
5

Lessons Learned in Building Real-time Big Data Systems
(Keynote)

Srini V. Srinivasan
Founder and VP Engineering & Operations

Aerospike

srini@aerospike.com
In the Age of the Customer, enterprises must modernize their

application infrastructure to use real-time big data to attract,

engage and retain consumers across devices, media and channels.

Processing massive amounts of data in real-time creates a

competitive advantage that has an enormously positive impact on

business.

It has been clear now for a long time that lower latency means

higher sales for Internet enterprises. In fact, Internet sites

routinely lose users to other sites that support lower latency. E.g.,

Amazon found every 100ms of latency cost them 1% in sales.

Google found an extra .5 seconds in search page generation time

dropped traffic by 20%[1].

Therefore, predictable low latency is a sure fire way to win in the

marketplace. Nowhere has this been more apparent than in the

growth of Real-Time Bidding (RTB) systems for delivering

digital advertising.

RTB has been effectively used to monetize “long tail” (remnant)

inventory and target users across websites and mobile apps,

anywhere they might be on the Internet. In fact, RTB has been the

key factor driving the enormous growth in digital advertising

worldwide. Low latency is a lynchpin of the RTB system, where

the entire process from click to view must complete in under 150

milliseconds.

Platform companies realized the critical nature of keeping this

contract[2]. At the center of such a business is fast access to data.

Note that the user data in an RTB system is changing constantly

since the choice of actions at every user visit needs to take into

account past behavior of that user. So, such RTB applications

need databases that provide predictable sub-millisecond latency

for reads in the presence of heavy write load.

Clearly traditional systems are not sufficient for this. It has been

known for a while that Database Systems need a complete

rewrite[3]. Even most of the first generation NoSQL systems are

inadequate. Some of the RTB majors have used custom systems

they developed on their own on top of other inadequate systems.

In fact, building a fast in-memory system on top of a slow

Database could be a “fate worse than death”[4]. The most

successful companies use ultra-fast clustered systems[5] or single

node systems[6]. These systems work quite well on bare metal[7]

or in the cloud[8].

System developers and operators face several issues while

deciding to use such a new Database system for their applications:

• From the application point of view, the system needs to be

able to deliver extremely low latency for reads in the

presence of heavy write load. This is an especially hard

problem to solve for traditional databases. In addition, the

system must provide support for queries in addition to

simple (and fast) key value access.

• It is important that applications work in both cloud based

virtual deployments as well as on bare metal data center

deployments. Specifically, it is critical that applications

work on commodity hardware with no special purpose setup

needed for launch.

• As more and more mainstream enterprises move to low

latency applications, it is important to avoid sacrificing

consistency at the altar of availability[9]. The best systems

are those that make judicious choices and provide

availability and consistency with high performance in a

wide variety of useful scenarios[10]. For example,

minimizing network partitions considerably reduces the

negative effects of the CAP theorem and it is hard but not

impossible to provide ACID support.

• Parallelism is quite powerful both within a node as well as

across nodes. Harnessing the best performance and scaling

up on one node and scaling out are both important. For

example, using a hybrid in-memory system using both

DRAM and SSD (Flash), one can run a 14-node cluster

using a DRAM/SSD configuration instead of a 186-node

cluster using a pure DRAM system. Such a cluster will still

provide sub-millisecond latency, but do so at a ten times

lower cost than pure DRAM systems.

• Operational excellence is necessary to ensure that a service

runs 24X7. All code should be written so that it can run as a

service. Extremely high performance (e.g., 1 million TPS

per node) provides sufficient headroom for making sure that

failures can be handled seamlessly. Additional capacity can

also be used to provide better consistency in the presence of

failures.

• High performance in a system can be achieved by ensuring

that software takes maximum advantage of the performance

of hardware. Techniques that are useful: using multiple

threads, reference counts to avoid data copies, efficient

memory usage (e.g., restricting the index entries to 64 bytes,

the same as a cache line), real-time prioritization algorithms

to keep the system running smoothly, etc.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

The 20th International Conference on Management of Data (COMAD),

17th-19th Dec, 2014 at Hyderabad, India.

Copyright ©2014 Computer Society of India (CSI).

6

To conclude, by making appropriate choices, predictable low

latency can co-exist with enough consistency in the vast majority

of big data systems. This will enable enterprises to build real-time

applications that add to the top line of every Internet enterprise.

Author:
Srini V. Srinivasan, founder and VP Engineering &

Operations

Srini brings 20-plus years of experience in designing, developing

and operating Web-scale infrastructures, and he holds over a

dozen patents in database, Internet, mobile, and distributed system

technologies. Srini co-founded Aerospike to solve the scaling

problems he experienced with relational databases at Yahoo!

where, as senior director of engineering, he had global

responsibility for the development, deployment and 24×7

operations of Yahoo!’s mobile products, in use by tens of millions

of users. Srini also was chief architect of IBM’s DB2 Internet

products, and he served as senior architect of digital TV products

at Liberate Technologies. Srini has a B.Tech in Computer Science

from IIT Madras and a M.S. and PhD in Databases from
University of Wisconsin-Madison.

1. REFERENCES
[1] http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-

20.html

[2] http://www.adexchanger.com/online-advertising/equinix-
seeks-to-speed-rtb-bidding/

[3] Michael Stonebraker, Samuel Madden, Daniel J. Abadi,

Stavros Harizopoulos, Nabil Hachem, and Pat Helland. The

end of an architectural era: (it's time for a complete rewrite).

In Proceedings of the 33rd International Conference on Very
Large DataBases (VLDB). 2007.

[4] https://gigaom.com/2011/07/07/facebook-trapped-in-mysql-
fate-worse-than-death/

[5] http://highscalability.com/blog/2014/5/6/the-quest-for-
database-scale-the-1-m-tps-challenge-three-des.html

[6] http://highscalability.com/blog/2014/8/27/the-12m-opssec-
redis-cloud-cluster-single-server-unbenchmark.html

[7] http://www.aerospike.com/wp-

content/uploads/2013/01/Ultra-High-Performance-NoSQL-
Benchmarking.pdf

[8] http://highscalability.com/blog/2014/8/18/1-aerospike-
server-x-1-amazon-ec2-instance-1-million-tps-for.html

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner

Vogels. Dynamo: amazon's highly available key-value store.

In Proceedings of 21
st
 ACM SIGOPS Symposium on

Operating Systems Principles (SOSP). 2007.

[10] V. Srinivasan and Brian Bulkowski. Citrusleaf: A Real-Time

NoSQL DB which Preserves ACID. Proc. VLDB Endow.
(PVLDB) Vol.4(12), 1340-1350. 2011.

