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Abstract

Throughout the last decades, Monte Carlo (MC) techniques have been used in simulating various complex systems. In
this paper, we investigate how MC-based methods are used in the field of Drug Delivery, indicating what aspects of the
complex problems of drug dissolution and design can benefit from this particular approach. After introducing the area of
modelling drug dissolution, with its different features and needs, we report and examine the existing Direct MC and Sto-
chastic Cellular Automata modelling efforts used to simulate dissolution of pharmaceutical compacts or related phenom-
ena. In Part 2, we enlarge on a description of our work on Direct MC, for the particular case of simulating a binary system
consisting of poorly soluble drug dispersed in a matrix of highly-soluble acid excipient.
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1. Introduction to modelling drug dissolution

Pharmaceutical Drug Delivery Systems (DDS) are systems which deliver a drug into the body. A DDS con-
sists of one or several bio-active agents (the drug(s)), and one or several excipients, which are substances form-
ing the vehicle or medium for the administration of the active agents. The dissolution profile of the drug
molecule can be controlled with a wide range of excipients.

The ultimate aim of a DDS is to undergo dissolution in a biological medium (e.g.: gastro-intestinal tract for
tablets, biological tissues for implants etc.) and, as released, to undergo absorption. The release of the drug
and thus, the ultimate absorption, must take place at appropriate rates, in order to ensure the desired effect
on the organism. In many drug delivery applications, the release of the excipient (involving diffusion, disso-
lution, erosion or other mechanisms) determines the release of the bio-active agents. Some modern formula-
tions are very complex, and the relationship between the formulation and process variables and the release
profiles are not entirely understood.
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Fig. 1. Schematic representation of behaviours of different types of DDS, where the excipients are: (a) inert matrix, (b) bio-erodible and (c)
swellable.
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From performance considerations, it is important to investigate the effects of factors related to the compo-
sition, design and manufacturing process [14], on the phenomenological behaviour of a drug delivery system.
In vitro dissolution testing is very important in terms of designing, developing and testing new formulations
[35,10], and it can be regarded as the first step to modelling the dissolution in vivo. The dissolution profile
in vitro has to satisfy certain criteria established by the pharmacopoeias, in order to maintain the in vivo drug
release at the desired rate.

Depending on the design and delivery goals of a particular DDS, the process of formulation development and
optimisation may require a significant amount of time and effort, as well as financial investment [36]. The direct
benefit of producing accurate models for in vitro dissolution is reduction in the laborious drug formulation stud-
ies and the minimisation of costs associated with them. This can be achieved by investigating how design param-
eters such as composition, porosity and device geometry, affect the resulting kinetics of drug release [35] and by
selecting only the most interesting candidate parameters to perform in vitro experimentation [44]. In addition,
modelling can lead to developing better scientific understanding of the behaviour of a number of studied systems.

The following section briefly discusses problematic aspects associated with the field of drug dissolution, and
indicates a number of different modelling approaches taken to provide insights in this active research area.

In the drug development field various materials, manufacturing techniques and release mechanisms are
used to achieve different drug release profiles. The mass transport mechanisms involved include, but are
not limited to: diffusion, dissolution, the combination of diffusion and dissolution, water triggered transport
(swelling), degradation/erosion, as well as phenomena intrinsic to osmotic, magnetic or electric effects [32].

For example, a water-soluble drug, incorporated in a hydrophobic, inert matrix system with channels and
pores (e.g. ethylcellulose, hydrogenated castor oil), is mainly released by diffusion through the polymer into
the surrounding medium, Fig. 1(a). The release rate of the incorporated drug will depend not only on the par-
ticle size and the particle size distribution of the ethylcellulose used, but also on processing variables, like the
compaction pressure used while manufacturing (which results in larger or smaller pores in the matrix).

In other drug delivery systems where the main release mechanism is diffusion, the release rate of the drug is
maintained as desired by the suppressing or enhancing effect of an excipient.

In the drug delivery, primarily controlled by the erosion of the excipient, consisting of bio-erodible polymers,
the self-erosion of the matrix is the principal release mechanism [8]. The erosion behaviour of the used mate-
rials, available in various forms (e.g. different molecular weights), is a crucial factor in the device performance.
All bio-erodible polymers have characteristic times of erosion. This permits formulation of laws describing the
erosion and prediction of monomer or drug release, Fig. 1(b). Description of this kind of DDS are given in [33].

Some of the the most complex examples of drug delivery systems are those controlled by hydrophilic swel-
lable/erodible excipient, behaving as a reservoir-type controlled-release device,1 Fig. 1(c). The most important
characteristic of this kind of system is that, by diffusion of water into the hydrophilic polymeric matrix, the
compact swells, radically changing its form and dimensions. The water-soluble incorporated molecules of drug
diffuse both within and out of the device, through the disentangled chains of polymer [35,34].

These and other phenomena, like superposition, synergies or coexistence of these physico-chemical effects,
should be taken into consideration when producing models.
1 A DDS with the aim of maintaining an uniform dose over a specified period of time.
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The aforementioned also illustrates that the topic of drug release is subject to considerable diversity, so that
modelling and simulating the process of drug release has many ramifications. In seeking a better understand-
ing of the phenomena involved in mass transport, different modelling approaches have been taken into con-
sideration throughout the last decades.

The literature presents a wide range of models – from simple ones: such as the empirical and semi-empirical,
to more complex: such as those involving mechanistic theories.2 In contrast to mechanistic mathematical mod-
els, empirical models quantifying drug release from delivery systems are not so obviously based on the exact
description of all the real physical processes involved. Empirical models can only describe the resulting, appar-
ent drug release rates [33].

In order to build a mechanistic model, one has to be aware of both the major governing processes within
the system and the basic mass transport mechanisms involved in drug release. Such models should be able to
provide knowledge about the system’s behaviour and are generally powerful with respect to simulating the
effect of the device design variables on the resulting drug release kinetics [33]. Most existing mechanistic mod-
els are based on mathematical equations, describing the mass transport phenomena which take place while
drug is released. A spectrum of mathematical theories, describing drug release from controlled/immediate-
release delivery systems, is available [32]: for reviews see [35,33,29,8].

However, most of the present day pharmaceutical compacts typically show much more complex behaviour
than those initially modelled by the non-linear mathematical equations approach, and have few simplifying
properties which permit the use of non-linear dynamics. The whole picture is made even more complex by
the presence of one or more moving boundaries, as the components dissolve. In addition, for some systems,
it is not a trivial task to identify the most important factors, among both the formulation components and
process parameters, that should be considered to better model the drug release.

In an effort to capture different aspects related to the growing complexity in the drug delivery field, recently
the literature has shown a trend in the development of less traditional methods which consider alternative
ways of looking at the drug dissolution. For example the stochastic approaches [5], Cellular Automata and
direct Monte Carlo methods (see below) are based on the idea that the drug release process is often subject
to random fluctuations. The advantage of the later is the possibility of making a simplified, but direct repre-
sentation of the studied system, which gives the possibility of monitoring its evolution with the time, in the
effort to understand the importance of a number of microscopic effects. These methods are especially interest-
ing to consider when modelling porous compacts with complex and non-homogeneous inner structure, like
mixtures of species exhibiting various particle sizes and very different behaviours when exposed to a dissolu-
tion medium. Methods for optimisation in drug design based on artificial neural networks and genetic algo-
rithms are presented in [39,42,41,6,40]. When the relationship between the drug release profiles and the
formulation and process factors is not linear and, moreover, is not well understood, the artificial neural net-
works have the advantage of mapping the relationship between the variables and the responses, such as drug
release profiles, through learning or training processes [39].

2. Introduction to direct Monte Carlo methods

Monte Carlo (MC) methods are algorithms used for solving various kinds of computational problems using
random numbers (or rather pseudo-random numbers), in a sampling procedure. Such methods contrast with
deterministic algorithms, like molecular dynamics or direct numerical solutions (e.g.: Finite Elements, Finite
Differences etc.) by being stochastic, that is non-deterministic, [1]. MC methods are rooted in concepts of
statistical randomisation and sampling3 and were first used to address many-body problems in the middle
of the 20th Century.
2 A mechanistic model should have as many features, of the primary system built into it, as observations and data allow; that is, the
model should be consistent with the observed behaviour of the system and be predictive about its future behaviour under the effect of
perturbation, [3].

3 Sampling experiments are based on generation of random numbers, followed by various arithmetic and logical steps, which are often
highly repetitive, hence highly amenable to handling by computer. In the same ways, the power of the methods, which contain many
variables, has grown with the increase in computer power.
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MC is extremely important in computational physics and related applied fields, because phenomena, which
are otherwise difficult to quantify, can be treated as distributions of random numbers. The following studies
[19,20,28,23] and references therein discuss both direct and inverse Monte Carlo simulations, as well as a
broad range of applications.

Direct MC simulations, applied to multiple-particle systems, have been frequently used to mimic various
problems from real life systems. Earlier examples of problems, which direct Monte Carlo techniques have been
applied to, include the study of systems of interacting atoms, the study of radioactive decay, the simulation of
a fluid flow from an atomistic perspective, the simulation of traffic on roads etc.

While modelling systems exhibiting complex behaviour, often direct MC sampling methods are used in the
framework of Cellular Automata. Cellular Automata are defined in [7] as an idealisation of a physical system
in which space and time are discrete, and the physical quantities take only a finite set of values. This basically
consists of representing the system as a computational grid with specified local relationships, in order to record
any prior knowledge or theories about the microscopic transient behaviour of the real system (such as, for e.g.,
the intrinsic dissolution rates of the components belonging to a DDS, dissolution rules etc. [44]). When con-
sidering the transient behaviour of a system, modelled in the framework of Cellular Automata, one or several
dynamic particularities can be treated as deterministic or, conversely, stochastic, with sampling based on
Monte Carlo techniques. The second idea is obviously applied when the modeller does not have exact or com-
plete knowledge about the real system, which is often the case.

By allowing the model to evolve according to the stochastic relations (or rules) specified, then statistically
averaging over a number of such samples, it is possible to mimic the global, macroscopic behaviour of the
system. Thus, predictions can be made about the system’s behaviour as a function of the initial parameters.
This permits to explore the way, in which microscopic behaviour of system components gives rise to important
macroscopic features and emergent behaviours.

The primary objective of this review and accompanying paper, is investigating the application of MC meth-
ods to drug dissolution. For this reason, in the following section we present a review of the most relevant
examples from literature, where direct MC simulations were used to study the behaviour of drug delivery,
or other multi-particle systems, which bear some similarity to the systems which interest us.

3. Review of dissolution problems, addressed by direct Monte Carlo techniques

3.1. Monte Carlo methods for dissolution of various types solids

Crystalline solids are arranged in fix geometric patterns or lattices. They have orderly arranged units and
are practically incompressible. On the other hand, amorphous solids are solids with randomly oriented mol-
ecules. They are supercooled liquids where the molecules are arranged in a random manner. Both crystalline
and amorphous solids are used in drug manufacture. We discuss the literature of examples of use in the fol-
lowing sections.

3.1.1. Polycrystalline solid

A direct MC method has been used by Srinivasan [37], to simulate the micro-structural evolution during the
dissolution of a polycrystalline solid. The 2D or 3D hexagonal grid for computation represents a labelled
region of circular or spherical solid, placed in the middle of a labelled area of liquid with sink4 properties.
The dissolution is accounted for by:

• considering that the ‘‘solid’’ grid sites are unstable,
• associating with each of them a value of free energy,
• assuming that the liquid phase is stable and has a free energy equal to zero,
• allowing the dissolution process to occur in the direction of the decreasing free energy and
• allowing reverse reaction.
4 The liquid is considered to be infinite. No matter how much solute it accepts, the concentration of the solute in the sink liquid is set to
zero.
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The probabilistic MC process is carried out by selecting a cell at random and allowing it to change to liquid
state. If there is a decrease in the total energy associated with the cell, it is allowed to stay in the liquid state, if
not, it reverts to the solid state. This model permitted a parametric study of the influence of interface energies
on the dissolution of the solid.
3.1.2. Glass

Another model, which investigates glass dissolution in water, by Santra et al. [31], treats the solid (i.e. glass)
like a random binary system with strongly different solubilities. One of the two species has a local environ-
ment-dependent solubility. The model also permits for re-crystallisation of the components. For a finite vol-
ume of glass exposed to the liquid, a rapid dissolution is observed, until an apparent pseudo-equilibrium is
reached, with a steady-state of glass porosification continuing at a lower, but constant speed. Porosification
is a process which occurs during drug dissolution from some pharmaceutical compacts as well. In the case
of a porous solid dissolving in a liquid, the solid–liquid interface can be viewed as an irregular area of fractal
nature, rather than a 1D linear front. It can occur that dissolution through pores is different than dissolution
at the surface. By directly representing such physical situations, Cellular Automata direct MC techniques can
directly model these situations, affirming in this way their advantage over differential equation-based methods
in modelling porosification. The model above has, for example, permitted a better understanding the physical
process of glass dissolution.
3.1.3. Calcite

A kinetic Monte Carlo technique which simulates the dissolution and growth of calcite in flowing water is
described by Williford et al. [43]. Boundary layer problems are taken into consideration and the diffusion in
the fluid is treated by a random walk sub-model. The model is divided into a grid, where each square cell is one
calcite lattice unit and represents a site. Each site can be occupied by either a solid phase or by molecules that
have been desorbed.
3.2. Monte Carlo methods for controlled-release applications of polymers

Controlled release applications are drug delivery applications where the drug has to be released according
to a desired profile, usually extremely slowly. This is achieved, for example, by incorporating the drug into
slowly eroding polymers. As mentioned previously in Section 1, the systems formed have quite complex behav-
iours, not trivial for mechanistic modelling.
3.2.1. Bio-erodible polymer matrix
Göpferich and Langer [14] have attacked the problem of monomer release from bio-erodible polymer matri-

ces using a Monte Carlo – mechanistic method.

• The structural problem is addressed by Monte Carlo.
• The dynamics are accounted for both by differential equations and Monte Carlo.

The MC part is based on the fact that the polymer erosion is treated as a random phenomenon: the hydro-
lysis of chemical bonds is modelled by a Poisson process. If several Poisson processes are proceeding in par-
allel, then the whole process is again a Poisson process. This is the case here with the cleavage of the polymeric
bonds [13]. The polymer is represented [14] as a lattice of sites. Each site represents polymer excipient in a
continuous state. A random life-time is assigned to each. The life-times of the sites are random numbers
derived using a first order Erlang distribution:

eðtÞ ¼ ke�kt ð1Þ
where k is the erosion rate constant and e(t) is the probability that the polymer will erode completely at time t,
after its first contact with the water. In practice, the time t is computed using the following relation:
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t ¼ 1

kn
lnð1� eÞ ð2Þ

where n is the grid size and e is a random number, uniformly distributed between 0 and 1, [13]. When one of
these sites comes into contact with the buffer solution, its life-time begins to decrease. When it reaches zero, the
polymer is considered to have spontaneously degraded to a crystallised monomer. The process of monomer
mass loss can begin. This is where the mechanistic part of the model can be introduced. Mass loss takes place
by monomer diffusion inside the matrix, described by an equation derived from Fick’s first law (see [9]), which
accounts for the porosity in the material:

o

ot
½Cðx; tÞ�ðx; tÞ� ¼ o

ox
DeffðCÞeðx; tÞ

oCðx; tÞ
ox

� �
ð3Þ

Here, C(x, t) is the concentration of diffusing monomer, e(x, t) is the porosity and Deff(C) is the effective dif-
fusion coefficient. As there is no prior knowledge about the porosity, a probabilistic process is used to calcu-
late the porosity along the diffusion pathway. Further, the function e(x, t) is built in the following way: the
value 1 represents ‘‘eroded’’ and 0 – ‘‘non-eroded’’ sites. Moreover, the authors have included in the model
equations accounting for:

• the velocity of dissolution of the monomer (function of the amount of suspended monomer in the solution),
• the pH effects,
• the boundary conditions.

This model has helped to compute the dissolution rates of monomer. They agreed very well with the exper-
imental dissolution rates. In addition, the model confirmed a previous hypothesis, that the quite unexpected
dissolution profiles obtained in the experimental part were due to pH effects inside the pores. Other authors,
like those in [30,17] discuss as well the influence on the overall release kinetics of the pH inside the pores.

3.2.2. Layered bio-erodible polymer matrix filled with drug
In [12], Göpferich uses a similar model for a slightly different situation. The problem is to model matrices

consisting of several layers of two different erodible polymers (polyanhydride and poly(D, L-lactic acid)). Only
one of these polymers is loaded with drug. It has to release the drug in two different phases, due to the layers.
To address this, the author considered two different species of polymer sites (pixels): crystalline (pure polymer)
and amorphous (loaded with drug), with individual erosion rate constants kc and ka respectively. The lifetime t

is, on average, higher for crystalline pixels because of their smaller erosion rate kc. The release of drug was
predicted by assigning to each amorphous pixel a relative amount of drug 1

nxny
, where nx and ny are the dimen-

sions of the computational grid. It was assumed that, whenever a polymer site erodes, an appropriate amount
of hydrophilic drug is spontaneously released directly into the solution. Fig. 2 shows the author’s way of rep-
resenting a 3D cylinder in 2D: the grid divides the cross section into individual polymer pixels of the same
volume. This is achieved by decreasing the length Dx of the sites from the grid, in the radial direction, with
the root of the increasing radius. Extensions to 3D of this model also exist [11].
Fig. 2. Computational grid to simulate a 3D cylinder in 2D.
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3.2.3. Bulk-eroding system

A problem of controlled-release devices containing erodible polymers with completely different mechanisms
of erosion (surface erosion and bulk erosion) has been solved by a MC approach as well, [13]. The matrix is
composed of several layers of polymers, characterised by different erosion mechanisms (note that the previous
model worked only in the case of the same mechanism, and two different erosion rates). The layers are as
follows:

• The surface-eroding5 core is charged with drug.
• The mantle is charged with drug free bulk-eroding polymer.6

• The surface-eroding crust is loaded with drug.

In the model, the following distinction is made between surface eroding polymer layers and bulk eroding
layers, in order to simulate their different erosion behaviour:

• A surface-eroding polymer site begins to erode only when it comes into contact with the buffer solution.
• Conversely, all the sites of a bulk-eroding polymer have a chance to begin their erosion, as soon as at least

one site, (representing the bulk-eroding polymer), comes into contact with the erosion medium.

3.2.4. Generalisation model for bio-erodible systems
A new type of Cellular Automata method to simulate release from bio-erodible devices, in order to design

formulations with optimal release characteristics was discussed by Zygourakis and Markenscoff [44]. The
DDS of any shape and the liquid around it is represented as a computational grid, which is designed as a
dynamic system with transient behaviour. The microscopic mechanisms of the dissolution phenomena are
defined in terms of local relations between the sites. The model can accept two or three solid components,
related to amorphous or crystalline bio-erodible polymers, characterised by different erosion rates. What
makes this model different from the previous ones from this subsection, is that there are no differential equa-
tion used here, and the quantities of matter are treated as discrete. The erosion rates can be made dependent
on the micro-environment of the sites concerned.

Possible porosity of the device, with various sizes of the pores is taken into account. The authors discuss
methods for time normalisation together with averaging and normalising the dissolution rates, in order to
be able to compare the simulation results with experimental data. The simulation results are analysed to show
how the overall release rates are affected by the intrinsic dissolution rates, drug loading, porosity and the dis-
persion of the drug in the bio-erodible matrix. The article suggests that a drug design approach which com-
bines computer simulations and laboratory experimentation is likely to significantly reduce laboratory
experimentation and the associated time and costs.

3.2.5. Swellable systems

As mentioned is the previous section, the controlled-release devices made of swellable polymer seem to have
the most complex behaviour of all.

Lee and Chakraborty [26] studied the diffusion of heteropolymers through random disordered media at a
very microscopic level, using kinetic Monte Carlo methods. They have investigated the possible interactions of
the polymeric chain with the fixed obstacles constituting a medium. The study of the polymer behaviour is
relevant to understanding the behaviour of swellable compacts, (see Section 1). In controlled-release applica-
tions of polymers, a solute is molecularly dispersed in a polymer phase. In the presence of a thermodynami-
cally compatible solvent, swelling occurs and the polymer begins to release its contents to the surrounding
5 In this case, polymer degradation is much faster than water intrusion in the polymer bulk, so that degradation occurs mainly at the
outermost polymer layers. This is why erosion affects only the surface and not the inner parts of the matrix [33].

6 Bulk eroding polymers erode slowly and water uptake by the system is much faster than polymer degradation. In this case, erosion is
not restricted to the polymer surface, because the entire system is rapidly hydrated and polymer chains are cleaved throughout the device
[33].
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fluid [29]. The kinetics of the drug release process can be decisively affected by the polymer swelling, due to the
external penetrant uptake [15]. This release process can be controlled either by solute diffusion or by polymer
dissolution. In this case the presence of permanent entanglements in the polymers becomes significant [29].

In the model of Lee and Chakraborty [26] the polymer is modelled by a chain of spherical beads placed and
equilibrated on a 3D lattice partitioned into sites. The lattice sites can be occupied by spherical obstacles. Each
MC step consists of an attempt to move chosen beads from the chain. Each movement is accepted or rejected
according to the Metropolis criterion, with probability depending on the quantity 4U. This quantity repre-
sents the energy between the old and new chain position. The simulations resulted in a number of interesting
effects. For example, the authors found that above a threshold temperature, polymers containing monomers
which are attracted to sites from the medium are more mobile than those which exhibit repulsive or neutral
interactions. The effect is found to be related to the construction of the disordered medium. This study per-
mitted a better understanding of how polymer sequence influences the dynamics of polymers in quenched dis-
ordered media.

3.3. Monte Carlo in the study of the design parameters for drug delivery systems

Often, the semi-empirical Weibull function is chosen to fit different kinds of dissolution data, because it pro-
vides the best fit to the simulated data. Eq. (4) shows the Weibull function, with a and b – constants. These
constants are believed to be somehow connected to the shape of the releasing device, [2].

Mt

M1
¼ 1� eð�atbÞ ð4Þ

Recently, Kosmidis et al. [23] have used MC methods to model the drug release from various cylindrical
and spherical matrices. The practical advantage of Monte Carlo simulations, as opposite to performing actual
experiments, is that they help to produce quickly and for small costs ‘‘dissolution’’ data from many initial
shapes of ‘‘the device’’. The authors investigated the physical significance of the parameters of the Weibull
function, fitting it to the results of their MC simulations.

In the model from Kosmidis et al. [23], the drug delivery device is simulated by labelling the desired shape
on a computational grid. Each site of the grid, belonging to the device, can accommodate certain numbers of
particles. Diffusion is achieved by randomly picking a particle on the grid and moving it to a random nearest-
neighbour site (as defined for a von Neumann neighbourhood). Each decision in the simulated system dynam-
ics is taken by drawing random numbers from a uniform distribution. Further, each decision corresponds to
an arbitrary time-unit (Monte Carlo step), which can be shown to correspond to a real-time unit [23]. After
specifying, for example, cylindrical or spherical configurations inside their computational grids, ‘‘leak sites’’
are designed at the surface exposed to the solvent. These sites are coupled to the rest of the sites of the device
and, hence, particles trapped into the device can diffuse to the release medium. A particle is discarded from the
system as soon as it arrives at a ‘‘leak site’’.

As specified, this model would approximate closely the behaviour of a non-eroding polymeric system,
where the drug molecules diffuse inside the device according to the concentration gradients, and eventually
escape from the device. The dissolution of micro-capsules coated with polymer like those described in [2]
are good candidates for being analysed with the model above. The ‘‘leak sites’’ would correspond to the
micro-pores formed at the contact with the release medium, in the coating film covering the microcapsules.

The results from the MC simulations [24] has been used to assess the effect of different initial geometrical
shapes on the dissolution. The simulated data have been fitted by a Weibull function. Goodness of fit has been
evaluated, in order to obtain physical insight for the meaning of the Weibull parameters a and b. The authors
[24] found linear dependence between these parameters and the expression N leak

N total
. Here Nleak is the number of

‘‘leak’’ sites designated on the surface and Ntotal is the total number of sites belonging to the device. In fact,
N leak

N total
¼ S

V , where S is the active diffusion surface and V is the volume of the device.

The authors plot both Weibull parameters versus N leak

N total
on a 2D axis-plan, labelling the points according to

the initial concentration of the drug in the device and the shape of device. Both a and b are found to be inde-
pendent of the initial concentration of drug in the device. Instead, the geometry of the device seems to have an
influence on b. In the end, the following equation has been deduced:
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Mt

M1 ¼ 1� exp �0:28D
S
V

t
s

� �� � 0:65þ0:4DlS
Vð Þ

ð5Þ

Assuming that the drug inside the device undergoes classical Fickian diffusion and expressing the param-
eters a and b in terms of N leak

N total
, the expression (5) gives the fractional released mass per unit of real time, as a

function of S, V, the diameter of the molecules involved, Dl, and the mean free time s.7 The disadvantage of
the expression 5 is that Dl and s usually remain unknown simply because determining their values is a quite
difficult task. The conclusions drawn from using MC techniques are similar to those from Antal et al. [2], who
describe a more mathematical approach to explaining the meanings of the Weibull parameters.

3.4. Monte Carlo in studying fractals and percolation

A fractal dimension is a very suitable concept to describe a complex structure, (e.g.: an internal surface of a
porous system, the roughness of a particle or of a surface, an organ of interest (e.g. liver, lungs, a tumour and
so on). Percolation theory is a statistical theory, which deals with the formation of clusters, and supposes the
existence of a regular lattice underlying the system [4]. Percolation processes are those in which, by the random
addition of a number of objects, a contiguous path which spans the entire system is created [25]. Leuenberger
et al. [27] introduced percolation theory in the field of pharmaceutics to explain the mechanical properties of
certain controlled-release compacts. These authors first considered a compact as a disordered system consist-
ing of particles distributed at random. Percolation theory and the concept of fractal dimensions are related
since. Close to percolation threshold, critical phenomena may occur [38].

A pharmaceutical compact is a heterogeneous binary or multiple system constituted by its different com-
ponents. Monte Carlo simulations can be successfully used to model structures, which can be regarded as
the coexistence of clusters of different species (percolating or not, as a function of the volume ratios), because
the way in which the physical cluster builds, can be considered random.

In Kosmidis and Argyrakis [22], the authors continued to investigate the benefits of the Monte Carlo
method, modelling the drug release from fractal matrices. They consider the possibility of dissolution when
the release device, immersed in the gastro-intestinal tract fluids, is non-homogeneously penetrated by these flu-
ids. The gastro-intestinal fluids are known to create areas or channels of high-diffusivity inside certain phar-
maceutical compacts. For this reason the authors assume that the device can be modelled by an irregular
space: i.e. fractal, instead of a homogeneous Euclidean space. This so-called fractal space is represented by
a percolation cluster at its critical point, with cyclic boundary conditions. Particles are placed only on the sites
of the cluster. They can perform independent random walks on these sites. Alone of the semi-empirical mod-
els, the Weibull function is found to be the best fit to the simulation results.

A direct MC study of the transit flow though the gastro-intestinal tract, Kalampokis et al. [21], has been
based around the design of a heterogeneous tube model, which simulates the villi of the gastro-intestinal.
Authors provided for an empty cylinder with random dendritic-type internal structures, (another example
of using a fractal space). The transit flow is simulated using two diffusion models: the blind and the myopic

ant, respectively. The two diffusion models involve two types of biased random walk. They place different
emphasis on the motion toward the output of the tube. The model seems useful to simulate the transit and
absorption process of oral dosage forms in the gastro-intestinal tract.

4. Multi-particle Monte Carlo model for a binary soluble system

We continue to explore the area of Monte Carlo modelling, in introducing a multi-particle model for
another, particular experimental situation. The main target of the model is capture of the phenomenological
dynamic behaviour of a relatively complex physical system, consisting of a drug delivery compact, dissolving
in a given in vitro environment. Also, the existing models mimic systems which dissolve quite slowly. Here we
try to evaluate the possibilities of using Cellular automata MC to model more rapidly dissolving systems.
7 The mean free time reflects the particle’s average speed, which is directly connected to the temperature of the system.
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We propose a multi-particle Monte Carlo model for binary mixed soluble systems: composed of mixed
powders of poorly soluble drug and highly soluble acid excipient. This particular type of compact is obtained
by first grinding the two components into powder, mixing the products, and finally compressing them into a
final compact, (as described in Healy and Corrigan [18]).

The compact dissolves according to the following main mechanism: at the dissolution of the acid excipient,
the pH of the buffer decreases, affecting the solubility of the other component, e.g. ibuprofen (the drug, in this
case). The dissolution of ibuprofen is suppressed by the dissolution of the acid excipient (by a pH effect). As
the solubility of the excipient is much higher than that of the drug, it is the first to recede from the surface of
the compact, permitting the drug to dissolve through the pores left behind.

The in vitro environment is a dissolution test apparatus, consisting of a container filled with the dissolution
medium. The compact is situated at the bottom of the apparatus. A paddle is used to stir the buffer solution
inside the apparatus, creating a stream, which curves around the obstacle (i.e. the compact), producing a
velocity boundary layer around it. Due to the stirred liquid in the apparatus, the mass transport at dissolution
happens not only by simple diffusion, but by advection8 as well: the flow is responsible for carrying away
quantities of matter proportional to the velocity.

Our target is to implement a model which captures the essential features necessary to reproduce the com-
plexity observed in experiment:

• Dynamic formation of pores and channels as dissolution takes place.
• Dissolution of the components through the pores and non-uniform suppressing effect of the the acid excip-

ient throughout the pores.
• Given that in the case of the in vitro system the effect of the advection is not negligible, the model specif-

ically has to take into consideration both main mechanisms of mass transport in the real system: diffusion
and advection. Hence: accelerated dissolution on the surface, due to advection.

We define the DDS and the release medium around it on a 2D lattice with each site characterised by a local
state, as shown in Fig. 3. As in Kosmidis et al. [23], we represent the two solid species by virtual particles. The
solvent is represented by empty sites. The state of a site is defined by the quantity and type of the particles with
which it is filled, i.e. the local concentrations.

The state of any site can evolve in time according to a function which depends on the concentrations of
particles at the site itself and those in the local neighbourhood. Zygourakis and Markenscoff [44] also discuss
a local concentration approach.

Since the components in the compact have highly different solubilities, they are expected to dissolve at dif-
ferent dissolution rates. In addition, the solubility of a component depends on the local concentrations [17]. In
order to model this aspect, we define the maximum allowed concentrations (CMAXD and CMAXE , measured in
terms of numbers of particles per unit of volume, or site) of diffusing particles on the solution sites, propor-
tional to the real solubilities. We allow for more then one particle to hop to an adjacent site, in order to cap-
ture the large difference in solubilities between the two components of the disk. If the decision is made for a
component to diffuse, then the number of particles chosen to change their position follow a uniform or a nor-
mal distribution. For example, in the remainder of this section, the distribution is the following:

X ¼ Nðl; 1Þ ð6Þ
where X is the number of particles allowed to modify their position.

4.1. Quantitative simulations and results

Qualitative, and then quantitative simulations, have been performed with the above mentioned model. The
results agreed quite well with the available experimental results. In the case of the quantitative simulations, we
attributed an actual size to to the sites from the lattice. This size equals to the average diameter of the acid
8 The term of advection refers to the transport of something from one region to another.



Fig. 3. 2D model for a dissolving binary system: (a) schematic representation of 2D model. The real dimensions are not respected in the
picture and (b) simplified model of dissolution of a drug-excipient system. The grid represents a cylindrical tablet in longitudinal cut. The
shots show the benefits of this kind of model for simulating cases where pores are formed inside a compact by the quick dissolution of one
of the components. The second component has to dissolve through these pores and this process is different from dissolution at the surface.
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excipient powder fragments (125 lm). In the experimental data available, the average diameter of the ibupro-
fen powder fragments is O(102) smaller than that of the excipient average diameter of fragments. This is why
we assume that the ibuprofen powder simply fills the spaces among the larger excipient bits. If the ratio
between the coarsest and the thinner component’s average fragment diameters were smaller, it would have
been reasonable to take the size of the site equal to the diameter of the smallest component, because there
would have been chances that the fragments arrange in a less compact way, letting the possibility of a larger
initial porosity.

As stated before, the way to discretise the matter in this model is to fill the sites with ‘‘particles’’. The dif-
fusivities, the densities, the solubilities of the components are used afterwards to calculate the weight of a vir-
tual particle and the loadings of virtual particles per site, in order to set the input parameters to the
simulations. For example, to obtain the results presented below we have made the choice that a virtual particle
weighs 2 · 10�9 g. Table 1 resumes some of the input parameters for the quantitative simulations, as well as
some physical characteristics of the real systems.

The transition from Monte Carlo time steps to minutes is done by using Fick’s first law:

dQ
Adt
¼ DCs

h
ð7Þ

where dQ is the amount of drug released, h is the thickness of the diffusion boundary layer, D is the diffusion
coefficient, Cs – the solubility and A is the total area through which the diffusion takes place, [8].
Table 1
Input information for quantitative simulations

Nb. p./solid site Max Nb. p./liquid site l q (mg/cm3) D (cm2/min)

Adipic acid 1064 6 1 0.98 5.155 · 10�4

Citric acid 933 43 23 1.56 4.567 · 10�4

Ibuprofen 1486 841 142 1.118 4.595 · 10�4
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Fig. 4. Simulated versus experimental. Continuous lines with filled dots: Dissolution profiles of ibuprofen and excipient from ibuprofen/
acid excipient compressed discs. Empty dots: Quantitative simulated results corresponding to respective experimental situations. Circles:
ibuprofen. Rectangles: acid excipient. The titles show what are the two components in each experiment and the weight ratio in which they
are used.
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The Monte Carlo time step equals to the time needed by a virtual particle of ibuprofen to make its tran-
sition to an adjacent site. We took into consideration the fact that at the surface of the compact the matter
passes into the solvent much quicker due to the advection. More particles of ibuprofen, nsurface, are allowed
to pass into the solution at the surface of the compact in the same interval of time. The experimental profile
obtained from the dissolution of an ibuprofen-only tablet was used for the calibration of the distribution of
nsurface.

Fig. 4 compares the simulated data to some of the available experimental dissolution profiles. The first part
of the figure (a and b) shows the dissolution of the ibuprofen in mixture with the adipic acid excipient which
has a relatively low solubility, Sadipic = 44.4 mg/ml. In Fig. 4(c and d) the excipient used is the citric acid,
Scitric = 883.6 mg/ml.
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Fig. 5. Dynamics of the porous layer. (a) thickness of the porous layer as a function of time, (b) thickness of the porosity as a function of
time, (c) thickness of porous layer as a function of time for different initial drug loadings and (d) dissolution profiles of the same four
excipients, colour and shape code – the same from the legends of (a) and (b) continuous lines with filled dots: experimental. Empty dots:
the simulated results. The experimental data appearing on this and previous figures have been published in [17,16] and have been kindly
offered for this comparison by the authors.
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The good agreement between the simulated and experimental motivates the use of the models to find esti-
mates of other quantities of interest, like the variation of the porosity and thickness of the porous layer,
because these influence both drug delivery and mechanical properties of a DDS. The dynamics of these param-
eters is important to be known in many other applications. For example, in the cases of therapeutical implants,
the designers endeavour to find a good compromise between the drug delivery properties of the implant and its
mechanical properties, as the components dissolve from the compact and form channels and pores. Fig. 5(a and
b) shows the dynamics of the porous layer in the case of mixtures of ibuprofen and four different acid excip-
ients. The thickness of the porous layer is given in sites, but can be easily converted in cm because the diameter
of the site is known. The porosity is defined as the ratio between the number of sites labelled as pores and the
total number of sites currently belonging to the device. It can be observed that both porosity and thickness of
the porous layer have the same shape as the receding acid excipient dissolution profiles (compare with
Fig. 5d.).

We report a better description of the above presented problem, implementation details and more results of
this model in Part 2, the companion paper on our model.

5. Conclusions

The results obtained by different Monte Carlo modelling approaches reported here, in particular where
these draw on the computing power of high performance computing systems, have shown considerable
promises for the area of drug design and drug formulation. Further work is clearly needed, especially to
counter difficulties in calibration of the MC models with real systems, in order to obtain quantitative
results.

The advantage of the MC models is that they can address diversity in general and offer a straightforward
means of specifying and describing micro-structural situations and relationships, thus permitting detailed
study of the phenomena occurring at dissolution, including the different types of interactions between the com-
ponents of a dissolving compact, dissolution through a system of channels and pores, establishment of disso-
lution boundary layers and so on. In addition, MC models can be easily modified and adapted to mimic a wide
range of physical situations corresponding to various drug delivery systems.
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