
Business Process and Software Architecture Model Co-Evolution Patterns
Pooyan Jamshidi, Claus Pahl

Lero - The Irish Software Engineering Research Centre
School of Computing, Dublin City University,

Dublin, Ireland
[pooyan.jamshidi, claus.pahl]@computing.dcu.ie

Abstract— Software systems are subject to change. To embrace
change, the systems should be equipped with automated
mechanisms. Business process and software architecture
models are two artifacts that are subject to change in an
interrelated manner that requires them co-evolve. As opposed
to the traditional batch-based model transformation, we
propose a comprehensive set of structural and behavioral
evolution patterns that enable to incrementally reflect the
impact of change of business processes to their associated
architecture models by applying reusable patterns. A basis for
automation is provided through a graph-based formalism.

Keywords- software architecture, co-evolving models,
evolution pattern, graph-based model evolution

I. INTRODUCTION
Software-intensive systems are subject to changes,

usually driven by external stimuli from the environment [1]
as diverse as technological changes or reengineered business
processes. To cope with these issues, software artifacts
produced and used by the software-intensive systems have to
evolve. Depending on the artifact type and granularity, the
impact and rate of change may differ. We concentrate on
interrelated changes that happen between business process
models and their supporting software architecture
descriptions. Business processes convey the requirements of
today's process-aware software systems and they are tightly
coupled with underlying software architectures. This type of
change requires creating multiple modeling elements and
connections among them in both business processes and
software architecture description. Manual change not only
affects modeling performance, but also model correctness
[8]. To support change management, it is crucial to identify
different types of changes (at the process layer) and change
impact patterns (at the architecture layer). Both of these
evolution categories and their impact on each other would
benefit from extracting change patterns reoccurring during
evolution and provide the promising basis for automation.

How heterogeneous modeling languages semantically fit
together or how to consistently co-evolve still has challenges
[1]. This is especially true for business process and software
architecture models which are interrelated implicitly by set
of architectural decisions. To put the problem into an abstract
perspective, consider the conceptual model of the software
architecture co-evolution problem in Fig. 1. There exists a
mapping between the process model (P) and software
architecture model (A). This mapping (F) embraces the
initial architectural decisions that are represented as a set of
structure-preserving functions between the two associated
models. This part of the conceptual model is being addressed

in model-driven research and is utilized here. We provide
mechanisms that preserve these structure-preserving
mappings during the evolution of software architecture.
Business process and workflow management communities
have been investigated the process model changes by
identifying a comprehensive catalogue of change patterns
[9]. We assume that the transformation function (T) is given
as a set of business process change patterns. Therefore, the
main focus here is on how the software architecture model
can be adapted to the changes raised by business process
models with an emphasis on preserving initial architectural
decisions.

P P’

F F’

T’

T

LP

LA

Λ

Ɵ

Figure 1. Software architecture co-evolution conceptual model

P, P', A, A': Model; T, T', F, F': Model Evolution (Transformation); and
Λ: Transformation Evolution; �: Change Impact

After some background in Section II, we define two
levels of interrelated models, based on which a set of change
impact and mapping change patterns to enable architecture
evolution (Section III) and a formalism supporting its
automation (Section IV) are defined. The key implication of
these patterns is that they facilitate the change analysis and
can be reused in the evolution process, illustrated in Section
V, before ending with related work and some conclusions.

II. BACKGROUND
A change to a model in a model-driven system may

require other changes to be made to other interrelated
models, referred to as consequential change. If the reason for
a consequential change can be formalized, then its derivation
and application can be automated [13]. A reason for
consequential change in a model-driven system is the
preservation of mapping relationships, which are
representing architectural properties. The other consequential
changes require specialized domain knowledge and may not
be automated without that embedded knowledge [13, 14].

Traditionally, model transformation tools support the
batch execution of transformation rules, which means that
input is always processed “as a whole”, and output is always

regenerated completely [13]. However, for interrelated
models which are subject to change continuously, batch
transformations with some flavors of model matching
mechanisms (ex. AML) may not be suitable and need to be
replaced by incremental model transformations [13] (change-
driven transformation [21]) to update existing target models
based on changes in source models and to minimize the parts
that need to be reexamined by a transformation when the
source model is changed. Moreover, in some occasions only
an external interface is available for query and manipulation
of models making them non-materialized [21]. In addition,
traceability information can also be limited and externalized,
which imposes further challenges [13]. Finally, certain
constraints can be evolutionary in the sense that they need to
be evaluated over a sequence of model evolution steps and
not over a single snapshot of the model [21].

There are structural elements in software architecture that
have been defined [12]. We also consider behavioral aspects
(Fig. 2) that describe the protocol of the entire architecture
configuration, or component or connectors specifying
interactions between the elements. Component behavior
defines interactions of the component with its environment
as sequence of operations through its interfaces (protocols).

Figure 2. Software architecture behavior specification meta-model

A change impact pattern is a reusable source of
knowledge concerning the co-evolution of two related
artifacts. The primary changes in a given artifact (called
driver) are characterized via a change scenario. In order to
cope with this change, a change pattern provides mechanism
how to adjust the second artifact (called companion) [7]. We
focus on process models as driver and architecture models as
companion. When the process model of a system evolves,
most likely the architecture model needs to be updated too.

III. SOFTWARE ARCHITECTURE EVOLUTION PATTERN
Instead of discussing primitive changes, such as adding

or removing a primary element, discovering and utilizing
different types of semantics-aware changes (changes that
reflect the intention of change) allow for better manipulation
and consequent adoption [9, 15]. We present, firstly, the
various changes of business process and their impact on
software architecture called change impact patterns (denoted
by �-transformation in Fig. 1) and, secondly, the change
patterns that have been captured in order to reflect different
changes to the mapping between business processes to
architecture models (Λ-transformation in Fig. 1).

We consider patterns identified and specified in business
process and software architecture evolution. We focus on the
evolution of software architecture as a reaction to changes of
the business processes. We first created a list of candidate
patterns in either of the domains based on a literature review
and experimental work. For business process changes, we
adapted the change patterns proposed by Weber [9] slightly
to meet our needs. We compared the available as-is and to-be
processes from different business process instances and their
associated software architecture models.

A. Change Impact Patterns
We have defined seven change impact patterns of

software architecture as a consequence of change scenarios
in business process. Each change impact pattern captures a
specific type of change effect. The transformation rules are
informally presented in using an activity diagram to show
business process and component behavior, sequence diagram
to show connector behavior and later in Section B, xADL
description language to model architecture, which is more
common in practice and easier to understand. Instead of
using general notations, a concrete syntax allows describing
the same behavior using concepts closer to the area of
business process and software architectures (e.g. activity,
flow, components, ports).

Change pattern 1 - embed activity in conditional
branch: Depending on the location of a conditional branch,
two software architecture changes are possible: a constraint
needs to be added to the behavior protocol of a connector (i)
or to the behavior of a component (ii). Fig. 3 ((a), change in
connector behavior protocol which is specified by a
sequence diagram) (resp. (b), change in component behavior
protocol which is specified by an activity diagram) shows an
example of the change impact (i) (resp. (ii)). After the
process change, an activity in a conditional branch that is
located between two activities related to a component
different from (same to) the component whose behavior is
associated with this embedded activity. This process change
has an impact on the connector behavior (resp. component
behavior) protocol, see Fig. 3 (a) (resp. (b)) with constraints
derived from the conditions of the corresponding xor branch.

A
1

A
2 A

3

A
1

A
2

A
3

(a)

A1 A2 A3

A
1 A

2
A
3

Op (A1)

Op (A2)

Op (A3)

Op (A
1
)

Op (A
2
)

Op (A
3
)

(b)

Figure 3. Embed activity in conditional branch

Change pattern 2 - move an activity (serially, parallel,
conditionally): Depending on the business process changes
including moving activities, parallelizing activities, and
sequencing activities, three types of change impact are
possible as follows: (i) transition sequences in component
behavior must be reordered; (ii) sequential transition
sequences must be changed to parallel transition sequences
in component behavior; and (iii) parallel transition
sequences must be changed to sequential transition
sequences in component behavior. Fig. 4 shows an example
with two activities parallelized and its impact on an
associated component behavior specification.

A
1
 A

2
 A

3

A
1

A
2

A
3

Op (A
1
)

Op (A
2
)

Op (A
3
)

Op (A
1
)

Op (A
2
) Op (A

3
)

Figure 4. Parallelize an activity

Change pattern 3: insert an activity (serially, parallel,
conditionally): Depending on the process changes that
insert an activity, two types of change impact are possible as
follows: (i) a new component and connector must be added;
(ii) an operation needs to be added in component behavior.

Due to lack of space, we only name the other change
scenarios: (4) insert an activity between two individual
activities: if these two activities embedded in a condition
then this condition and associated operation with the activity
should be reflected to a component behavior, (5) replace an
activity: the operation in the component behavior associated
with this evolved activity should be updated, (6) update a
condition: the condition in the component behavior
associated with this evolved condition should be updated,
and (7) embed an activity in a loop: the operation associated
with this activity in component behavior should be
embedded with a loop and its condition derived from the
loop reflected in business process.

B. Mapping Change Patterns
The mapping between business process and architecture

description comprises architectural decisions that have been
made by architect. These architectural decisions act as
traceability links between business process and architectural
elements. In this section, we list types of change patterns that
might happen to these mappings. These changes have been
extracted from [16] and adapted to behavioral change.

The initial configuration of the example consisting of two
components (C1 and C2) which are connected by a
connector (Conn) as depicted in Fig. 5.

Figure 5. Initial software architecture configuration

Abstraction factors out a part of the configuration by
encapsulating it within an instance of a proper architectural
elements (in this case the component C in Fig. 6).

Figure 6. Architecture model after applying “abstraction”

Extension involves adding new interface ports, components,
and connectors to a given configuration. In order to apply an
extension to a configuration, the sets of new architectural
elements (C3 and Conn in Fig. 7) must be specified.

Figure 7. Architecture model after applying “extension”

Refinement involves extending the existing architectural
elements in the configuration by preserving external
interfaces of the changed elements (C2 in Fig. 8 by adding
two subcomponents and their corresponding wiring).

Figure 8. Architecture model after applying “refinement”

The flatten operator unravels a configuration with respect to
a constituent component (C2 in Fig. 8). In the resulting
architecture model, the component is replaced by its own
components and connectors (Cx1 and Cx2 in Fig. 9).

Figure 9. Architecture model after applying “flatten (wrap)”

Rewire structurally evolves an existing configuration by
changing the connection between component and
connectors and constructs the new configuration with the
same elements but different combinations, shown in Fig. 10.

Figure 10. Architecture model after applying “rewire”

Replacement replaces an arbitrary architectural element by a
new element (Cx2 in Fig. 10 with Cy2 in Fig. 11).

Figure 11. Architecture model after applying “replacement”

Formally, these structural operators form a partial
function on structures. When an operator is applied to a
structure that satisfies the preconditions, it returns a new
structure together with a semantic correspondence function
from the interface ports of the operand to those of the
resulting structure. More specifically, these change patterns
are homomorphisms that map the structure of an architecture
model to that of a second variation, while preserving both the
internal and the external configuration of the first. The notion
of a homomorphism can be used to express the fact that a
given architecture model may structurally evolve into
another model such that for each interface, component, and
connector of the first model, the second model has a
corresponding interface port, component, and connection,
respectively, with a similar (or larger) semantic role [16].

IV. FORMALIZATION OF THE CO-EVOLUTION PROCESS
As described in Section III, an evolution process

comprises the execution of both change impact patterns and
mapping change patterns where each evolution pattern has
an impact on the description of an architecture. The change
patterns can be formalized as typed graph transformations
[10], supported by a sound theory and a variety of tools for
its execution and analysis. The key reasons to select typed
graph transformations are as follows: (i) business process
and software architecture models can be easily formalized
as graphs, as shown in other works [11]; (ii) graph
transformation rules are self-contained and independent of
each other that benefits the formalization of pattern-based
evolution because each rule can be applied when its
preconditions are satisfied and reused several times to make
the required changes in their respective models as traditional
patterns do; and (iii) typed graphs capture the relation
among business process and architecture types, required to
transfer the changes between the models.

A graph-based formalism to support the application-level
notation provides a sound basis on which it is possible to
develop automated applications. With graph-based
transformation rules, the change history of business process
and corresponding software architecture can be recorded as
in Fig. 12. A business process model (BPMi) is mapped to its
successor (BPMi’) and architectural model (ADMi) is
mapped to its successor (ADMi') by a set of transformation
rules (Tb

ij and Ta
ij,). The mapping between business and

process models is shown by dashed arrows. Thus, the
transformations represent changes that establish semantic
correspondences between neighboring pairs of models along
a given path in the evolution history graph and the mappings

represent structure-preserving correspondences between
neighboring pairs of models [17], see Fig. 12. The evolution
history graph can be rolled back in order to undo the effect of
the applied transformation rules. For instance, if we want to
roll back to the ADM3 we need to automatically undo the
effects of “Ta

i4”, “Tb
i2, and Tai3” to reach the “BPM7-ADM4”

and “BPM1-ADM3” respectively from ADM7.

ADM

ADM1

ADM
2

ADM
3
 ADM

4

ADM
5

ADM
6

ADM
7

Tai1

Ta
i2

Ta
i3
 Ta

i4

Ta
i5

Ta
i6

Ta
i7

Ta
i8

BPM
0

BPM
1

BPM
2

BPM
3

BPM
4

BPM
5

BPM
6

BPM
7

Tb
i1

Tb
i2

Tb
i3

Tb
i4

Tb
i6

Tb
i7

Tb
i5

Figure 12. A co-evolution history graph

A graph-based foundation facilitates analytic functions.
We reuse the edit-distance metric proposed in [9] to measure
the number of change operations minimally required to
transform an architecture model ADM0 to an evolved
counterpart ADM1. By calculating the edit distance, the
complexity of transforming one model to another one can be
measured and by summing up these measures along a path in
the evolution history, the complexity of a composite
transformation can be determined. In general, when changing
models using change patterns instead of change primitives,
the edit distance can be decreased. The architecture model in
Fig. 5 illustrates a configuration consisting of two
components (C1 and C2) and a connector (Conn). Assume
that a structural change should be accomplished inserting an
additional Component C3 (Fig. 7). The change pattern
“Extend” provides the high-level change operation Extend
(ADM0, C3, Conn1), which allows users to add component
C3 and connector Conn1 into the current configuration. In
the example, the transformation of the original architecture
model into the evolved counterpart requires eight change
primitives (adding 1 new component, 1 new connector, 4 new
ports, and 2 bindings to connect them), resulting in an edit
distance of eight. Using the extend pattern in this example,
seven (primitive) operations can be replaced by one (high-
level) change pattern. Depending on the structure of an
architecture model, the implementation of a change pattern
with change primitives can result in different edit distances.
The edit distance also depends on the meta-models and the
adopted tool. Although the edit distance does not allow for
quantifying how much time is needed to accomplish a
respective change, it allows evaluating the number of copy
effort/steps needed.

V. APPLICABILITY OF THE EVOLUTION PATTERNS
This section demonstrates our approach using a case

study. We aim to illustrate how adopting change patterns
introduced in this work are useful for analyzing and applying
the impact of change of business processes to corresponding
software architecture models and can support automation in
this adaptation process.

In this case study adopted from [17], a scenario of
integrated loan management (LM) services is investigated.
The main process is a loan management process. The aim in
this case is to investigate the interrelationships between the
business process and software architecture model and also
the impact analysis of some changes in the business process
model by utilizing the introduced change patterns.

Fig. 13 shows a simplified loan management process
model. The process starts when a client requests a loan by
email. A bank agent calls the client to present an offer. To
provide the offer, the agent needs to obtain client data,
calculate the amount of loan offer and call the client to
explain conditions of the loan. If the client accepts the offer,
then a direct sales agent located near the client would visit
her. After the contract is established, she registers the visit
with her signature and reports the visit to her supervisor.

Figure 13. BPM0: The initial LM process model

The software architecture model supporting the process
is shown in Fig. 16. The involved components are a mail
server ("Email-mng"), a customer relation management
component ("CRM"), an application managing the client’s
bank account ("Account"), and two applications managing
the information of sales and plans of the bank, "Sales" and
"Planning", resp. The functions exposed by each component
are isolated and the interaction between functionalities
during the process is managed by the sales agent.

Figure 14. BPM1: evolved LM process model after change (move activity)

The change scenarios involve modifications resulting
from the improvement of a bottleneck activity that affected
the operation of the business, the incorporation of new
process regulations and technological updates. For the first
business change scenario (BS1), stakeholders at the bank
asked architects whether they could facilitate the tasks of the

sales agent in order to have mobile access to banking
application functionalities. They suggested integrating the
software supporting the agents work to allow remote
reporting to the supervisor using a mobile device. Thus, she
is only required to sign a physical document at the office.
As a consequence of this business change, the initial process
model is modified to the process illustrated in Fig. 14.

For the second business change scenario (BS2), the “get
client data” activity becomes optional for those instances
that have customer data enclosed. This change is reflected in
the business process by embedding this activity in a
conditional branch as shown in Fig. 15.

Figure 15. BPM2: evolved LM process model after change (embed an

activity in conditional branch)

The technical change scenarios show the evolution
requirements and the designated solutions to adopt
accordingly. The technical change scenarios are as follows:
1. (TS1) Integrate the applications supporting the

“Calculate Loan Offer” activity
2. (TS2) Integrate all the applications in a reliable way

that keeps the applications independent from each other
3. (TS3) Adopt service architectural style for integrating

the services exposed form applications
In order to respond to BS1, i.e. apply of the change

patterns on the loan management change scenarios, the
change moves two parallel activities into sequence. These
activities are a part of the behavior exposed through the
Sales component in the architecture model, change pattern 2
(move an activity) is utilized. In the evolved architecture
model, the behavior protocol specification of the Sales
component is affected accordingly.

Figure 16. ADM0: The initial LM architecture model

For BS2, since the change embeds the “get client data”
activity in a conditional branch and the functionalities of
this activity and the next “calculate loan” activity has been
implemented by CRM and Sales integration with Planning
components respectively, the change should be reflected (by
utilizing change pattern 1) in the behavior protocol of the
connector facilitating this integration.

As the consequence of TS1, the Planning and Sales
components are to be connected (Fig. 17). Therefore,

rewiring pattern should be adopted in order to make an
appropriate change in software architecture description.

Figure 17. ADM1: evolved architecture by applying rewiring

In order to integrate the remaining applications, a
messaging schema and a central component (CMM) to
persist messages was added. A composed functionality was
designed to serve the Loan to Client activity. Therefore, the
previous structure needs to be flattened and extended in
order to respond the requirement TS2 (Fig. 18).

Figure 18. ADM2: evolved architecture by applying flatten and extension

The CMM component was replaced by a new
component (Enterprise Service Bus) responsible for
managing service composition and message routing tasks
and resource facilities. Moreover, the relevant functions
from applications were exposed as software services.
Therefore, the previous description of the architecture needs
to be rewired, a component needs to be replaced, some ports
need to be refined and the LM Service function needs to be
abstracted away in new component ESB (Fig. 19).

Figure 19. ADM3: The evolved architecture by applying replacement,

rewiring, abstraction, and refinement pattern

VI. RELATED WORK
Change management is a critical problem in software

engineering and specifically in software evolution research
[18] that has been studied in a range of research domains.

Change management in business processes. Evolution
management is a relatively mature area in the context of
workflow-based processes [9]. The ultimate goal of research
on the evolution of workflow processes aims to enable
business processes to evolve in a controlled and predictable
manner. However, since this research track of change
management focuses on business processes without taking
software architecture that support its implementation into
consideration, they are inadequate to support the multi-
aspect nature of software architecture evolution. Although

in [20] a set of change impact patterns are specified for
capturing the types of change effect in services-based
business processes, they only focus on behavioral change
impact without taking structural aspect of software
architecture into account. Moreover, they have not laid a
formal basis to perform analytical activities with the
patterns instead they hardcoded them in a tool that
accomplish some automated change impact analysis and
propagation in service-based business processes.

Model-driven software architecture evolution. The
MDSE community uses models as artifacts to describe well-
defined software aspects at a higher abstraction level than
source code. Model transformation is a well-established
technique to modify and evolve models [2]. A well-known
formalism used for model transformation is graph
transformation, which enables reasoning about the formal
properties of model transformations. Using model
transformation, and especially graph transformation, to
express and formalize the evolution of architectural
descriptions is not a new approach towards software
architecture evolution. Le Métayer [3] proposed such an
approach in 1998. More recently, Grunske [4] formalized
architectural reconfiguration as graph transformations that
can be applied automatically. Tamzalit and Mens [5] used
graph transformations to express architectural evolution
patterns to introduce architectural styles as well as to verify
whether a given architectural evolution preserves the
constraints imposed by an architectural style. Another
approach to transformation-based architectural evolution,
though not directly relying on graph transformation, is work
by Barais [6]. These contributions focus on structural
aspects of architecture descriptions without taking the
behavior into account. Moreover, they enable evolution of
the architecture without considering other related artifacts as
a driver of primary changes. While often the double push-
out (DPO) construction is used for graph transformations,
we follow [17] here and plan to further formalize our
approach using mappings between locally surjective
homomorphisms (LSH).

 Change-driven transformation put forward the concept
of change as a first class entity in model transformation.
[21] is the closest to our contribution as both focus on
change pattern for propagating changes in the model-to-
model context. However, they focus on language aspect for
specifying change-driven transformation while we look at
concrete domain-specific instances of change patterns.

Model traceability. MDSE has adopted traceability
support for a vast variety of applications in model-driven
context especially when there is a need for analytical and
automated generative support. Most of the contributions in
this context have been cited in [13, 17, 22] and from which
those that concentrated on evolution, focus on batch-based
change propagation rather than change-driven approach.
Even those approaches that proposed incremental live
transformation such as [13] are too general to be considered

as a practical approach to evolve the technical and multi-
aspect architecture-based models.

Model synchronization. Model synchronization is
closely related to model transformation and management.
The existing general model synchronization frameworks are
not a promising solution for this problem [19]. First, they
require users to explicitly write synchronization logic to
deal with each type of primary change and on each of the
associated models. Second, the mapping function from
business process to software architecture is inherently
interleaved with the decisions regarding the potential
information loss or gain related to different levels of the
model’s expressiveness.

VII. CONCLUSION
The above-mentioned approaches to change

management in different domains concentrate only on either
business processes or software architecture separately.
Normally, business processes and software architectures are
coupled with each other with complex dependencies
between business processes and architectures. Change
analysis and change reactions are difficult due to the
possible complex dependencies between these two models.
These dependencies have not been fully addressed. Our
research presents an approach for filling the gaps.

Our work enables the co-evolution of business process
and software architecture models. A comprehensive set of
structural and behavioral change impact patterns are
defined. These change patterns are the incremental
evolution of software architecture models that can be reused
in software evolution process. The identified change impact
patterns are useful to track the history and reduce the
complexity of changes. A graph-based formalism is
provided and its implications are also discussed.

In the future, we fully formalize the change patterns.
This will enable us to develop the management and analysis
features further. We will complement these activities by an
empirical investigation on selected case studies (beyond the
ones used for initial change pattern determination and
illustration with an especial focus on settings in which more
than one business processes are related to an architecture
model) to evaluate the comprehensiveness and usefulness of
the proposed change pattern.

ACKNOWLEDGMENT
This research work was supported, in part, by Science

Foundation Ireland grant 03/CE2/I303 1 to Lero - the Irish
Software Engineering Research Centre (www.lero.ie)

REFERENCES
[1] T. Mens, J. Magee, B. Rumpe, “Evolving Software Architecture

Descriptions of Critical Systems”, IEEE Computer 43: 5, 42-48 May,
2010.

[2] S. Sendall and W. Kozaczynski. Model Transformation: The Heart
and Soul of Model-Driven Software Development. IEEE Software,
vol. 20, no. 5, pp. 42-45. 2004.

[3] D. Le Métayer. Describing Software Architecture Styles Using Graph
Grammars. IEEE Trans. Software Eng., vol. 24, no. 7, pp. 521-533.
1998.

[4] L. Grunske. Formalizing Architectural Refactorings as Graph
Transformation Systems. Proc. 6th Int’l Conf. Software Eng.,
Artificial Intelligence, Networking, and Parallel/Distributed
Computing and 1st ACIS Int’l Workshop Self-Assembling Wireless
Networks (SNPD/SAWN 05), IEEE CS Press, pp. 324-329. 2005.

[5] D. Tamzalit and T. Mens. Guiding Architectural Restructuring
through Architectural Styles. Proc. 17th Ann. IEEE Int’l Conf. and
Workshop Eng. of Computer-Based Systems (ECBS 10), IEEE Press,
pp. 69-78. 2010.

[6] O. Barais, A. Le Meur, L. Duchien, and J. Lawall, “Software
Architecture Evolution,” Software Evolution, T. Mens and S.
Demeyer, eds., Springer, pp. 233-262. 2008.

[7] K. Yskout, R. Scandariato, W. Joosen, Change patterns: Co-evolving
requirements and architecture, Report CW593, August 2010.

[8] J. Gray, Y. Lin, and J. Zhang, Automating Change Evolution in
Model-Driven Engineering, Computer 39, no. 2, 51–58. 2006.

[9] B. Weber, M. Reichert and S. Rinderle Ma. Change Patterns and
Change Support Features - Enhancing Flexibility in Process-Aware
Information Systems. Data and Knowledge Engineering, 66 (3), pp.
438-466. 2008.

[10] R. Heckel. Graph Transformation in a Nutshell. In: School on
Foundations of Visual Modelling Techniques (FoVMT 2004).
ENTCS, vol. 148(1), pp. 187–198. Elsevier, Amsterdam. 2006

[11] C. Costa Soria, R. Heckel: Modelling the Asynchronous Dynamic
Evolution of Architectural Types. Proceedings Intl. Conference on
Self-organizing Architectures SOAR 2009: 198-229. 2009.

[12] C. Tibermacine, R. Fleurquin, S. Sadou: A family of languages for
architecture constraint specification. Journal of Systems and Software
83(5): 815-831. 2010.

[13] D. Hearnden. Deltaware: Incremental Change Propagation for
Automating Software Evolution in the Model-Driven Architecture.
Ph.D. Thesis. University of Queensland, 2007.

[14] S. Khoshnevis, P. Jamshidi, R. Teimourzadegan, A. Nikravesh, A.
Khoshkbarforoushha, F. Shams. ASMEM: A Method for Automating
Model Evolution of Service-Oriented Systems, Maintenance and
Evolution of Service-Oriented Systems (MESOA) 2009.

[15] A. Ahmad and C. Pahl, Pat-Evol: Pattern-driven Reuse in
Architecture-based Evolution for Service Software, ERCIM News 88,
2012.

[16] H. Erdogmus. Representing architectural evolution. In: Proceedings
of the Conference of the Center for Advanced Studies on
Collaborative Research, pp. 159–177. 1998.

[17] V. Gacitua-Decar, Graph-based Pattern Matching and Discovery for
Process-centric Service Architecture Design and Integration, PhD
Thesis, 2010.

[18] J. Estublier, D. Leblang, A. Hoek., R. Conradi, G. Clemm, W. Tichy
and D. Wiborg-Weber. Impact of software engineering research on
the practice of software configuration management. ACM Trans.
Softw. Eng. Methodol. 14, 4 2005, 383-430. 2005.

[19] S. Buchwald, T. Bauer and M. Reichert. Bridging the gap between
business process models and service composition specifications. Int’l
Handbook on Service Life Cycle Tools and Technologies: Methods,
Trends and Advances, 2011.

[20] Y. Wang, J. Yang, and W. Zhao. Change impact analysis for service
based business processes. IEEE International Conference on Service-
Oriented Computing and Applications, SOCA 2010, pp. 1–8. 2010.

[21] G. Bergmann, I. R´ath, G. Varr´o, and D. Varr´o. “Change-driven
model transformations. change (in) the rule to rule the change.”
Software and Systems Modeling, pp. 1–31, 2011.

[22] V. Gruhn, M. Wever, and C. Pahl. Data Model Evolution as Basis of
Business. Process Management. International Conference on Object-
Oriented and Entity Relationship Modelling O-O ER’95,. 1995.

