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Abstract quadratic equation is eigen-decomposed to build a linear 
This paper proposes a linear algorithm for metric equation to compute the projective-to-Euclidean trans- 

reconstruction from projective reconstruction. Metric formation matrix. 
reconstruction problem is equivalent to estimating the 
projective transformation matrix that converts projective 
reconstruction to Euclidean reconstruction. We build 2 Background on Auto-Calibration 
a quadratic form from dual absolute conic projection 
equation with respect to the elements of the transforma- 
tion matrix. The matrix of quadratic form of rank 2 is 
then eigen-decomposed to produce a linear estimate. The 
comparison of results of our linear algorithm to results 
of bundle adjustment, applied to sets of synthetic image 
data having Gaussian image noise, shows reasonable er- 
ror ranges. 

1 Introduction 

Recent theoretical developments in projective geometric 
structure from motion algorithms showed that a minimal 
constraint like zero skew or known aspect ratio provides 
sufficient information to upgrade the result of projective 
reconstruction to Euclidean one up to an unknown global 
scale [ 15 ,8 ,5 ]  in the case that the motion of the camera is 
sufficiently general so that the configuration of the view- 
ing geometry does not belong to special degenerate cases 
like pure translation or pure rotation [14,2, 12, I ,  13, lo]. 

In contrast to the theoretical advances, approaches of 
practical estimation have relied on linear approximations 

The camera is modeled by the well known camera equa- 
tion 

X x = K [ R I  - R t ] X = P X .  
( 1 )  

Let us assume that Pi and X are the obtained projec- 
tive reconstruction. Then there exists a projective trans- 
formation T such that PjT - P: = KjR ,  [ I (  - t j ] ,  
where Rj  is rotation, - denote equality up to scale and 
K j  is the appropriate intrinsic parameters. Now, let 
T denote the 4 x 3 matrix consisting of the first three 
columns of T ,  giving P ~ T  - K j R j  . Multiplying this 

with its transpose gives P ~ T T ~ P ?  .- K~R~RTKT 3 3 = 
- - T  . 

K ~ K ? .  Define 52 = TT , 1.e. the dual to the absolute 
conic, and wj = KjK? ,  i.e. the dual to the image of 
the absolute conic. Then the image of the dual absolute 
conic (absolute quadric) can be written as 

or non-linear iterative methods, and Euclidean bundle wj -- ~ ~ 5 2 ~ ;  . (2) 
adjustment is eventually needed to minimize a geometri- 
cally meaningful error to get an optimal Euclidean recon- 
struction [8]. Hartley's algorithm of infinity searching 3 A Linear Estimation Background 
provided another practical method of metric reconstruc- 
tion [4]. Mendoqa and Cipolla utilized the constraint of Now let us consider the following: 

equal singular values of the essential matrix to compute 
the internal camera parameters [7]. Seo and Heyden pro- Problem 1 Find the solution vector a:from N equations 

posed a linear iterative formulation from the orthogonal- of theform 

ity constraint [ l l ] .  
x T M j x  = 0,  j = 1 ,..., N ,  

We propose here a linear algorithm with the assump- (3) 

tion of varying internal parameters with zero skew cam- provided that M ,  is ofrank 2, not positive nor negative 
era.   he dual absolute conic projection equation [I5]  definite, asymmetric, normal, and dejined up to a non- 
is re-formulated to make a quadratic equation for each zero scale. 
of the projective camera matrices and the matrix of the 
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where UH is the complex conjugate transpose of U [3]. 
Let u, be the column representation of the n-th row vec- 
tor of U .  Decomposition of Mj gives a simplified form: 

where yl and y2 are the elements of y = U ~ X  = 
[ u ~ ~ x ,  uy2x, ..., u'&x]~. From this equation, we have 

This gives us 2N complex linear equations. In matrix 
form it can be written as follows 

0 = Zx = [x1,x2, ..., xNITx = ( A + i B ) x ,  i = a, 
(8) 

where A and B are respectively real and imaginary part 
of 2. Note that all the scalars belong to complex field @. 
Finally, SVD of W = [AT, B ~ ] ~  will provide a linear 
solution of x .  

4 DACP for Zero-Skew Camera 

The dual absolute conic projection (DACP) equation is 
given by [I51 

If we assume that the skew of the camera is zero, the 
image K j  KT of the dual absolute conic are of the forms: 

Let p,k is the k-th row vector of P j  = [piT, p:T, p;T]T . 
Then the DACP equation becomes 

(11) 
Now the (m, n)-th component of w j  is pjmflpjnT which 
can be re-written as a vector inner-product of two 10-D 
vectors b,,, and Q :  

From the equations (9)-(1 I), we know that 

bT 3Q 
U .  - .-- v .  - - b;,3Q 

3 - bT a )  3 - bT 
bT,2Q and u jv j  = m. 

3,3- 3,3- 3,3- 

(13) 
Removing u j  and vj from the last equation using the first 
two, we have the final form 

where Mj = b3,3bT,2 - b1,3b;,3. Note that the matrix 

Mi = - b3,3bT,3 also satisfies Equation (14). 
From a symbolic computation and algebraic reasoning, 
we can find that the matrix Mj is of rank 2 ;  Mj + MT 
has rank 4. 

5 How to compute a. 
In practice, Mj is not normal; however, even though 
Mj is not normal actually, we may compute an eigen- 
decomposition M j U  = Udiag(X1, X2, 0, ..., 0), which 
can be applied for the computation of Q, instead. Here 
is our practical algorithm: 

1. Given image matches, compute projective camera 
matrices P j  and structure Xk using the iterative 
factorization of [6] and projective bundle adjust- 
ment. 

2. For every projective camera matrix P j ,  build four 
10 x 10 matrices M j ,  M i ,  M 5 ,  ~ i ~ ( ~ ~ u a t i o n  
( 14)). 

3. Construct eight 10-D row vectors z from eigen- 
decomposition for each of the four matrices. The 
conjugate transpose UH of U in Equation (5) is now 
replaced by U-'. 

4. Construct the matrix Z E CN lo using x's. A lin- 
ear solution of 2 is given from SVD of [AT, BTIT 
where A and B are real and imaginary part of Z .  

5. Build 4 x 4 symmetric matrix from the vectorn. 
Then, compute T 

from SVD of 0 :  

R = ~ d i a g ( u ~ , u 2 , u ~ , u 4 ) ~ ~ ,  u1 > 0 2 > 0 3 > u 4 ,  
(16) 

and set the (4,4)-th element of T to 1. 

6. Upgrade projective quantities to Euclidean: 

X: = T - ' X ~  and P: = PjT. (17) 

Compute calibration matrix Kj  and motion R j ,  T j  
through QR decomposition of the first 3 x 3 sub- 
matrix of P;. 

6 Real Experiment 

Figure 1 shows the result of linear metric reconstruction. 
The first real experiment exploits image matches from 
14 views. Image matches are obtained from the inter- 
section points of the edges of black squares. Figure l(b) 
is the plot of RMS re-projection errors for each image 
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Figure 1: (a) Four from 14 images. Image size is 
640 x 480. (b) RMS errors for each view after projective 
bundle adjustment (24 point matches). (c) skew (d) as- 
pect ratio (e) principal points (f) angle measurements of 
the orthogonal angles. The true angles are 90 degrees. 

after projective bundle adjustment. Total RMS becomes 
0.32pixel. Initial projective reconstruction is obtained 
using the method of Heyden et. al. [6 ] .  Figure l(c) 
shows the computed skew values for each of the cameras. 
Its range is &0.008 which was assumed to be zero. Fig- 
ure l(d) gives aspect ratios whose range is 0.99 - 1.04. 
The location of the image center is (320,240) and the 
principal points of Figure 1 (e) are around the image cen- 
ter. Finally the result of angle estimation of the metric 
reconstructed 3D points is shown in Figure l(f); their er- 
rors are distributed within f 2" from true angle 90". 

More experiments can be found in [9], and from these 
real experiment, we come to see that our linear algorithm 
yields a reasonable calibration parameters as well as Eu- 
clidean motion parameters. 

7 Simulation with Synthetic Data 

We generated a set of synthetic matching data of 15 
views. We added Gaussian noise of standard deviation 
a,,i,, = 0.5pixel to image coordinates of the synthetic 
data. By repeating noise addition to the original data set, 
we generated 100 contaminated data sets to which the 
linear algorithm and Euclidean bundle adjustment algo- 

(a) skew -.-- (b) aspect ratio 
I . . _ . . . . .  -.,*.-- ,- 

:"is :"d 
(c) focal length (mi, ui) (d) ratio (mi, ui)/ fi 

I *-A, 
(e) x coord. of principal point (f) y coord. of principal point 

Figure 2: Statistics of simulation results after 100 runs 
when input noise level is 0.5pixel for each of the image 
coordinates. Bold lines (-) are for bundle adjustment 
and dashed lines (- - -) for the linear algorithm. Vertical 
line segments denote one standard deviation ranges from 
the mean values. 

rithm were respectively applied. 

Figure 2 shows the statistics of the LOO computations; 
mean and standard deviation of each of the estimation 
errors - skew, aspect ratio, focal length, principal point - 
with respect to the true calibration parameter values are 
shown in each of the plots. For example, Figure 2(a) is 
the plot of the error of skew values. When we applied Eu- 
clidean bundle adjustment, all the skew values were zero; 
but the linear algorithm shows biases, maximally 0.008, 
from the truth (zero) and standard deviation of 0.005 at 
maximum. Figure 2(d) shows ratio of Statistics of es- 
timation error of focal length to its true value; this is to 
compensate for the change of focal lengths. Compared to 
the results of bundle adjustment, these error range graphs 
show the feasibility of the linear algorithm. 

Figure 3 shows mean and standard deviations of 
twelve angle measurements whose true angle values are 
90". The bias of mean error is within *lo, which sup- 
ports the feasibility of the linear algorithm. 
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Figure 3: Statistics for the measurement of angle errors 
after 100 runs. Vertical line segments denote one stan- 
dard deviation ranges from the mean values. 

8 Discussions and Conclusion 

A novel linear metric reconstruction algorithm is pro- 
posed; the real and synthetic experiments provide suf- 
ficient support for the feasibility of the algorithm. 

Our future research to make a full mathematical treat- 
ment of the algorithm; in spite of the reasonable experi- 
mental results, it is true that we are short of full rigorous 
mathematical analysis. 
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