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Abstract

Low precision weights, activations, and gradi-
ents have been proposed as a way to improve
the computational efficiency and memory foot-
print of deep neural networks. Recently, low
precision networks have even shown to be
more robust to adversarial attacks. How-
ever, typical implementations of low precision
DNNs use uniform precision across all lay-
ers of the network. In this work, we explore
whether a heterogeneous allocation of preci-
sion across a network leads to improved per-
formance, and introduce a learning scheme
where a DNN stochastically explores multi-
ple precision configurations through learning.
This permits a network to learn an optimal pre-
cision configuration. We show on convolu-
tional neural networks trained on MNIST and
ILSVRC12 that even though these nets learn
a uniform or near-uniform allocation strat-
egy respectively, stochastic precision leads to
a favourable regularization effect improving
generalization.

1 INTRODUCTION

Recent advances in deep learning, and convolu-
tional neural networks (CNN) in particular, have led
to well-publicized breakthroughs in computer vision
(Krizhevsky et al., 2012), speech recognition (Hinton
et al., 2012), and natural language processing (NLP)
(Bahdanau et al., 2014). Modern CNNs, however, have
increasingly large storage and computational require-
ments (Canziani et al., 2016). This has limited the appli-
cation scope to data centres that can accommodate clus-
ters of massively parallel hardware accelerators, such as
graphics processing units (GPUs). Still, GPU training
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of CNNs on large datasets like ImageNet (Deng et al.,
2009) can take hours, even on networks with hundreds of
GPUs, and achieving linear scaling beyond these sizes is
difficult (Goyal et al., 2017). As such, there is a growing
interest in investigating more fine-grained optimizations,
especially since deployment on embedded devices with
limited power, compute, and memory budgets remains
an imposing challenge.

Research efforts to reduce model size and speed up in-
ference have shown that training networks with binary or
ternary weights and activations (Courbariaux and Ben-
gio, 2016; Rastegari et al., 2016; Li et al., 2016a) can
achieve comparable accuracy to full precision networks,
while benefiting from reduced memory requirements and
improved computational efficiency using bit operations.
They may even confer additional robustness to adversar-
ial attacks (Galloway et al., 2018). More recently, the
DoReFa-Net model has generalized this finding to in-
clude different precision settings for weights vs. activa-
tions, and demonstrated how low precision gradients can
be also employed at training time (Zhou et al., 2016).

These findings suggest that precision in deep learning is
not an arbitrary design choice, but rather a dial that con-
trols the trade-off between model complexity and accu-
racy. However, precision is typically considered at the
design level of an entire model, making it difficult to
consider as a tunable hyperparameter. We posit that con-
sidering precision at a finer granularity, such as a layer
or even per-example could grant models more flexibil-
ity in which to find optimal configurations, which max-
imizes accuracy and minimizes computational cost. To
remain deterministic about hardware efficiency, we aim
to do this for fixed budgets of precision, which have pre-
dictable acceleration properties.

In this work we consider learning an optimal precision
configuration across the layers of a deep neural network,
where the precision assigned to each layer may be dif-
ferent. We propose a stochastic regularization technique



akin to Dropout (Srivastava et al., 2014) where a net-
work explores a different precision configuration per ex-
ample. This introduces non-differentiable elements in
the computational graph which we circumvent using re-
cently proposed gradient estimation techniques.

2 RELATED WORK

Recent work related to efficient learning has explored
a number of different approaches to reducing the effec-
tive parameter count or memory footprint of CNN archi-
tectures. Network compression techniques (Han et al.,
2015a; Wang and Liang, 2016; Choi et al., 2016; Agusts-
son et al., 2017) typically compress a pre-trained network
while minimizing the degradation of network accuracy.
However, these methods are decoupled from learning,
and are only suitable for efficient deployment. Network
pruning techniques (Wan et al., 2013; Han et al., 2015b;
Jin et al., 2016; Li et al., 2016b; Anwar et al., 2017;
Molchanov et al., 2016; Tung et al., 2017) take a more
iterative approach, often using regularized training and
retraining to rank and modify network parameters based
on their magnitude. Though coupled with the learning
process, iterative pruning techniques tend to contribute to
slower learning, and result in sparse connections, which
are not hardware efficient.

Our work relates primarily to low precision techniques,
which have tended to focus on reducing the preci-
sion of weights and activations used for deployment
while maintaining dense connectivity. Courbariaux et
al. were among the first to explore binary weights and
activations (Courbariaux et al., 2015; Courbariaux and
Bengio, 2016), demonstrating state-of-the-art results for
smaller datasets (MNIST, CIFAR-10, and CVHN). This
idea was then extended further with CNNs on larger
datasets like ImageNet with binary weights and activa-
tions, while approximating convolutions using binary op-
erations (Rastegari et al., 2016). Related work (Kim
and Smaragdis, 2016) has validated these results and
shown neural networks to be remarkably robust to an
even wider class of non-linear projections (Merolla et al.,
2016). Ternary quantization strategies (Li et al., 2016a)
have been shown to outperform their binary counterparts,
moreso when parameters of the quantization module are
learned through backpropagation (Zhu et al., 2016). Cai
et al. have investigated how to improve the gradient qual-
ity of quantization operations (Cai et al., 2017), which is
complimentary to our work which relies on these gra-
dients to learn precision. Zhou et al. further explored
this idea of variable precision (i.e. heterogeneity across
weights and activations) and discussed the general trade-
off of precision and accuracy, exploring strategies for
training with low precision gradients (Zhou et al., 2016).

Our approach for learning precision closely resembles
BitNet (Raghavan et al., 2017), where the optimal preci-
sion for each network layer is learned through gradient
descent, and network parameter encodings act as reg-
ularizers. While BitNet uses the Lagrangian approach
of adding constraints on quantization error and preci-
sion to the objective function, we allocate bits to lay-
ers through sampling from a Gumbel-Softmax distri-
bution constructed over the network layers. This has
the advantage of accommodating a defined precision
budget, which allows more deterministic hardware con-
straints, as well as a wider range of quantization encod-
ings through the use of non-integer quantization values
early in training. In the allocation of bits on a budget,
our work resembles (Wang and Liang, 2016), though we
allow more fine-grained control over precision, and pre-
fer a gradient-based approach over clustering techniques
for learning optimal precision configurations.

To the best of our knowledge, our work is the first
to explore learning precision in deep networks through
a continuous-to-discrete annealed quantization strategy.
Our contributions are as follows:

• We experimentally confirm a linear relationship be-
tween total number of bits and speedup for low pre-
cision arithmetic, motivating the use of precision
budgets.

• We introduce a gradient-based approach to learn-
ing precision through sampling from a Gumbel-
Softmax distribution constructed over the network
layers, constrained by a precision budget.

• We empirically demonstrate the advantage of our
end-to-end training strategy as it improves model
performance over simple uniform bit allocations.

3 EFFICIENT LOW PRECISION
NETWORKS

Low precision learning describes a set of techniques that
take network parameters, typically stored at native 32-
bit floating point (FP32) precision, and quantize them to
a much smaller range of representation, typically 1-bit
(binary) or 2-bit (ternary) integer values. While low pre-
cision learning could refer to any combination of quan-
tizing weights (W), activations (A), and gradients (G),
most relevant work investigates the effects of quantizing
weights and activations on model performance. The ben-
efits of quantization are seen in both computational and
memory efficiency, though generally speaking, quantiza-
tion leads to a decrease in model accuracy (Zhou et al.,
2016). However, in some cases, the effects of quan-
tization can be lossless or even slightly improve accu-



racy by behaving as a type of noisy regularization (Zhu
et al., 2016; Yin et al., 2016). In this work, we adopt the
DoReFa-Net model (Zhou et al., 2016) of quantizing all
network parameters (W,A,G) albeit at different precision.
Table 1 demonstrates this trade-off of precision and ac-
curacy for some common low precision configurations.

The justification for this loss in accuracy is the efficiency
gain of storing and computing low precision values. The
computational benefits of using binary values are seen
from approximating expensive full precision matrix op-
erations with binary operations (Rastegari et al., 2016),
as well as reducing memory requirements by packing
many low precision values into full precision data types.
For other low precision configurations that fall between
binary and full precision, a similar formulation is used.
The bit dot product equation (Equation 1) shows how
both the logical and and bitcount operations are used
to compute the dot product of two low-bitwidth fixed-
point integers (bit vectors) (Zhou et al., 2016). Assume
cm(x) is a placewise bit vector formed from a sequence
of M -bit fixed-point integers x =

∑M−1
m=0 cm(x)2m and

ck(y) is a placewise bit vector formed from a sequence
of K-bit fixed-point integers y =

∑M−1
k=0 ck(y)2

k, then

x · y=
M−1∑
m=0

K−1∑
k=0

2m+k bitcount[and(cm(x), ck(y))],

cm(x)i, ck(y)i ∈ {0, 1}∀i,m, k. (1)

Since the computational complexity of the operation is
O(MK), the speedup is a function of the total number
of bits used to quantize the inputs. Since matrix multipli-
cations are simply sequences of dot products computed
over the rows and columns of matrices, this is also true
of matrix multiplication operations. As a demonstration,
we implement this variable precision bit general matrix
multiplication (bit-GEMM) using CUDA, and show the
GPU speedup for several configurations in Figure 1.

As seen in Figure 1, there is a correlation between the
total number of bits used in each bit-GEMM (shade) and
the resulting speedup (point size). As such, from a hard-
ware perspective, it is important to know how many total
bits are used for bit-GEMM operations to allow for bud-
geting computation and memory. It should also be noted
that, in our experiments, operations with over 16 total
bits of precision were shown to be slower than the full
precision equivalent. This is due to the computational
complexity of the worst case of O(8 × 8) being slower
than the equivalent full precision operation. We therefore
focus on operations with 16 or less total bits of precision.

A natural question to follow is then, for a given bud-
get of precision (total number of bits), how do we most
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Figure 1: GPU-based bit-GEMM speedup for low pre-
cision matrices A and B. Results are compared with a
similarly optimized 32-bit GEMM kernel, and run on a
NVIDIA Tesla V100 GPU.

efficiently allocate precision to maximize model perfor-
mance? We seek to answer this question by parametriz-
ing the precision at each layer and learning these addi-
tional parameters by gradient descent.

3.1 LEARNING PRECISION

The selection of precision for variables in a model can
have a significant impact on performance. Consider the
DoReFa-Net model — if we decide on a budget of the
total number of bits to assign to the weights layer-wise,
and train the model under a number of different manual
allocations, we obtain the training curves in Figure 2. For
each training curve, the number of bits assigned to each
layer’s weights are indicated by the integer at the appro-
priate position (e.g. 444444 indicates 6 quantized layers,
all assigned 4 bits).

Varying the number of bits assigned to each layer can
cause the error to change by up to several percent, but
the best configuration of these bits is unclear without ex-
haustively testing all possible configurations. This moti-
vates learning the most efficient allocation of precision
to each layer. However, this is a difficult task for two
important reasons:

• unconstrained parameters that control precision will
only grow, as higher precision leads to a reduction
of loss; and

• quantization involves discrete operations, which
are non-differentiable and therefore unsuitable for
naı̈ve backpropagation.

The first issue is easily addressed by fixing the total net-



Table 1: DoReFa-Net single-crop top-1 validation error for common weight (W), activation (A), and gradient (G)
quantization configurations on the ImageNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC12) dataset.
The results are slightly improved over the results originally reported and were reproduced by us based on the public
DoReFa-Net (Zhou et al., 2016) codebase.

Model W A G Top-1 Validation Error

AlexNet (Krizhevsky et al., 2012) 32 32 32 41.4%
BWN (Courbariaux and Bengio, 2016) 1 32 32 44.3%
DoReFa-Net (Zhou et al., 2016) 1 2 6 47.6%
DoReFa-Net (Zhou et al., 2016) 1 2 4 58.4%

0 100000 200000 300000 400000 500000 600000 700000

Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
o
p
-1

 V
a
li
d
a
ti

o
n
 E

rr
o
r

ImageNet Top-1 Validation Error

222288

234555

444444

555432

882222

Figure 2: The training error for a variety of DoReFa-Net
manual precision allocations is plotted for each weight
update. The uniform distribution of bits (i.e. 444444)
leads to the lowest error, while the least uniform config-
urations (e.g. 222288, 882222) lead to the highest error.

work precision (i.e. the sum of the bits of precision at
each layer) to a budget B, similar to the B = 24 config-
urations seen in Figure 2. The task is then to learn the
allocation of precision across layers. The second issue:
the non-differentiable nature of quantization operations
is an unavoidable problem, as transforming continuous
values into discrete values must apply some kind of dis-
crete operator. We avoid this issue by employing a kind
of stochastic allocation of precision and rely on recently
developed techniques from the deep learning community
to backpropagate gradients through discrete stochastic
operations.

Intuitively, we can view the precision allocation proce-
dure as sequentially allocating one bit of precision to
one of L layers. Each time we allocate, we draw from
a categorical variable with L outcomes, and allocate that
bit to the corresponding layer. This is repeated B times
to match the precision budget. An allocation of B bits
corresponds to a particular precision configuration, and

we sample a new configuration for each input example.
The idea of stochastically sampling architectural con-
figurations is akin to Dropout (Srivastava et al., 2014),
where each example is processed by a different architec-
ture with tied parameters.

Different from Dropout, which uses a fixed dropout prob-
ability, we would like to parametrize the categorical dis-
tribution across layers such that we can learn to prefer to
allocate precision to certain layers. Learning these pa-
rameters by gradient descent requires backprop through
an operator that samples from a discrete distribution. To
deal with its non-differentiability, we use the Gumbel-
Softmax, also known as the Concrete distribution (Jang
et al., 2016; Maddison et al., 2016), which, using a tem-
perature parameter, can be smoothly annealed from a
uniform continuous distribution on the simplex to a dis-
crete categorical distribution from which we sample pre-
cision allocations. This allows us to use a high tempera-
ture at the beginning of training to stochastically explore
different precision configurations and use a low tempera-
ture at the end of training to discretely allocate precision
to network layers according to the learned distribution.

Though non-integer bits of precision can be implemented
(detailed below), integer bits are more amenable to hard-
ware implementations, which is why we aim to con-
verge toward discrete samples. Table 2 shows examples
of sampling from this distribution at different tempera-
tures for a three class distribution. It should be noted
that in order to perform unconstrained optimization we
parametrize the unnormalized logits (also known as log-
odds) instead of the probabilities themselves.

Since the class logits πi control the probability of allo-
cating a bit of precision to a network layer li, at low tem-
peratures the one-hot samples will allocate bits of preci-
sion to the network according to the learned parameters
πi. However, at high temperatures we allocate partial
bits to layers. This is possible due to our quantization
straight-through estimator (STE), quantize, adopted



Table 2: Examples of single samples drawn from a
Gumbel-Softmax distribution, parametrized by logits for
three classes π1, π2, π3 and a variety of temperatures
τ . The probability of allocating a bit to layer li is im-
pacted by the logit πi, where higher values correspond
to higher probabilities. The Gumbel-Softmax interpo-
lates between continuous densities on the simplex (at
high temperature) and discrete one-hot-encoded categor-
ical distributions (at low temperature).

τ
Class 1

(π1 = 1.00)
Class 2

(π2 = 2.00)
Class 3

(π3 = −0.50)

100.0 0.33 0.33 0.33
10.0 0.33 0.41 0.26
1.00 0.31 0.60 0.09
0.10 0.00 1.00 0.00

from (Zhou et al., 2016):

Forward:

ro=quantize(ri)=
1

2k − 1
round

(
(2k − 1)ri

)
, (2)

Backward:
∂c

∂ri
=

∂c

∂ro
(3)

where ri is the real number input, ro is the k-bit output,
and c is the objective function. Since quantize pro-
duces a k-bit value on [0, 1], quantizing to non-integer
values of k simply produces a more fine-grained range
of representation compared to integer values of k. This
is demonstrated in Table 3.

Table 3: The possible output values of the quantize
operation are shown for a variety of values of k, clipped
between 0 and 1. Non-integer values of k provide a more
fine-grained range of representation between successive
integer values (underlined).

k 1 1.50 2 2.25 2.50 2.75 3

0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.55 0.33 0.26 0.21 0.17 0.14

1.00 0.66 0.53 0.42 0.34 0.28
1.00 0.80 0.64 0.52 0.42

1.00 0.85 0.69 0.57
1.00 0.87 0.71

1.00 0.85
1.00

Using real values for quantization also provides useful
gradients for backpropagation, whereas the small finite
set of possible integer values would yield zero gradient
almost everywhere.

3.2 PRECISION ALLOCATION LAYER

We introduce a new layer type, the precision allocation
layer, to implement our precision learning technique.
This layer is inserted as a leaf in the computational graph,
and is executed on each forward-pass of training. The
precision allocation layer is parametrized by the learn-
able class probabilities πi, which define the Gumbel-
Softmax distribution. Each class probability is associ-
ated with a layer li, so the samples assigned to each class
are allocated as bits to the appropriate layer. This is il-
lustrated in Figure 3 and stepped through in Example 1.

It should be noted that during the early stages of train-
ing before the network performance has converged, al-
lowing the temperature to drop too low results in high-
variance gradients while also encouraging largely uneven
allocations of bits. This severely hurts the generaliza-
tion of the network. To deal with this, we empirically
observe a temperature where the class probabilities have
sufficiently stabilized, and perform hard assignments of
bits of precision based on these stabilized class probabil-
ities. To do this, we sample from the Gumbel-Softmax
a large number of times and average the results, in order
to converge on the expected class sample assignments.
Once we have these precision values, we fix the layers
at these precision values for the remainder of training.
We observe that the regularization effects of stochastic
bit allocations are most useful during early training, and
performing hard assignments greatly improves general-
ization performance. For all experiments considered, we
implement a hard assignment of bits after the tempera-
ture drops below 3.0.

4 EXPERIMENTS

We evaluate the effects of our precision layer on two
common image classification benchmarks, MNIST and
ILSVRC12. We consider two separate CNN archi-
tectures, a 5-layer network similar to LeNet-5 (Lecun
et al., 1998) trained on MNIST, and the AlexNet network
(Krizhevsky et al., 2012) trained on ILSVRC12. We use
the top-1 single-crop error as a measure of performance,
and quantize both the weights and activations in all ex-
periments considered. As in previous works (Zhou et al.,
2016), the first layer of AlexNet was not quantized. Ini-
tial experiments showed that the effects of learning pre-
cision were less beneficial to gradients, so we leave them
at full precision in all reported experiments.

Since our motivation is to show the precision layer as
an improvement over uniformly quantized low preci-
sion models, we compare our results to networks with
evenly distributed precision over all layers. We con-
sider three common low precision budgets as powers of
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Figure 3: Early in training, the Gumbel-Softmax class probabilities πi are initialized to 0 while the temperature
τ is high, generally resulting in uniform allocations of real-valued bits of precision. Later in training, with a low
temperature, the learned class probabilities usually result in some layers being allocated more or less discrete bits of
precision. In practice, the computational overhead of the precision layer is not noticeable.

Example 1. Consider a network with 4 layers, each denoted by li. To learn the precision of these layers, we add a precision
layer which constructs a Gumbel-Softmax distribution with 4 classes πi, where each class is assigned to a layer. Each class
probability is initalized to 0.0, and the temperature is initialized to 50.0. For a budget of 16 total bits, two example iterations
representative of early training (first iteration of epoch 0) and late training (first iteration of epoch 50) are shown below:
Epoch = 0, π1 = 0.0 , π2 = 0.0, π3 = 0.0, π4 = 0.0, τ = 50.0

• The precision layer is executed first, which means we sample from the Gumbel-Softmax 16 times because our budget is
16 bits, and accumulate the results of the 16 samples. Each individual sample gives us 4 class outputs which sum to 1
(e.g. [0.25, 0.25, 0.25, 0.25]), so sampling 16 times and accumulating the results for each class means our final results
will add to 16. Since the class probabilities are initialized to 0.0, and the temperature is high, the expected samples will
be continuous and relatively uniform across all classes.

– The samples associated with each layer li are: l1 = 4.1 , l2 = 3.9, l3 = 4.2, l4 = 3.8.
– We now assign 4.1 bits to layer 1, 3.9 bits to layer 2, 4.2 bits to layer 3, and 3.8 bits to layer 4. These bits are

assigned to the appropriate layer by applying the quantize operation of Equation 2 to the desired parameters
(e.g. weights) with k as the appropriate bit assignment (e.g. k = 4.1 for l1).

– The quantize operation will transform the layer parameters to one of several discrete positive quantities between
0 and 1 (see Table 3). Though these are fractional bit assignments, the quantize operations works the same as
if these were integer bit assignments.

– The iteration then proceeds as normal, with the quantized parameters and class probabilities πi updated during
back-propagation.

Epoch = 50, π1 = 0.9 , π2 = 0.5, π3 = −0.5, π4 = −1.1, τ = 0.01
• Similar to before, we begin by sampling from the Gumbel-Softmax 16 times because our budget is 16 bits, and accu-

mulate the results. However, the class probabilities have now changed such that π1 corresponds to the most likely class,
and π4 the least likely class, so the distribution is no longer uniform. As well, since the temperature is low (τ = 0.01),
the samples will now approach discrete.

– Samples: l1 = 5.0 , l2 = 4.0, l3 = 4.0, l4 = 3.0.
– We now assign 5.0 bits to layer 1, 4.0 bits to layer 2, 4.0 bits to layer 3, and 3.0 bits to layer 4, similar to before.

Since these bit assignments are integer values, the activity of the quantize operation is more intuitive.
– Similar to before, the quantize operation will transform the layer parameters to one of several discrete positive

quantities between 0 and 1 (see Table 3).
– The forward-pass then proceeds as normal, with the quantized parameters and class probabilities πi updated during

back-propagation. Since this is late training, parameter updates will be smaller in magnitude than in early training.



0 2000 4000 6000 8000 10000 12000 14000
Step

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Gu
m

be
l-S

of
tm

ax
 C

la
ss

 L
og

its
MNIST Top-1 Validation Error

budget=10_22222
budget=10_learn
budget=20_44444
budget=20_learn
budget=40_88888
budget=40_learn

Figure 4: The top-1 errors for the MNIST networks are
shown. Both baseline networks with uniform precision
allocation (i.e. budget=10 22222) and learned precision
networks (i.e. budget=10 learn) are assigned the same
total precision budget, indicated by the prefix.

2, which would provide efficient hardware acceleration,
where each layer is allocated 2, 4, or 8 bits. Baseline net-
works with uniform precision allocation are denoted with
the allocation for each layer and the budget (e.g. bud-
get=10 22222 denotes a baseline network with 2 bits
manually allocated to each of 5 layers for a budget of
10 bits), while the networks with learned precision are
denoted with the precision budget and learn (e.g. bud-
get=10 learn denotes a learned precision network with a
budget of 10 total bits, averaging 2 bits per layer).

4.1 MNIST

The training curves for the MNIST-trained models are
shown in Figure 4. The learned Gumbel-Softmax class
logits are shown in Figure 5.

We observe that the models with learned precision con-
verge faster and reach a lower test error compared to
the baseline models across all precision budgets consid-
ered, and the relative improvement is more substantial
for lower precision budgets. From Figure 5, we observe
that the models learn to assign fewer bits to early layers
of the network (conv0, conv1) while assigning more bits
to later layers of the network (conv2, conv3), as well as
preferring smoother (i.e. more uniform) allocations. This
result agrees with the empirical observations of (Ragha-
van et al., 2017). The results on MNIST are summarized
in Table 4. Uncertainty is calculated by averaging over
10 runs for each network with different random initial-
izations of the parameters.

4.2 ILSVRC12

The results for ILSVRC12 are summarized in Table 5.
Again, models that employ stochastic precision alloca-
tion converge faster and ultimately reach a lower test er-
ror than their fixed-precision counterparts on the same
budget. We observe that networks trained with stochas-
tic precision learn to take bits from early layers and as-
sign these to later layers, similar to the MNIST results.
While the class logits for the MNIST network were sim-
ilar to the ILSVRC12 results, they were not substantial
enough to cause changes in bit allocation during our hard
assignments. However, the ILSVRC12-trained networks
actually make non-uniform hard assignments. This sug-
gests that the precision layer has a larger affect on more
complex networks.

5 CONCLUSION AND FUTURE WORK

We introduced a precision allocation layer for DNNs,
and proposed a stochastic allocation scheme for learning
precision on a fixed budget. We have shown that learned
precision models outperform uniformly-allocated low
precision models. This effect is due to both learning the
optimal configuration of precision layer-wise, as well as
the regularization effects of stochastically exploring dif-
ferent precision configurations during training. More-
over, the use of precision budgets allow a high level of
hardware acceleration determinism which has practical
implications.

While the present experiments were focused on accuracy
rather than computational efficiency, future work will ex-
amine using GPU bit kernels in place of the full precision
kernels we used in our experiments. We also intend to
investigate stochastic precision in the adversarial setting.
This is inspired by Galloway et al. (2018), who report
that stochastic quantization at test time yields robustness
towards iterative attacks.

Finally, we are interested in a variant of the model where
rather than directly parametrizing precision, precision
is conditioned on the input. While this reduces hard-
ware acceleration determinism in real-time or memory-
constrained settings, it would enable a DNN to dynam-
ically adapt its precision configuration to individual ex-
amples.

References
E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli,

R. Timofte, L. Benini, and L. Van Gool. Soft-to-hard
vector quantization for end-to-end learned compres-
sion of images and neural networks. arXiv preprint
arXiv:1704.00648, 2017.



0 2000 4000 6000 8000 10000 12000 14000

−0.4

−0.2

0.0

0.2

0.4

0.6
Gu

m
be

l-S
of

tm
ax

 C
la

ss
 L

og
its

conv0

0 2000 4000 6000 8000 10000 12000 14000
Step

−0.4

−0.2

0.0

0.2

0.4

0.6

Gu
m

be
l-S

of
tm

ax
 C

la
ss

 L
og

its

conv3
0 2000 4000 6000 8000 10000 12000 14000

−0.4

−0.2

0.0

0.2

0.4

0.6
conv1

0 2000 4000 6000 8000 10000 12000 14000

−0.4

−0.2

0.0

0.2

0.4

0.6
conv2

0 2000 4000 6000 8000 10000 12000 14000
Step

−0.4

−0.2

0.0

0.2

0.4

0.6
fc0

budget=10_learn
budget=20_learn
budget=40_learn

MNIST Gumbel-Softmax Class Logits

Figure 5: The learned Gumbel-Softmax class logits for different precision budgets.

Table 4: Final training results and top-1 error for the MNIST baseline and learned precision models.

Network Precision Budget Val. Error Final Bit Allocation
l1 l2 l3 l4 l5

budget=10 22222 10 Bits 3.73%± 0.3 2 2 2 2 2
budget=10 learn 10 Bits 2.32%± 0.3 2 2 2 2 2
budget=20 44444 20 Bits 1.88%± 0.2 4 4 4 4 4
budget=20 learn 20 Bits 1.69%± 0.2 4 4 4 4 4
budget=40 88888 40 Bits 1.18%± 0.1 8 8 8 8 8
budget=40 learn 40 Bits 1.14%± 0.1 8 8 8 8 8

Table 5: Final training results and top-1error for the ILSVRC12 baseline and learned precision models.

Network Precision Budget Val. Error Final Bit Allocation
l1 l2 l3 l4 l5 l6 l7

budget=14 2222222 14 Bits 49.68%± 0.3 2 2 2 2 2 2 2
budget=14 learn 14 Bits 48.54%± 0.3 2 2 2 2 2 2 2
budget=28 4444444 28 Bits 47.99%± 0.3 4 4 4 4 4 4 4
budget=28 learn 28 Bits 47.69%± 0.3 3 3 4 4 5 5 4
budget=56 8888888 56 Bits 47.70%± 0.3 8 8 8 8 8 8 8
budget=56 learn 56 Bits 47.46%± 0.3 7 7 8 8 9 9 8
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