrained handwritten numerals. Tech-

nical Report IFSRC 218-92, MIT Sloan School of Management, 1992.

[18] Peter Sparks, M.V. Nagendraprasad, zmd Amar Gupta. An algorithm

for segmenting handwritten numerical strings. Technical Report IFSRC
214-92, MIT Sloan School of Management, 1992.

[19] S. Srihari. Feature extraction for locating address blocks on maiil pieces.

In From Pixels to Features, pages 261-275. North Holland, 1987.

[20] S. Srihari, C. Wang, P. Palumbo, and J. Hull. Recognizing address

blocks on mail pieces. The AI Magazine, 8(4):25-40, December 1987.

33

MIT LIBRARIES

3 9080 00932 7468

5197 '^^-i U

Date Due

Lib-26-67

