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Abstract Invariance to  photometric changes is implicitly 
required for a view-based object recognition sys- 

The definition of reliable local signal characteri- tem. 
zations is of great importance for many computer 
vision tasks as mosai'cing, 3D-scene reconstruction 
or more recently in applications like content-based 
image retrieval systems. The following study con- 
cerns this last general pattern. Aiming a t  this, we 
present the use of Full-Zernike moments as a local 
characterization of the image signal. Their compu- 
tation allows us to construct an invariant vector, 
of which the projection in an index table (feature 
space) provides a vote for some model-images. This 
approach is based on the quasi-invariant theory ap- 
plied to perspective transformations and is an exten- 
sion of a standard point to point matching between 
two images. It addresses the problem of similarity 
search in high dimensional space (d > 20). 

1 Introduction 

At the present time, there is a growing need of ef- 
fective schemes in order to well manage and navigate 
through large collections of images or videos. A use- 
ful searching method is the query by examples. Simi- 
larity searches are then carried out between features 
extracted from a query image and those contained in 
the database. Swain and Ballard [ l]  have pioneered 
with success the use of global color signatures, ne- 
vertheless systems based on local features are very 
effective for inserted or occluded object recognition 
[2]. According to this last paradigm, the projection 
of the extracted features in the feature space pro- 
duce votes for some indexed images. To be useful, 
local features have to show specific invariances: 

The characteric vectors has to be invariant to 
similarity transformations (composition of ro- 
tation, translation and scaling). Such charac- 
terizations are then quasi invariant to narrow 
bounded perspective transformations [3]. 
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In this article we propose the use of Zernike mo- 
ments as a local description of feature points. We 
describe the so-computed quasi-invariant vector in 
section 2. A particular attention will be devoted to 
the invariance against rotation that is achieved with- 
out loss of the completeness properties of the set. In 
section 3 we present an adapted treatment in order 
to obtain the invariance against large scale changes 
(> 20%) regarding the scale-space theory. Further- 
more, a normalization of the signal carries out an in- 
variance against locally affine photometric changes. 
We have evaluated the capabilities of the proposed 
description for a simple matching task, and for im- 
agelobject retrieval. In the last section, we describe 
the first results obtained with the use of an ori~inal  - 
clustering sheme [14] in order to avoid an exhaustive 
scanning of the database. 

2 Feature Vector 

Since their introduction by Hu [4] in 1961, the use 
of moments or functions of moments is widespread 
in pattern recognition domain. Moments allow us 
to form some invariant signatures to  a large collec- 
tion of image transformations. Teh and Chin [5] 
provide a study, both practical and theoretical, of 
characteristics of different moments in terms of noise 
sensitivity and redundancy. More particularly, they 
emphasize that the moments set formed by a decom- 
position on an orthogonal basis set is uncorrelated 
and then provides a more efficient decomposition of 
the signal. Finally, they show that in terms of overall 
performance, Zernike and Pseudo-Zernike moments 
outperform other descriptions. 

Moments are regularly use for the characteriza- 
tion of large region or closed -well segmented- shape 
in the image. We show here that Zernike moments 
are able to provide an efficient local characterization 
around feature points. Interest points are usually 
defined as maxima of a "cornerness" measurement 



[lo]. In the case of small perspective transformation 
hypothesis, these points are considered as particu- 
larly reliable features: they are highly repeatable on 
multiple views of the same scene and they focus rel- 
evant informations. 

2.1 Zernike moments 

The use of Zernike moments is quite usual in 
the characters recognition domain. Actually, we are 
interested here in their efficiency for local feature 
matching. Details about their construction may be ., 
found in [6] and [7] (for series expansions).The basis 
set of Zernike moments is a modified form of Jacobi 
polynomials. Zernike moments {A,l)  are computed 
in a discrete form as: 

n + l  a,, = - 
T 

(1) 

where 

Vnl (p, 9) = R~l(p)ei"  

with the condition on 1 and m: n = 1,2,  ...m, 111 5 n 
and n - 111 is even. (xi, yj) are the pixel coordinates 
in a local circular area centered on the feature point. 

Tests have shown that up to the 9th order, noise 
does not interfere with the matching. Then we use 
typically 45 dimensionnal vectors computed on a cir- 
cular area which the radius varies from 6 to 12 pixels. 

forced dephasing in the definition of Zernike poly- 
nomials: Vnl (p, 9) = R!~ (p)eil(e-@). 4 is chosen as 
the mean direction of gradient over the pixel area. 
Figure 1 reports the false matching ratios in the case 
of a rotating planar scene. Four images of the se- 
quence are displayed in figure 2. In spite of the use 
of a standard webcam for the acquisition process, 
none particular processing have been realized except 
a gaussian filtering. The number of matched points 
varies from 50 to 100. The few mismatches originate 
often in locally repetitive patterns. 

Figure 1: Ratios of false matching 

Figure 2: Four shots of sequence "rotation" 

3 Scale invariance 
2.2 Invariance to rotation 

Zernike moments are rotation-variant feature but 
it is easy to show that for a rotation of the image 
by an angle a ,  the resulting moment is given by 
A;, = e - j l " ~ , ~ .  Several searchers as Khotanzad 
and Hong [8] use the magnitude of Zernike moments 
as features. It implies an important loss of infor- 
mation since different polar structures can produce 
moments with the same magnitude. An other way 
to avoid this loss consists in considering combina- 
tion of power of moments [9]. However, this method 
produces an highly dimensional and correlated char- 
acterization. 

So to use the complete Zernike moments, a pre- 
processing step is required. Since computations are 
applied to gray-level images, a brutal re-orientation 
of pixel area along a main direction should involve 
numerical errors (in addition to  be costly). A more 
efficient and stable solution is to introduce 4 as a 

The already designed characterization is intrinsi- 
cally invariant to image translations and rotations. 
In this section, we describe the complementary ways 
to take into account large scale changes. 

Experiments show that matching based on 
Zernike moment vector is well carried out until a 
20% scale change. In order to manage greater 
changes, we apply a multi-resolution technique for 
the matching process. In fact, no prior knowl- 
edge on the "pattern" scale is available, and the 
patterns are not closed shapes and then can't be 
framed. This method can be considered as a hy- 
pothesis generation-validation process for which the 
ratio of matching over the feature points population 
is the likelihood measurement. 

As processed features are gray-leveled, techniques 
based only on a change of the computation domain 
size and an adequate normalization can not be re- 
liable. In consequence, we use a scale-space repre- 



sentation of image structures. This approach intro- 
duced by Koenderink [ll] justifies formally the use 
of the well-known gaussian "blurring". We briefly 
display the bases of this theory. 

For a N-dimensional continuous signal f : bN --+ / 
R , its scale-space representation L : bN x ,Al+ 4 fi 
is defined as the solution to the diffusion equation: 

with initial condition L(.;  0) = f (.). Several works 
(e.g. [12]) prove that within the class of linear trans- 
formations the gaussian kernel is the unique kernel 
for generating a scale-space. This family is then de- 
fined by the particular solutions of the equation 3: 

where g : E N  x b+ --+ b is given by: 

It is stated that a characterization is reliable for 
scale change up to 20%. In practice, in order to 
be robust to a scaling factor varying from 0.5 to 
2, moments are computed only a t  three scales e.g. 
a N (1, A, 2) - radii of computation area in pixel 
have to follow the same scale law -. Matching is 
then attempted for five hypothesis of scale change : 
s = al/a2 = 1 / 2 , 1 / a ,  1 , 4 , 2 .  Figure 3 shows the 
overlapping of the scale-characterization for match- 
ing of scene at different scales (figure 4 ). 

g(Z; t )  = e-(c.N x2)/2t 
(271.t) N/2 Figure 3: Multi-scale matching. Whatever the scal- 

In the following we pose t = a 2 ,  the variance of the ing factor, the Pourcentages of right matches is su- 

rraussian. perior to  95% for a combination of scale-space rep- 
\, 

Assuming this, let us consider two signals f and 
f '  related by a scale change s, then f (2) = ff'(Z') = 
fl(s?). The scale-space representation of f and f '  
in the two domains is defined by: 

L(Z; u2)  = =(Z; a2) * f (2)  

A simple change of spatial variables and scale pa- 
rameter according to 2' = s 2  and ar2 = s2u2 yields: 

This formal approach is applied naturally to a scale- 
oriented computation of Zernike moments. They are 
now calculated on the scale-space representation of 
f and f '  and yield to an invariant characterization 
if the (implied-) hypothesis on the scale factor s is 
true. 

Figure 4: The scene a t  three different scales 

4 Invariance to illuminance condition 

Let I (x ,  y) be the luminance function. We con- 
sider here locally affine photometric changes as: 

where aNi and b ~ i  are supposed to remain constant 
over a larger neighborhood than the area D over 
which Zernike moments are computed. Then a func- 
tion based on local standard deviation normalized by 
the local gradient magnitude is invariant to such illu- 
minance modifications. Let this function fD(xi,  yi) 
be: 

Hereafter, the whole of moments is computed on this 

z A;, function f D (xi, yi) -The scale-space representation 
too-. Matching's results of an image with three oth- 

where ALl is computed over an oversized domain (in ers taken under different illuminations are reported 
pixel) by a factor s. in the table below. 



% of true matching 

60 100 
35 100 

5 Matching and content-based image 
retrieval 

We have evaluated the capabilities of the pro- 
posed characterization for simple matching tasks. 
The matching is essentially based on the computa- 
tion and the sorting of mahalanobis distances be- 
tween characteristic vectors. The required covari- 
ance matrix is computed over an adequate set of 
feature points. The complete matching process in- 
cludes a locality condition: two points are matched if 
a given part of their nearest geometrical neighbours 
are sufficiently close in the feature space. Very good 
results are obtained. A similar approach is employed 
for object recognition in the database, but in this 
case, we make use of a K-nearest neighbours search 
in a 45-dimensional space. Similarity search in high 
dimensional spaces raises a problem known as "di- 
mensional curse" : space- and data-partitioning ap- 
proaches tend to scan the whole of feature space[l3]. 
In order to avoid an exhaustive scanning of the data 
base, we have tested an original clustering scheme 
[14]. Meta-clusters are formed by the iteration of 
the algorithm. A tree-like structure is then em- 
ployed as a way to calculate the relevant nearest 
distances. We have realized some tests on the very 
popular Columbia Object Image Library. In order 
to test the robustness of this approach, only 25 de- 
grees incremented around-views for each 3D object 
are retained in the database (14 images per object). 
In these first experiments only 13 objects are con- 
sidered. The base is then composed by 182 images. 
For simple queries (a given view obviously not con- 
tained in the base) the recognition rate is 1. Figure 
5 shows the response of the system for an inserted 
and occluded object in a scene (image "house" from 
INRIA). The two most similar images are those of 
the correct object. 

Figure 5: The three most similar reponses to a com- 
plex querie 

6 Summary 

In this paper, we have focused our attention on 
the design of a feature vector being quasi-invariant 
for perspective transformations. The use of com- 
plete Zernike moments provide an efficient local 
characterization of signal, with no need of high or- 
der moments. Furthermore, considering the pro- 
posed built-in invariance to illuminance condition 
and the capability of the process in managing im- 
portant scale change, we investigate the integration 
of this characteristic vector to an efficient content- 
based image retrieval system for large databases. So 
obtained results are very promising. 
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