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Self-Calibration from Optical Flow and Its Reliability Evaluation 

Kenichi Kana tan i*  
Department of Computer Science, Gunma University 

Abstract 
An algorithm is presented for 3-D reconstruction from 
optical flow observed by an uncalibrated camera. We 
show that by incorporating a statistical model of im- 
age noise, we can not only compute a statistically opti- 
mal shape but also evaluate its reliability in quantitative 
terms. We show real-image experiments and discuss the 
effect of the "gauge" on the uncertainty description. 

1. Introduction 

3-D reconstruction from optical flow has been 
studied by many researchers [4, 5, 131, but most have 
assumed that the camera is calibrated. Recently, the 
self-calibration approach using an uncalibrated cam- 
era was formulated by ViCville et al. [16] and Brooks 
et al. [2]. The self-calibration procedure consists of 
the following steps: 

1. We detect optical flow from an image sequence. 

2. We compute the flow fundamental matrices 
from the detected flow. 

3. We decompose the computed flow fundamen- 
tal matrices into the motion parameters. 

4. We compute the 3-D shape of the scene. 

In this paper, we show that by incorporating a statis- 
tical model of image noise, we can not only compute 
a statistically optimal shape but also evaluate its re- 
liability in quantitative terms. We show real-image 
experiments and discuss the effect of the gauge on 
the uncertainty description. 

2. Optical Flow Detection 

The conventional method for optical flow detec- 
tion is based on what is known as the gradient con- 
straint [ l l ,  121. However, the resulting flow does 
not have sufficient accuracy for 3-D reconstruction. 
Here, we assume that a limited number of salient 
feature points are traced by template matching and 
other means with high accuracy. 

3. Fundamental Matrices 

Let {(x,,~,)) and {(xk,yk)),  a = 1, ..., N,  be 
image coordinates of two sets of points on two dif- 
ferent images. We define the "flow" and the "mid- 
point" of the a t h  point as 
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where fo is an appropriate scale factor (e.g., the im- 
age size). If noise does not exist, the following epipo- 
lar equation is satisfied: [2, 5, 6, 13, 161 (throughout 
this paper, the inner product of the vectors a and b 
is denoted by ( a ,  b)) :  

(xa ,  W x a )  + (x,, Cx,) = 0. (2) 

Here, W is an antisymmetric matrix, and C is a 
symmetric matrix. They play the same role as the 
fundamental matrix for finite motion images, so we 
call them the flow fundamental matrices. 

The matrices W and C are not independent of 
each other. The following relationship holds [2]: 

We call this the decomposability condition1. 
From {x,, x,), a = 1, ..., N,  the flow fundamen- 

tal matrices W and C are computed by a technique 
called renormalization [6, 91. The program is imple- 
mented in C++ and is publicly available2. It out- 
puts the estimates w and c of the flow fundamental 

(+) 
matrices along with their standard deviations W , w(-)  , c(+), and c(-'. If, say, w(+) and w(-) cc- 
incide up to three significant digits, the estimate w 
is likely to have accuracy up to approximately three 
significant digits. 

4. Motion Parameters 

We assume that the camera is freely moving and 
freely changing its focal length. Other camera pa- 
rameters such as the principal point, the aspect ra- 
tio, and the skew angle, which usually do not change 
in the course of camera motion, are assumed to be 

'This corresponds to the constraint that the fundamental 
matrix for finite motion should have rank 2. 

2http://vvv.ail.cs .gunma-u.ac. jp/'kanatani/e. 
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The depth Z of the point x is given as follows [6]: 

Z = -  (v, Sxv) 
(v, S,(X + w X x ) )  ' (19) 

Here, we define 

and k = (O,O, I ) ~ .  The 3-D position of this point is 
given by 

r = ZX. (21) 

At this point, we need to check the sign of the depth. 
This is because the signs of W and C are indeter- 
minate as implied by eq. (2). Let 2, be the depth 
associated with x,. We replace the sign of each 2, 

N if Em=, sgn[za] < 0, where sgn[.] is the signature 
function that takes 1, 0, and -1 for x > 0, x = 0, 
and x < 0, respectively. 

8. Reliability Evaluation 

From eq. (21), the covariance matrix of the recon- 
structed position i is given up to scale as follows: 

. . 
The matrix Vo[x] is given in eqs. (18). From 
eqs. (19), the matrices Y[z] and v~[z,  x] are given 
as follows: 

Here, t r  denotes trace, and we define 

However, this analysis is based on the computed flow 
fundamental matrices c and W .  They are com- 
puted from the data {x,, x,), cr = 1, ..., N, and 
hence are not exact. It follows that the values f ,  f ,  v 
and w are not exact. However, it is difficult to ana- 
lyze the error propagation precisely. Here, we adopt 
the following approximation. We reconstruct two 3- 
D positions r(*) for x from the standard deviations 
c(*) and w(') and regard ( r (+)  - i ) ( r ( + )  - i)T 
as the covariance matrix of r due to the errors in c 
and W .  The total covariance matrix of F is given 
by 

Figure 1: Real images of an indoor scene. 

Figure 2: 3-D reconstruction and uncertainty ellipsoids 
(stereogram). 

where Z2 is the absolute noise magnitude, which can 
be estimated in the process of com.puting c and w 
[6, 91. 

9. Real Image Experiment 

We reconstructed the 3-D shape from the two im- 
ages shown in Fig. 1, using the feature points marked 
in the images. Fig. 2 is a side view of the recon- 
structed points (stereogram); wireframes are shown 
for some points. On each reconstructed point is cen- 
tered the uncertainty ellipsoid defined by the covari- 
ance matrix given by eq. (25). All ellipsoids look like 
thin needles, indicating that the uncertainty is large 
along the depth orientation. 

This description is deceptive, however. This un- 
certainty description is based on a particular gauge, 
i.e., a choice of normalization: the world coordi- 
nate system is identified with the camera frame and 
the translation velocity is normalized to unit length 
[8, 101. This gauge hides the fact that the uncer- 
tainty is mostly due to that of the translation ve- 
locity. In fact, what is uncertain is the depth of the 
object as a whole, not the object shape. 

For example, if we take the centroid of the poly- 
hedral object as the coordinate origin and normalize 
the root-mean-square distance to  the vertices from 
the centroid to unit length, we obtain the description 
shown in Fig. 3(a). By construction, the uncertainty 
is almost symmetric with respect to the centroid, 
and the object shape has very little uncertainty. 

Fig. 3(b) is the uncertainty description for yet an- 
other gauge: one of the object vert,ex is taken to be 
the coordinate origin, another is taken to be (1,1,0), 
and a third one is on the XY plane. By definition, 
the first two points have no uncertainty. 

It follows that uncertainty of individual quantities 
has no absolute meaning. In other words, the dis- 
crepancy of the reconstructed quantities from their 



. , 
malization based o n  three  vertices. I 

Figure 4 images of a car 

Table 1: Reliability of gauge invariants. 

ratio angle (deg) 

true values is not a meaningful measure of accuracy 
if artificial normalizations are involved. 

Let us call the description changes due to choos- 
ing different gauges (i.e., normalizations) gauge 
transformations. Absolute meaning can be given 
only to gauge invariants [8], i.e., quantities invariant 
to gauge transformations. Typical gauge invariants 
for Euclidean reconstruction are ratios of lengths 
and angles of lines. Table 1 lists the ratio of two 
sides of the polyhedral object and the angle they 
make along with their true values and their stan- 
dard deviations derived by the covariance matrices 
of the vertices. 

Fig. 4 shows two real images of a car. Fig. 5 
shows its 3-D shape computed from the feature 
points marked in these images. We defined a wire- 
frame with triangular meshes from the reconstructed 
points and mapped the texture onto it. A fairly ac- 
curate 3-D shape is created even though only two 
views are used. 

computed value 
true value 

predicted standard deviation 

10. Concluding Remarks 

An algorithm has been presented for 3-D recon- 
struction from optical flow observed by an uncali- 
brated camera. We have shown that by incorpo- 
rating a statistical model of image noise, we can 
not only compute a statistically optimal shape but 
also evaluate its reliability in quantitative terms, al- 
though the accuracy is not as high as that using 
the fundamental matrix (1, 71. We have shown real- 
image experiments and discussed the effect of the 
gauge on the uncertainty description. 
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Figure 5: Reconstructed 3-D shape 
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