Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2619648.2619672guideproceedingsArticle/Chapter ViewAbstractPublication PagesgiConference Proceedingsconference-collections
research-article
Free Access

Visualizing aerial LiDAR cities with hierarchical hybrid point-polygon structures

Published:07 May 2014Publication History

ABSTRACT

This paper presents a visualization framework for cities in the form of aerial LiDAR (Light Detection and Ranging) point clouds. To provide interactive rendering for large data sets, the framework combines level-of-detail (LOD) technique with hierarchical hybrid representations of both point and polygon of the scene. The supporting structure for LOD is a multi-resolution quadtree (MRQ) hierarchy that is built purely out of input points. Each MRQ node stores separately a continuous data set for ground and building points that are sampled from continuous surfaces, and a discrete data set for independent tree points. The continuous data is first augmented with vertical quadrilateral building walls that are missing in original points owing to the 2.5D nature of aerial LiDAR. The continuous data is then spatially partitioned into same size subsets, based on which hybrid point-polygon structures are hierarchically constructed. Specifically, a polygon conversion operation replaces points of a subset forming a planar surface to a quadrilateral covering the same space, and a polygon simplification operation decimates wall quadrilaterals of a subset sharing the same plane to a single compact quadrilateral. Interactive hybrid visualization is retained by adapting a hardware-accelerated point based rendering with deferred shading. We perform experiments on several aerial LiDAR cities. Compared to visually-complete rendering [10], the presented framework is able to deliver comparable visual quality with less than 8% increase in pre-processing time and 2-5 times higher rendering frame-rates.

References

  1. M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High-quality surface splatting on today's GPUs. In Symposium on Point-Based Graphics 2005, pages 17--24, June 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. P. Callahan, J. L. D. Comba, P. Shirley, and C. T. Silva. Interactive rendering of large unstructured grids using dynamic level-of-detail. In IEEE Visualization, pages 199--206. IEEE Computer Society, 2005.Google ScholarGoogle Scholar
  3. A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. Interactive multiresolution surface viewing. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '96, pages 91--98, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. Chen and M. X. Nguyen. POP: A hybrid point and polygon rendering system for large data. In Proceedings of the Conference on Visualization '01, VIS '01, pages 45--52, Washington, DC, USA, 2001. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Coconu and H.-C. Hege. Hardware-accelerated point-based rendering of complex scenes. In Proceedings of the 13th Eurographics Workshop on Rendering, EGRW '02, pages 43--52, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. D. Cohen, D. G. Aliaga, and W. Zhang. Hybrid simplification: Combining multi-resolution polygon and point rendering. In T. Ertl, K. I. Joy, and A. Varshney, editors, IEEE Visualization, pages 37--539. IEEE Computer Society, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Sequential point trees. In ACM SIGGRAPH 2003 Papers, SIGGRAPH '03, pages 657--662, New York, NY, USA, 2003. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. T. K. Dey and J. Hudson. PMR: Point to mesh rendering, a feature-based approach. In IEEE Visualization, pages 155--162, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381--395, June 1981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Z. Gao, L. Nocera, and U. Neumann. Visually-complete aerial LiDAR point cloud rendering. In Proceedings of the 20th International Conference on Advances in Geographic Information Systems, SIGSPATIAL '12, pages 289--298, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. P. Goswami, F. Erol, R. Mukhi, R. Pajarola, and E. Gobbetti. An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees. The Visual Computer, 29(1):69--83, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  12. G. Guennebaud, L. Barthe, and M. Paulin. Splat/mesh blending, perspective rasterization and transparency for point-based rendering. In SPBG, pages 49--57. Eurographics Association, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Hao, G. Tian, Q. Zhao, and Z. Li. An accelerating rendering method of hybrid point and polygon for complex three-dimensional models. In ICAT, volume 4282 of Lecture Notes in Computer Science, pages 889--900. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. B. Kovač and B. Žalik. Visualization of LiDAR datasets using point-based rendering technique. Computers & Geosciences, 36(11):1443--1450, Nov. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Kuder, M. Šterk, and B. Žalik. Point-based rendering optimization with textured meshes for fast LiDAR visualization. Computers & Geosciences, 59(0):181--190, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Kuder and B. Žalik. Web-based LiDAR visualization with point-based rendering. In Proceedings of the 2011 Seventh International Conference on Signal Image Technology & Internet-Based Systems, SITIS '11, pages 38--45, Washington, DC, USA, 2011. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. F. Lafarge and C. Mallet. Modeling urban landscapes from point clouds: a generic approach. Technical Report RR-7612, INRIA, May 2011.Google ScholarGoogle Scholar
  18. P. Lindstrom and V. Pascucci. Visualization of large terrains made easy. In IEEE Visualization, 2001., pages 363--574, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. Ochotta and S. Hiller. Hardware rendering of 3D geometry with elevation maps. Shape Modeling and Applications, International Conference on, 0:1--10, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. T. Ochotta, S. Hiller, and D. Saupe. Single-pass High-quality Splatting. Konstanzer Schriften in Mathematik und Informatik. Fachbereich für Mathematik und Statistik, 2006.Google ScholarGoogle Scholar
  21. R. Pajarola. Overview of Quadtree-based Terrain Triangulation and Visualization. Technical report (University of California, Irvine. Dept. of Information and Computer Science). Department of Information & Computer Science, University of California, Irvine, 2002.Google ScholarGoogle Scholar
  22. R. Pajarola. Efficient level-of-details for point based rendering. In Computer Graphics and Imaging, pages 141--146. IASTED/ACTA Press, 2003.Google ScholarGoogle Scholar
  23. E. Paredes, M. Bóo, M. Amor, J. Bruguera, and J. Döllner. Extended hybrid meshing algorithm for multiresolution terrain models. International Journal of Geographical Information Science, 26(5):771--793, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. P. Rosenthal and L. Linsen. Image-space point cloud rendering. In Proceedings of Computer Graphics International, pages 136--143, 2008.Google ScholarGoogle Scholar
  25. S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system for large meshes. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '00, pages 343--352, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Schnabel and R. Klein. Octree-based point-cloud compression. In SPBG, pages 111--120. Eurographics Association, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Wahl, M. Guthe, and R. Klein. Identifying planes in point-clouds for efficient hybrid rendering. In The 13th Pacific Conference on Computer Graphics and Applications, pages 1--8, Oct. 2005.Google ScholarGoogle Scholar
  28. M. Wand, M. Fischer, I. Peter, F. M. auf der Heide, and W. Straer. The randomized z-buffer algorithm: interactive rendering of highly complex scenes. In SIGGRAPH, pages 361--370, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. W. Zheng, H. Sun, H. Bao, and Q. Peng. Rendering of virtual environments based on polygonal & point-based models. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST '02, pages 25--32, New York, NY, USA, 2002. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Zhou and Q. Ruan. Adaptive hierarchical representation of a point-sampled 3d model for fast rendering. In Signal Processing, 2006 8th International Conference on, volume 2, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  31. Q. Zhou and U. Neumann. 2.5D dual contouring: A robust approach to creating building models from aerial LiDAR point clouds. In Computer Vision - ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5--11, 2010, Proceedings, Part III, volume 6313 of Lecture Notes in Computer Science, pages 115--128. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Visualizing aerial LiDAR cities with hierarchical hybrid point-polygon structures

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image Guide Proceedings
              GI '14: Proceedings of Graphics Interface 2014
              May 2014
              230 pages
              ISBN:9781482260038

              Publisher

              Canadian Information Processing Society

              Canada

              Publication History

              • Published: 7 May 2014

              Qualifiers

              • research-article

              Acceptance Rates

              Overall Acceptance Rate206of508submissions,41%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader