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Abstract 

The determination of camera position via 
eigenspace methods has been applied recently to  
robot navigation and visual servoing. Conventional 
eigenspace methods are not robust to occlusion and 
scene changes due to their global nature. This paper 
describes techniques for performing robust camera 
position determination. Input images are divided 
into separate local areas, with camera position de- 
termined through eigenspace analysis for each area 
individually. The positions of occluded sections are 
ignored in determining the final camera position. 
The detection of occluded sections is determined by 
applying a threshold to  the eigenspace reconstruc- 
tion error of the input images. Experiments were 
performed determining the translational position of 
a camera and analyzing the magnitude of the errors 
caused by occlusion, the ability to  detect different 
size occlusions and the accuracy improvement pro- 
vided by the subsectioning technique. 

1 Instructions 

Eigenspace methods have recently become a 
popular technique in computer vision, notably in 
the areas of face and object recognition [1][2][3]. 
Eigenspace methods have also been used recently for 
the problem of determining the position of a cam- 
era relative to  a scene [4][5]. This technique can be 
used for a variety of applications including robotic 
navigation and visual control applications. 

A drawback of eigenspace methods is their global 
nature. Occlusions and small scene changes can have 
adverse effects on the ability to determine the cam- 
era's position accurately. Larger occlusions or those 
that differ greatly from the original scene contents 
have proportionally greater effects on accuracy. 

To avoid the effects of occlusion for determining 
camera position, the input image can be divided into 
sections with separate eigenspaces. By detecting 

those sections containing occlusions, the remaining 
nonoccluded sections can be used to  robustly deter- 
mine position. A similar technique has been used in 
face recognition, whereby separate eigenspaces were 
constructed for the eyes, nose and mouth regions [6]. 

Occlusions can be detected by measuring the 
eigenspace reconstruction error of an image section. 
Occluded sections will no longer lie primairly within 
the eigenspace, resulting in a larger reconstruction 
error and thus detectable via a threshold. The abil- 
ity to  differentiate between occluded and nonoc- 
cluded scenes depends upon the size and appear- 
ance of the occlusion relative to  the background. 
Smaller image sections are more apt to  differenti- 
ate between occlusions because of the larger relative 
size of the occlusion, hence a larger deviation from 
the eigenspace. 

A different approach to solving occlusion for cam- 
era position determination is described in [5] and [7]. 
Our local based approach gives the benefit of also 
determining in which region the occlusions occur. 
This idea is similar t o  the eigenspace time inspec- 
tion technique described in [4]. 

This paper shows experimental results demon- 
strating the effects on accuracy of occlusion on posi- 
tional accuracy, the ability to  detect occlusion via 
eigenspace reconstruction as well as the effective- 
ness of the image subsectioning technique for deal- 
ing with occlusion. The experiments were performed 
with a camera mounted on an XY table to simulate 
the movement of a mobile robot. 

2 Method 

2.1 Basic Method 

Defining a motion range for a camera, whether it 
is translational, rotational or a combination of both 
defines a visual subspace (eigenspace) consisting of 
the images from the camera within this range. Im- 
ages from nearby camera positions will in general 



be highly correlated, consequently such visual sub- 
spaces are highly compressible via the Karhunen- 
Loeve Transform (KLT). 

The KLT produces a small set of vectors that cap- 
tures most of the variance of the eigenspace, allow- 
ing a low dimensional representation of images from 
the visual subspace. If x1 represents a concatenated 
image vector drawn from the visual subspace and 
E represents a matrix consisting of the firs$ n KLT 
vectors of the eigenspace, the low dimensional rep- 
resentation y of x (projection vector) is formed by: 

By storing the projection vectors for a set of im- 
ages equally spaced throughout the camera's move- 
ment range, the current position of the camera can 
be ascertained by performing a nearest neighbor 
search of this set and the current image's projection 
vector, a technique first proposed by Nayar 121. 

This approach limits the accuracy to  the distance 
between the images in the stored set. The projec- 
tions can be interpolated to  create points for inter- 
mediate positions between the actual images. 

The problem with occlusion is the fact that oc- 
clusions will alter the value of the projections of the 
occluded image resulting in positional errors when 
performing the nearest neighbor match. The extent 
to  which an occlusion affects positional accuracy de- 
pends on the size and the difference in the appear- 
ance of occlusion and the background. Increasing 
the size of the occlusion or the difference from the 
original background results in larger changes to  the 
resultant projection vector and consequently larger 
errors with the nearest neighbor matching. The lo- 
cation within an image can also alter the impact of 
an occlusion on accuracy. 

2.2 Occlusion Correction 

An input image can easily be divided into subim- 
ages and separate eigenspace calculations performed 
with each of them. In this manner, if one subimage 
contains an occlusion, that positional information 
can be disregarded and the positional information of 
the other subimages used. For our experiments we 
averaged the remaining subimage positions to  deter- 
mine the overall position. 

Potentially the image could be divided into many 
small subimages, so with even numerous occlusions 
there would still be unoccluded subimages. The 
problem with this scheme is that small images have 
the problem of increasing ambiguity, where images 
from nearby positions have very similar appearances 

' w e  assume the image x has already had the mean image 
of the subspace subtracted 

resulting in large errors. For our experiments, the 
subimages were large enough for this not to  be a 
problem. An alternative to  subimages would be the 
use of additional cameras aligned in different di- 
rections, and their whole images taking upon the 
subimage role. These separate images could be sub- 
divided as well. 

Small scene changes can also be dealt with in this 
manner, such as those encountered by a mobile robot 
in its workspace over time. 

2.3 Occlusion Detection 

To determine which sections of the image are oc- 
cluded and thus should be disregarded can be accom- 
plished using the reconstruction of the new image x 
from the KLT vectors: 

Occluded images will no longer lie within the orig- 
inal eigenspace basis, thus the Euclidean error be- 
tween the original image and the reconstructed im- 
age will in general be larger than that of nonoccluded 
images. Pentland [I] used this concept to  determine 
whether an image contained a face or not. An alter- 
native measure to  detect occlusion or scene change 
is to  measure the distance between the image's pro- 
jection and that of its nearest neighbor match[4]. 

This reconstruction error will increase with occlu- 
sion size and the deviance of occlusion's appearance 
from the original background. Using smaller image 
sections will increase the reconstruction error since 
the occlusion will be a proportionally larger part of 
the image. 

For simplicity we assumed a Gaussian distribu- 
tion based on the reconstruction error statistics of 
a set of random images and experimented with sev- 
eral threshold levels, whereby an image with a re- 
construction error surpassing the threshold was d e  
termined to  be occluded. 

Our experiments determining the translational 
position of the camera showed that occlusions large 
enough to  impair accuracy were easily differentiable 
from nonoccluded images. 

3 Experimental Results 

To illustrate the effects of occlusion on positional 
accuracy, the detection of occlusions and robust ac- 
curacy despite occlusion, a base experiment was set 
up using an XY table. The camera's movement 
range was a 40 cm by 40 cm square within our vision 



Table 1: Average Error Vs. Occlusion Size 

laboratory. Figure 1 shows images from the corners 
of the movement range. The stored projection vec- 
tors consisted of images separated by 2.5 cm in each 
direction interpolated to  provide projections 1 mm 
apart. The images were 320 by 240 pixels. 

Occlusion 
Size 

(Pixels) 

0 
10 by 10 
20 by 20 
40 by 40 
60 by 60 

the occlusion than location B (square centered row 
210, column 30) with significant error as the occlu- 
sion becomes an appreciable portion of the image. 
Location B shows little increase even with the largest 
occlusion. 

Location 
A 

Error 
(mm) 
1.62 
1.82 
2.52 
3.90 
5.70 

Occlusion 
Size 

(Percentage) 

0% 
0.13% 
0.52% 
2.08% 
4.74% 

3.2 Occlusion Detection 

Location 
B 

Error 
(mm) 
1.62 
1.62 
1.68 
1.77 
1.88 To illustrate the feasibility of detecting occlusions 

using reconstruction error thresholds, the artificially 
occluded test images from the previous section were 
utilized. To show the relationship between occlusion 
size and reconstruction error, the reconstruction er- 
ror was recorded for the nonoccluded set of the entire 
images, as well as the 5, 10 and 20 pixel occlusion 
sets, with the square in location A. For visualization 
purposes the mean and variance of each set was cal- 
culated and Figure 2 shows a plot of each occlusion's 
statistical information with a Gaussian distribution. 

Figure 2: Gaussian Distributions, Full Image 
Figure 1: Corner Images of Camera Range 

A set of 300 test images was acquired spaced ran- 
domly throughout the camera's range. For testing 
purposes, the average lateral position error of this 
set was used in the rest of the experiments for as- 
sessing the effects of occlusion on accuracy. For- 
ward accuracy is often considerably poorer and can 
be avoided by using the lateral information of two 
offset cameras. 

3.1 Effect of Occlusion on Accuracy 

To investigate the relationship between occlusion 
size and accuracy, the test image set was embed- 
ded with different size squares with zero intensity 
as a quantifiable artificial occlusion. Zero intensity 
was chosen so the occlusion would have a relatively 
large difference from the original background and 
thus have a comparatively large effect for its size. 
Two different locations were used to  show how some 
areas of the image respond differently to  a particular 
occlusion. Table 1 shows the average lateral error for 
the nonoccluded case and errors for both locations 
with different size occlusions. 

Interestingly, location A (square centered row 30, 
column 30 of the image) is much more sensitive to  

In this case there is clearly no overlap of recon- 
struction error between the nonoccluded images and 
the 40 pixel square, but significant overlap with the 
smaller occlusion squares. 

Smaller image subdivisions ensure the occlusion 
will be larger proportionally and easier to  detect. 
Figure 3 shows the same reconstruction error data, 
except the images consists of the top left quarter of 
the entire image, with separate eigenspace analysis 
performed for that subsection. As expected, using 
a smaller image subsection will make detecting the 
same occlusion easier, as the overlap of the proba- 
bility between occluded and nonoccluded sets is sig- 
nificantly less. Thus for this example, detecting the 
20 pixel occlusion can be accomplished with little 
chance of rejecting nonoccluded images. 

Certainly an occlusion could lie on the boundary 
of two image subsections and thus be more difficult 
to  detect. A possible solution would be to  allow 
overlapping subsections, increasing the chances of 
detecting such an occlusion. 

3.3 Threshold Selection 

To experiment with setting a threshold, the same 
testing images were used as the previous settings. 



Figure 3: Gaussian Distributions, Quarter Image 

Table 2: Gaussian Threshold Vs. Occlusion Size 

Assuming a Gaussian distribution for the nonoc- 
cluded reconstruction error, several thresholds for 
reconstruction error were set by determining the 
point of the top l%, 5% and 10% of the nonoc- 
cluded reconstruction error. Using these thresholds, 
the occluded and nonoccluded test sets were classi- 
fied based on these thresholds. Table 2 shows the 
percentage of images rejected as being above the re- 
spective occlusion thresholds. The images were the 
entire images. 

Using the entire image to detect occlusion in this 
instance, the 40 by 40 square is easily detectable. 
The smallest occlusion is virtually impossible to de- 
tect, although it should be noted from the previous 
sections, it has very little effect on accuracy. 

Table 3 shows the same experiment except using 
the upper left quarter image subsection. There is 
marked improvement, showing the increased accu- 
racy with a smaller image size. 

3.4 Final Experiment 

As a test of the overall technique, the original test 
set was modified to include the occlusions a t  both 
locations A and B. These test images were separated 
into four subsections. Separate eigenspace analysis 
was performed for each of the four subsections. For 
each test image, the position was determined sep- 
arately for each quarter image. A Gaussian based 

Size Technique 

Table 4: Error: Full Image Vs. Subsectioning 

threshold of 1% was applied to each subsection im- 
age. The final position was determined as the aver- 
age of those subsections below the thresholds. Table 
4 shows the average error using this technique versus 
using the entire occluded image. The error is similar 
to that of the unoccluded full size image. 

4 Conclusions 

The subsectioning technique was shown to be an 
effective method of dealing with occlusions large 
enough to cause significant error. Ongoing work in- 
cludes developing a more sophisticated method of 
detecting occlusion as well as devising a technique 
that determines position from the combined nonoc- 
cluded sections, rather than determining position 
from each separately. 
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