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Abstract 

A concept of virtual subspace is introduced for re- 
alizing a robust face recognition independent of the 
lighting conditions. The virtual subspace is a para- 
doxical concept because it can be constructed even 
if only one image is taken. Furthermore, the virtual 
subspace is gradually converged to  the real subspace 
when face images are subsequently taken. The vir- 
tual subspace is defined as  an eigenspace composed 
from a synthesized image set which are supposed t o  
be taken in a variety of lighting conditions. -4n inte- 
gration algorithm is also proposed for updating the 
virtual subspace when additional images are avail- 
able. In the experiments, we show the effective- 
ness of the virtual subspace method in comparison 
with both the conventional subspace method and the 
nearest neighbor discrimination. 

1 Introduction 

It is known that the face recognition problem can 
be reduced t o  the subspace method[6][3], if a lot of 
face images can be collected for registration. When 
the number of sample images is small, however, a 
subspace cannot be stably composed and the sub- 
space method cannot work well. Even if the num- 
ber of images is not small, the su'bspace method of- 
ten cannot work when the lighting conditions are 
very similar over the sample images. In these situ- 
ations, some improvement is necessary to  the sub- 
space method for realizing the robust recognition. 

A concept of virtual subspace is introduced for 
realizing the subspace construction even if only one 
image can be used for the subspace construction. 
We combine a lighting estimation and a lighting 
compensation to  synthesize virtual face images in 
a variety of lighting conditions. The virtual sub- 
space is constructed over the synthesized images by 
eigenspace analysis. 

'Address: Tsushirna naka 3-1-1, Okayama 700-8530, 
Japan. E-Mai1:shakuOit . okayama-u. ac .  jp  

2 Subspace Method and Virtual Sub- 
space 

2.1 Canonical eigenspace 

In this paper, a face space is defined as a space 
composed from a set of frontal faces, which includes 
a lot of persons under a lot of lighting conditions. 
To simplify the problem, we assume that the face 
direction is fixed and a good segmentation is read- 
ily accomplished for each input image, as shown 
in Fig. 7.Eigenspace analysis (principal component 
analysis) on the face space decreases the dimen- 
sion of the face space with a little loss of the rep- 
resentability [3][1]. In our experiments, the face 
eigenspace is constructed from an face image set of 
50 persons in 24 lighting conditions. Let us call the 
eigenspace the canonical (eigen)space from now on. 
The dimension of the canonical space is set t o  45. 

Let xpl denote a face of the p t h  person under 
the I-th lighting condition. The mean vector and 
the covariance matrix are then calculated by 

where P and L are numbers of persons and light- 
ing conditions, respectively. Let @ and il denote 
eigenvectors and a diagonal matrix of which diago- 
nal elements are eigenvalues in the descending order, 
respectively. That is, 

Using a submatrix @, of @, of which correspond- 
ing eigenvalues are in the largest n ones of @. Then 
a projection of x into the n-dimensional canonical 
space is defined by 

X* = @,T(X - X). 



Two distances can be defined in the canoni- 
cal space[l]. They are called DFFS(distance-from- 
feature-space) and DIFS(distance-in-feature-space), 
respectively: 

where Cn is a submatrix of C, of which correspond- 
ing eigenvalues are among the largest n eigenvalues 
of C. 

2.2 Subspaces and subspace method 

When a lot of images are taken, a subspace can 
be constructed for each person in the similar way as 
shown in Section 2.1. Then a projection of x into 
the m-dimensional subspace for the p t h  person is 
defined by 

T 1 jiP=@,, ( x - q )  where T = ~ C X , ~ .  
1=1 

Given an unknown face x, the subspace method se- 
lects a person, p* by 

p* = arg min DFFSp(x)  
1 l P l J '  

where DFFSp(x )  = I ~ x  - FJI2 - II@pm5ip(12. 

2.3 Concept of virtual subspace 

The subspace method [7][4] works well when each 
subspace is constructed from sufficient images which 
cover a variety of lighting conditions. However, this 
requirement is often unsatisfied when the number 
of images are too small or when the lighting condi- 
tions are very similar over the image set. In these 
situations, the conventional subspace method can- 
not work because subspaces cannot be stably con- 
structed. If a subspace can be constructed from 
such a critical situation, the subspace method can 
be applied to wider applications. We would like to 
propose a concept of the virtual subspace for the 
purpose. The virtual subspace should be a virtual 
concept of the subspace, the following two require- 
ments should be satisfied: (1) It should be con- 
structed from a single image while the real subspace 
cannot be constructed directly from a single image. 
(2) It should be converged to  the real subspace when 
subsequent images are taken. 

To satisfy the first requirement, we synthesize a 
set of images in virtual lighting conditions from a 
single image, and construct a virtual subspace from 
the set. In this process, the image synthesis is based 
on the lighting estimation followed by the lighting 

Figure 1: Virtual and real subspaces. 
compensation in the canonical space. The algorithm 
details are shown in Section 3. To satisfy the second 
requirement, an integration algorithm is defined and 
examined over the test data in Section 4. 

Figure 1 shows a relation between the virtual 
and the real subspaces. The virtual subspaces are 
created using the average distribution of the aver- 
age person in a variety of lighting conditions, as il- 
lustrated in Fig. l(a). On the other hand, the real 
subspaces are created from a lot of images of indi- 
vidual persons, as shown in Fig. l(b). They have 
individual distributions which are affected by both 
the geometric and photometric properties of the in- 
dividual faces. 

3 Virtual Subspace Construction 
from a Single Image 

3.1 Face mapping in canonical 
eigenspace 

Let us define a mapping function in the canoni- 
cal eigenspace, which transforms a face taken in a 
lighting condition to one in another condition. In 
the strict meaning, the mapping function depends 
on persons as well as on lighting conditions because 
both the geometric and photometric properties of 
faces are dependent on persons. While the strict 
lighting estimation seems too expensive, such an es- 
timation is not necessary for our purpose. What 
we would like is to make a mapping function in the 
average meaning. 

A mapping function can be created from the 
learning set which was used for composing the 
canonical space. For a simple implementation, the 
mapping is assumed to be a linear transformation 
of a face vector x*. Let F*( l l ,  12) denote a matrix 
for face mapping from a lighting condition lI to a 
lighting condition 12. That is, 

A matrix F*(Z1, 12) can be estimated by minimizing 
the squared sum of errors, 



Once the matrix F*( l l ,  12) is specified, a face im- 
age in l1 can be converted to an image in 12 by a 

X 

linear mapping. 

3.2 Estimation of lighting condition 
q 

Our next point is posed in an estimation of light- 
ing condition from a given face image. We suppose 
that a face is well segmented a priori, and a dictio- 
nary image set can be used again for the estimation. 
The estimation is reduced to the nearest neighbor 
discrimination in the canonical space. In this case, 
a mean vector 

is regarded as a registered image for the lighting con- 
dition 1. Let X(x*) denote the lighting estimation 
function from now on, which selects a lighting con- 
dition bv the nearest neighbor criterion. 

3.3 Face mapping in image space 

Combining the mapping F* and the lighting con- 
dition estimation X(x8), we can propose a mapping 
function in the image space with compensating the 
lighting conditions. A simple mapping is composed 
using F* and X(x*). Suppose that a face image x 
is transformed to one in a lighting condition 1. Fig- 
ure 2 shows a scheme of the compensation. In this 
scheme, F* (X(x*), l)x* indicates a compensated face 
of x* in the canonical space, which is expected to be 
converted from an image taken in the lighting condi- 
tion 1. Using this compensation, a simple mapping 
is defined in the image space by 

where Ax = x - F - @,x*. 

It shbuld be noted that the residual of the coding 
to the canonical eigenspace is reserved in the second 
term. 

Figure 3 shows the lighting compensation process 
along with an example. Suppose an input image x ,  
shown in Fig. 3 (a), to be transformed to an image in 
the lighting condition 1. For reference, a real image 
y taken in the lighting condition 1 is shown in Fig. 3 

(c). 
In the compensation process, x i s  encoded to x* in 

the canonical space as shown in (d). By the lighting 
compensation in the space, F*(X(xt),  l)x* is created 
as shown in (e), while y*  is shown in (f). Finally, 
F (x ,  1) is created in the image space as shown in (b) 
while y is shown in (c). This shows that the light- 
ing compensation works well to simulate a lighting 
conversion. 

Figure 3: An example of lighting compensation. 

3.4 Virtual subspace construction 

A virtual subspace can be constructed from the 
synthesized images by the direct application of the 
algorithm as shown in 2.2. In the subspace con- 
struction, the following definitions are used instead 
of Eqs. (1) and (2). 

With these modifications, a virtual subspace can 
be synthesized by the algorithm shown in 2.2. Fig- 
ure 4 illustrates a scheme of the virtual subspace 
construction. Because the synthesized images are 
made by the lighting compensation on the canonical 
eigenspace, the virtual subspace is never identical to 
the real subspace. The virtual subspace, however, 
is a reasonable approximation of the real subspace 
because the mapping is authorized in the average 
meaning. 



canonical eigenspaee 
a canonical dgenspace 

Figure 4: Virtual subspace construction. 

4 Subsequent virtual subspace con- 
struction 

4.1 Subspace construction from images 

Let us discuss how to  construct a virtual sub- 
space when K images are taken for the p t h  per- 
son. For the purpose, some more notations should 
be defined. Let x k  denote the k-th input image, Figure 6: Examples of subsequent construction of 
xil = F*(X(x;), 1)x; and virtual subspace. 

4.2 Examples of subsequent construc- 
K(K,  I )  = arg min D I F S ( x &  - x;). 

l < k < K  
t ion 

In these notations, the virtual image in the I-th light- 
ing condition is defined by F ( x ~ ( ~ , ~ ) ,  I). This defini- 
tion is one of natural generalizations of F ( x ,  l ) ,  and 
leads the  definitions of % and C, as follows: 

(6) 
It is noted that  Eqs. ( 5 )  and (6) are equivalent t o  
Eqs. (3) and (4) when K = 1. Figure 5 illustrates 
the virtual subspace integratidn when two input im- 
ages are registered. The  residual term, is 
not constant but optimally selected by K(K,  I). 

real subspace . . .  
vlfiual images f .,... ".."....? 

....... 

........ 

.......... 

canonical elgenspace canonical elgenspace 

Figure 5: Integration of virtual subspaces. 

An example of subsequent construction is shown 
in Fig. 6. In each row, the leftmost image shows 
an average image in the subspace. The  rest three 
images show the three most principal components. 

The upper 4 rows in Fig. 6 show virtual sub- 
spaces for the same person. The  first two rows show 
virtual subspaces composed from a single image of 
a particular person. They are different because dif- 
ferent input images are used in the two rows. The  
third row shows a virtual subspace composed from 
two input images which are used for the first two 
rows. The  fourth row shows a virtual subspace after 
five input images are taken. The fifth and sixth rows 
show virtual subspaces of another person. They are 
composed from one image and five images, respec- 
tively. 

These examples show that the virtual subspace 
gradually changes to  the  real subspace by additional 
input images. Both the average image and the prin- 
cipal components are updated from ones with the 
average properties t o  ones with the individual prop- 
erties. 

5 Experiments 

5.1 Data specification 

Data  specification is summarized in Table 1.Facial 
images were taken from a fixed camera in the lab- 
oratory under natural lighting conditions. The  100 
persons, looking forwards, were sitting on a chair in 



5.2 Single image registration for each 

For each person to be registered, only one im- 
age is randomly selected for the registration from 
24 images of each person. Then the discrimination 
experiment has been accomplished over the rest 23 
images of all the registered person. This process was 
repeated in a hundred times with randomly changing 
a registered image for each person. The discrimina- 
tion rate with the virtual subspace method is 71.8 %, 
about 12 % more effective than the nearest neighbor 

b 
method. Experimental results show that the virtual 
subspace method is effective even when only one im- 
age is registered for each person. 

L 

5.3 Subsequent image registration for 
Figure 7: Average faces under 24 lighting conditions. each 

the fixed distance from the camera. The chair was 
fixed to  get the frontal facial images for each person. For each registered person, a fixed number of im- 

The canonical eigenspace is created from 1200 im- ages are randomly selected from 24 images of each 

ages of 50 persons under 24 lighting conditions. In person included in the data  base. Then the discrim- 
ination experiment has been accomplished over the the learning set, 9 persons are with glasses. Figure 

7 shows 24 images of average of 50 person. The rest rest images of all the registered person. This pro- 

50 persons are used as test data. 15 persons are with cess was repeated in a hundred times with changing 

glasses in the test set. Figure 8 (a) shows 10 example registered images for each person. 

images in the learning set under a particular lighting Table 2 shows average discrimination rates. Five 

condition, Figure 8 (b) shows 10 example images in methods are for the same learning and 

the test set under the same lighting condition. test sets. In the table, NN indicates the nearest 
neighbor discrimination. CNN indicates the nearest 
neighbor with the lighting compensation. SS indi- 
cates the conventional subspace method, which is 

Table 1: Data specification effective when n > 1 where n shows the number of 
registered images. 

11 Learning I Test The rightmost two columns are based on the vir- 
Number of persons tual subspace method. While VSNN indicates the 

Number of nearest neighbor discrimination over the separate 
lighting conditions virtual subspaces for each person, SVS indicates the 

Image size(face) 32x32 32x32 subsequent virtual subspace method. It should be 
with glasses(persons) 

noted that the recognition cost with SVS is about 
l / n  of VSNN, while the discrimination rate is a little 
higher whenever the number of images is 2 through 
5. The subsequent subspace method seems reason- 
able when taking into account the calculation cost. 

Figure 9 shows the discrimination rates for SLTS 
with changing both the dimension of subspaces and 
the number of registered images. This figure shows 
that best dimension changes dependent on the num- 
ber of registered images for each person. 

From the da ta  analysis, we have found that incor- 
rect discrimination increases when a person is taken 
with glasses. For persons without glasses, the dis- 
crimination rates reach 83.0 % and 93.2 % when one 
and two images are registered for each person. This 

( I ) )  t c s t  irnagrs suggests that the face recognition could be more im- 
proved, if we could suppress the noise caused by the 

Figure 8: Examples of learning and test images. glasses. 



Table 2: Discrimination rates for plural registered 
images[%] (Whole face) 

Figure 9: Discrimination rates for the virtual sub- 
space method. 
5.4 Discrimination with using four fea- 

t ures 

Method 

Dimension 

1 image 
2 images 
3 images - 
4 images 1 )  85.8 
5 images 1 1  88.5 

In the above experiments, only the whole faces 
are used for discrimination. Let us take into ac- 
count four other features (left and right eyes, nose 
and mouth). The discrimination scheme is summa- 
rized as follows: Four independent feature spaces are 
created in the same way as mentioned in 2.2. For 
each feature f (= 1,2,3,4),  the nearest person p; is 
calculated. 

p; = arg min DFFSf,,(x).  
l < p < P  

NN 

45 

59.3 
73.4 
81.0 

87.4 
89.8 

Let f = 0 indicate a case of the whole face. Then 
the final discrimination is accomplished due to 

4 

p* = arg min D F F S f  ,,(XI 
~ < P < P  =O DFFSf,,; (x)  ' 

CNN 

19 

62.6 
76.1 
83.2 

77.3 
84.5 

Table 3 shows average discrimination rates when 
the four features are used together with the whole 
face. In comparison with four other methods, SVS 
provides the best results. The discrimination rates 
are improved by combining four features. When only 
one image is registered for each person, the discrim- 
ination rate is 71.8% for a whole face, while it is 
improved to 75.1 % when the four features are com- 
bined. When two images are registered for each per- 
son, the rate is improved from 83.6 % to 87.6 % by 
combining the four features. When five images are 
registered for each person, the discrimination rate 

gets 97.0 %. The cumulative discrimination rate is 
99.3 % when 5 nearest persons are selected. 

SS 

n-1 
- 

49.2 
65.6 

90.8 
92.6 

Table 3: Discrimination rates for plural registered 

91.0 
93.3 

- 
images[%l (Combined) 

VSNN 

4 

71.8 
82.5 
87.7 

- L . \  
Method 11  NN 1 'CNN 1 SS 1 VSNN 1 SVS 

SVS 

4 

71.8 
83.6 
87.7 

Dimension 11  45 1 19 1 n-1 1 4 1 4 

1 image 
2 images 

6 Conclusions 

- 
4 images 
5 images 

A concept of virtual subspace is introduced to re- 
alize a robust face recognition independent of the 
lighting conditions. The virtual subspace is con- 
structed from a single image, and gradually modified 
to the real subspace by the subsequent update. The 
virtual subspace method can be applied to a face 
recognition in the natural lighting condition, even if 
the lighting condition is unknown or changes from 
time to time. 

63.6 
78.7 
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