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Abstract

Genomics researchers increasingly turn to cloud computing as a means of accom-
plishing large-scale analyses efficiently and cost-effectively. Successful operation in
the cloud requires careful instrumentation and management to avoid common pit-
falls, such as resource bottlenecks and low utilisation that can both drive up costs
and extend the timeline of a scientific project.

We developed the Butler framework for large-scale scientific workflow manage-
ment in the cloud to meet these challenges. The cornerstones of Butler design are:
ability to support multiple clouds, declarative infrastructure configuration manage-
ment, scalable, fault-tolerant operation, comprehensive resource monitoring, and
automated error detection and recovery. Butler relies on industry-strength open-
source components in order to deliver a framework that is robust and scalable to
thousands of compute cores and millions of workflow executions. Butler’s error de-
tection and self-healing capabilities are unique among scientific workflow frameworks
and ensure that analyses are carried out with minimal human intervention.

Butler has been used to analyse over 725TB of DNA sequencing data on the cloud,
using 1500 CPU cores, and 6TB of RAM, delivering results with 43% increased
efficiency compared to other tools. The flexible design of this framework allows easy
adoption within other fields of Life Sciences and ensures that it will scale together
with the demand for scientific analysis in the cloud for years to come.

Because many bioinformatics tools have been developed in the context of small
sample sizes they often struggle to keep up with the demands for large-scale data
processing required for modern research and clinical sequencing projects due to the
limitations in their design. The Rheos software system is designed specifically with
these large data sets in mind. Utilising the elastic compute capacity of modern aca-
demic and commercial clouds, Rheos takes a service-oriented containerised approach
to the implementation of modern bioinformatics algorithms, which allows the soft-
ware to achieve the scalability and ease-of-use required to succeed under increased
operational load of massive data sets generated by projects like International Cancer
Genomics Consortium (ICGC) Argo and the All of Us initiative.

Rheos algorithms are based on an innovative stream-based approach for processing
genomic data, which enables Rheos to make faster decisions about the presence
of genomic mutations that drive diseases such as cancer, thereby improving the
tools’ efficacy and relevance to clinical sequencing applications. Our testing of the
novel germline Single Nucleotide Polymorphism (SNP) and deletion variant calling
algorithms developed within Rheos indicates that Rheos achieves 98% accuracy in
SNP calling and 85% accuracy in deletion calling, which is comparable with other
leading tools such as the Genome Analysis Toolkit (GATK), freebayes, and Delly.

The two frameworks that we developed provide important contributions to solve
the ever-growing need for large scale genomic data analysis on the cloud, by enabling
more effective use of existing tools, in the case of Butler, and providing a new, more
dynamic and real-time approach to genomic analysis, in the case of Rheos.
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Zusammenfassung

Forscher verwenden zunehmend Cloud-Computing, um umfangreiche Genomik-
Analysen effizient und kostengünstig durchzuführen. Erfolgreiche Anwendungen in
der Cloud erfordern sorgfältige Instrumentierung und ein Management, das häufige
Probleme wie Ressourcenengpässe und geringe Auslastung vermeidet, die sowohl die
Kosten erhöhen als auch den Zeitplan eines wissenschaftlichen Projekts verlängern
können.

Um diesen Herausforderungen zu begegnen, haben wir das Framework Butler für
ein umfangreiches Management von wissenschaftlichen Workflows in der Cloud en-
twickelt. Die Eckpfeiler des Butler-Designs sind folgende: Unterstützung mehrerer
Clouds, Infrastruktur-Konfigurationsmanagement, skalierbarer, fehlertoleranter Be-
trieb, umfassende Ressourcenüberwachung sowie automatisierte Fehlererkennung
und -wiederherstellung. Butler setzt auf robuste Open-Source-Komponenten, um ein
Framework bereitzustellen, das über Tausende von Rechnerkernen und Millionen von
Workflow-Ausführungen skalierbar ist. Die Fehlererkennungs- und Selbstheilungs-
funktionen von Butler sind einzigartig unter den Frameworks für wissenschaftliche
Arbeitsabläufe und gewährleisten, dass die Analysen mit minimalem Eingriff des
Menschen durchgeführt werden.

Butler wurde für die Analyse von über 725 TB DNA-Sequenzierdaten in der Cloud
verwendet, unter Nutzung von 1500 CPU-Kernen und 6 TB RAM. Damit wurden
im Vergleich zu anderen Tools Ergebnisse mit einer um 43% gesteigerten Effizienz
erzielt. Das flexible Design des Butler Frameworks ermöglicht eine einfache Über-
nahme in andere Bereiche der Biowissenschaften und stellt sicher, dass es hinsichtlich
nachgefragter wissenschaftlicher Analysen in der Cloud während der nächsten Jahre
skaliert werden kann.

Da viele Bioinformatik-Werkzeuge mit kleinen Stichprobengrößen entwickelt wur-
den, ist es oft schwierig, mit Anforderungen an die Datenverarbeitung im dem
Maßstab Schritt zu halten, der für moderne Forschungs- und klinische Sequen-
zierungsprojekte erforderlich ist. Das Rheos Softwaresystem wurde speziell für der-
art große Datenmengen entwickelt. Rheos nutzt die elastischen Rechenkapazitäten
moderner akademischer und kommerzieller Clouds und setzt einen serviceorien-
tierten, containerisierten Ansatz für die Implementierung moderner Bioinformatik-
Algorithmen ein. Dies ermöglicht es der Software, Skalierbarkeit und Benutzerfre-
undlichkeit zu erreichen, um so bei hoher Betriebslast erfolgreich große Datensätze,
die von Projekten wie dem Internationalem Krebsgenomkonsortium (ICGC) Argo
und der Initiative All of Us generiert wurden, zu prozessieren.

Rheos basiert auf einem innovativen, Stream-basierten Ansatz für die Verar-
beitung genomischer Daten. Mit Hilfe von Rheos können schnellere Entscheidungen
über das Vorhandensein genomischer Mutationen getroffen werden, die Krankheiten
wie Krebs auslösen, und so die Wirksamkeit für klinische Sequenzierungsanwendun-
gen verbessert werden. Unsere Tests der innerhalb von Rheos entwickelten Tools
zum Auffinden neuartiger Keimbahn-Einzelnukleotid-Polymorphismen (SNP) und
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Deletionen deuten an, dass Rheos eine Genauigkeit von 98% beim SNP-Aufruf
und 85% Genauigkeit beim Aufruf von Deletionen erreicht. Dies ist vergleichbar
mit anderen führenden Tools wie dem Genome Analysis Toolkit (GATK), Freebayes
und Delly.

Die beiden von uns entwickelten Frameworks liefern wichtige Beiträge zur Be-
wältigung des ständig wachsenden Bedarfs der Analyse großvolumiger genomischer
Datensätzen in der Cloud, indem im Fall von Butler die vorhandenen Tools effek-
tiver eingesetzt werden und im Fall von Rheos ein neuer, dynamischer und realer
Ansatz zur Echtzeit-Genomanalyse geschaffen wird.
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Chapter 1

Introduction

1.1 Context and Motivation

In the 18 years since the publication of the first draft human genome[1] the fields of
genomics and molecular biology have undergone a major shift. The direction of this
shift is towards an increasing adoption of computational approaches alongside exper-
imental methods, bringing both of these fields of study into the realm of information
science. This transition has been facilitated by two major factors - the advent of
next generation sequencing[2], and the development of the Internet and cloud com-
puting[3]. Next generation sequencing has been responsible for bringing down the
cost of DNA sequencing to the point where it has become possible to sequence and
study entire populations of individuals[4], while the Internet and cloud computing
are democratising access to large-scale computational resources, such that compu-
tation on big datasets, which was previously only accessible to large institutions, is
becoming tractable to a growing group of researchers and citizen scientists.

The continued appetite for sequencing of larger and larger cohorts of individuals by
the research community is driven by the desire to better understand the evolutionary
history of the human species[5], to identify causes and mechanisms of action of rare
genetic diseases that affect a very small proportion of the population[6], and to
elucidate and potentially target the genetic component of more common diseases
such as cancer[7], heart disease[8], or dementia[9] that place a heavy burden on our
society. All of these factors together mean that the need for the generation and
interpretation of genomic data is growing at an unprecedented scale.

Yet, the analysis of DNA sequencing data to study human genomes remains a
largely unsolved problem. The protein coding sequence of the human genome, its
exome, constitutes roughly 1% of the human DNA and successful studies have carried
out exome-based analyses on cohorts at the scale of tens of thousands of individu-
als[10]. However, the other 99% of the human genome, it’s non-coding regions, con-
tain crucial information such as gene regulatory elements[11] that are essential to our
full understanding of the mechanisms and processes that are underlying the human
genetic landscape. Given current technologies, Whole Genome Sequencing (WGS) is
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CHAPTER 1. INTRODUCTION

considerably more expensive and generates data-set sizes at the petabyte (PB) scale
that are challenging for even the largest international consortia to tackle [12]. WGS
studies at 100,000 participants scale that are currently ongoing[13] will further in-
crease data-set size and complexity by several orders of magnitude, a challenge that
is presently unanswered by the current generation of bioinformatics infrastructures
and algorithms.

A bigger and more distant challenge is the development of clinical sequencing
and genomics, which will truly bring whole-genome sequencing applications to pop-
ulation scale. Currently DNA sequencing has limited adoption within the clinical
practice with applications mostly limited to rare Mendelian disorders[14] and cer-
tain types of cancers[15] where a small set of genomic loci is interrogated via a
gene panel[16] with a set of well-delineated disease sub-types based on these genetic
markers. The use of whole-genome sequencing for clinical applications is presently
nearly non-existent due to its high cost compared to the clinical utility of its find-
ings, yet the potential for the impact of this approach remains substantial as certain
genomic variants such as Structural Variations (SVs) typically have a large effect on
an individual’s phenotype due to their size[17], but are generally not amenable to
interrogation via gene panels.

The magnitude of the opportunity for improvement in the space of DNA sequenc-
ing and genomics is thus clear to us - we seek a way to improve the current methods
of DNA data analysis such that it becomes tractable and cost-effective to undertake
whole-genome sequencing studies within research and clinical contexts at the scale
of hundreds of thousands to millions of human genomes.

1.2 Challenges and Problem Statement

Let’s examine the key challenges that need to be addressed in order to enable ef-
ficient genomic data analysis at the scale that is desired by the research and clinical
communities.

Several broad groups of challenges are identified below and further examined
throughout this thesis:

Data Set Size - The size of the raw genomic data generated by population-scale
studies will be hundreds to thousands of petabytes making it impractical to
move and make copies of the data[18].

Data Retention - The cost of generating the data is significantly higher than the
cost of storing the data, thus making it impractical to throw away the raw
data after initial analysis[19].

Data Formats - The data formats used for storing genomic data are primarily
large size character and binary files (FASTA, SAM, BAM, VCF)[20, 21] that
have loose specifications and scale poorly to large cohort sizes. File indexing

2



1.2. CHALLENGES AND PROBLEM STATEMENT

structures typically support indexing by genomic coordinate only, thus limiting
queryability.

Data Fragmentation - The data will be generated at multiple sequencing centres
located in different jurisdictions with a wide variety of genomic data handling
requirements. Data processing must proceed at multiple locations that respect
the requirements of each jurisdiction[22].

Data Type Diversity - Comprehensive characterisation of a person’s genome that
is useful in a clinical setting implies the collection and integrative analysis of
many diverse data types - including germline[23] and somatic[24] genomic
variants, transcriptomics[25], epigenomics[26], metabolomics[27], and clinical
information. Uniform collection, processing, and integration of these data
types is required to successfully associate the role of this genomic variation on
disease phenotypes[15].

Data Processing Stages - Data processing for genomics analysis proceeds
through a sequence of stages from base-calling, to quality-control, to genome
alignment, to variant calling, to annotation, to downstream analysis[28].
Each stage typically has non-trivial computational requirements needing
several days on a multi-core machine to complete with increased failure risk
as a function of data set size. Intermediate results from one stage are often
required as input for downstream stages. Fully sequential processing makes
inefficient use of the data by redundantly loading and interrogating the data
in memory over a series of passes through the sample.

Toolset Fragmentation - Although comprehensive genomic characterisation of
each sample is typically of interest to researchers, specific bioinformatics tools
only provide solutions to a limited subspace of the overall problem, thus re-
quiring integration of multiple tools that may produce incongruent outputs
and compete for resources producing computational bottlenecks.

Having listed these challenges we attempt to restate the problem in simpler terms
before providing a high level overview of the types of approaches and solutions that
will be developed and considered in detail in the body of this thesis in order to deliver
a conceptual and practical framework for the effective management of genomic data
at the desired scale.

Our problem statement is then as follows:

Human genomic data sets will, in the future, be generated for analysis in various
locations throughout the world, at the aggregate rate of multiple petabytes of data
per day in the context of disease and clinical practice. The desired outcome of these
analyses is the comprehensive characterisation of genomic features and their associ-
ation with phenotypic variables of interest[29]. The goal of the research community
is in capturing the maximum number of samples – N , with high accuracy – A, to
increase statistical power of studies[30], while the interest of clinicians is to capture
specific individuals with high accuracy – A, and in the shortest possible time – T , in
order to inform clinical decision making[31]. Both parties wish to do so at minimal
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CHAPTER 1. INTRODUCTION

possible total cost – C = cg + cs + ca + cr, taking into account the cost of data
generation, cost of data storage, cost of data analysis, and cost of subsequent data
retrieval. Because of the high cost of generating this data each time, the data, once
generated, will need to be stored for the foreseeable future. The overwhelming data
set size prevents data movement between locations, requiring analysis algorithms to
be colocated with the data.

The analysis is hampered by reliance on data formats that have not been de-
signed for operation at such large scale and the necessity to execute a variety of
computational algorithms[32, 33, 34, 35] on the data that have been individually
developed by different authors within an academic context, using different technolo-
gies that compete with each other for computational resources, and at-times produce
contradictory results that require human intervention to integrate. The underlying
assumption of genomic coordinate-sorted ordering and traversal of the data made
by most algorithms limits the modes of reasoning about the dataset to a series of
pre-processing steps, followed by another series of coordinate-wise traversals through
the data, which impose severe processing time costs, such as the requirement to have
generated, seen and sorted all of the data, before an analysis can proceed as well as
the inability to stop and interpret analysis results mid-processing.

The optimisation problem of maximising N , and A, while minimising C for re-
search purposes remains unsolved for values of N above 3000 samples when it comes
to high-coverage whole genome sequencing, while the problem of maximising A, and
minimising T , and C is presently not solved in the clinical setting for any sample
size. It is our proposed solution for tackling these issues that we turn to next.

1.3 Proposed Solution

We assume that N , the number of samples that can be successfully sequenced will
depend almost entirely on the total cost C, which itself, among other factors, is
determined by the desired accuracy and processing time. We thus focus most of our
efforts on the joint optimisation of cost, accuracy, and time as necessary conditions
for the maximisation of effective sample size N and enablement of whole genome
sequencing for clinical practice.

We note that the cost of data generation C is dependent on the sequencing tech-
nology used, the underlying chemistry, and the cost of the reagents[36]. Improving
these characteristics falls outside the scope of our discussion, and we assume the cost
of the data generation component cg of C to be constant throughout this thesis.

Analysis accuracy A is evaluated along the usual dimensions of sensitivity (pro-
portion of true positive cases identified) and specificity (proportion of true negative
cases identified) and can generally be improved by generating more data for a given
sample up to a theoretical maximum inherent in the sequencing technology used and
the nature of the analysis algorithms employed. Generation of more data naturally
leads to increased analysis time T and cost C. The time to accomplish the analysis
can be reduced by either giving up accuracy (by looking at less data, or using faster
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1.3. PROPOSED SOLUTION

but less accurate algorithms[37]), by increasing the level of parallelisation within
the computational pipeline i.e. parallelising steps that are currently sequential[38],
or by utilising additional computational resources, thereby increasing costs. The
various components of cost, in turn, can be optimized by improved data storage
and retrieval structures[39] (via multi-level caches and hybrid storage media, for
example), by improved-efficiency analysis algorithms, and by reduction of analysis
accuracy and increase of analysis time (via cheaper hardware).

It is clear from the discussion above that cost, accuracy, and processing time
are not orthogonal concerns i.e. changes in one may lead to changes in the other
two. It thus appears that no optimisation effort is likely to simultaneously satisfy
the requirements of all parties that are interested in large scale genomic analysis,
and a successful computational framework for delivering such analyses must allow
efficient and dynamic optimisation of these parameters to fit the needs of the end
user. This is typically not the case for present day genomics frameworks because of
the sequential way they look at data[40, 41] i.e. all of the data is generated before
it is processed by downstream tools, and accuracy and processing time need to be
decided on before launching a set of tools because they step through the genome in
coordinate-wise manner.

To address these challenges we develop and describe within this thesis two new
computational frameworks, called Butler and Rheos. Butler is a sophisticated scien-
tific workflow framework that allows the analyst to make maximum use of existing
tools and algorithms for analysis of genomic data, by facilitating large scale com-
putation on various cloud computing environments. Butler helps keep analyses
of massive data sets tractable by providing an anomaly detection and self healing
system that analyses comprehensively collected operational metrics, and takes auto-
mated action to resolve errors when they occur (see Figure 1.1). Rheos is a genomic
data analysis framework that is based on the concepts of data streaming, cloud com-
puting, and service orientation to provide a comprehensive toolset for genomic data
analysis that can potentially scale to processing of millions of genomes while arming
its users with the capability to make timely, responsive, and principled decisions
about the tradeoffs between analysis cost, accuracy, and duration.

Butler is different from other popular workflow systems such as Toil[42],
Nextflow[43], or Galaxy[44] because it provides comprehensive functionality in four
key areas of concern, while other frameworks typically focus only on workflow
execution. These areas are:

Provisioning - Is the set of activities associated with creating, destroying and con-
figuring virtual infrastructure, including network configuration and security.
Butler can deploy to virtually any major cloud computing environment and
provides helpful tools to make these activities easier.

Configuration Management - Is the ability to load and configure arbitrary soft-
ware package combinations on a variety of platforms. Butler provides ready
recipes for the deployment and configuration of any necessary underlying soft-
ware packages, such as databases, queues, web servers, as well as a wide variety
of bioinformatics software.
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Figure 1.1: High level architecture of the Butler framework.

Workflow Management - Is the system responsible for defining, executing, and
monitoring workflows that operate on large data sets. Butler’s workflow engine
has been tested on clusters with thousands of CPUs, and several ready-made
workflows for genomic analysis are available out of the box.

Operational Management - Is the set of systems responsible for keeping track
of the overall health of the system, including the underlying virtual infras-
tructure, and any running analyses. There are currently no comparable func-
tionality to Butler’s self-healing system in any available scientific workflow
software.

We have deployed Butler on a variety of cloud computing environments including
OpenStack, Amazon AWS, Microsoft Azure, and Google Compute Engine. We
successfully performed large-scale genomic analyses using Butler, and demonstrated
their superior performance, as described in the Butler manuscript[45] (in press at
Nature Biotechnology).
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Three distinct characteristics set Rheos apart from the current generation of ge-
nomic analysis frameworks and each of these allows us tackle some of the issues and
challenges described above. These are:

• Service Orientation

• Event and Data Streaming

• Random Data Ordering

Service orientation[46] allows us to decompose the overall problem of comprehen-
sively reasoning about genomic data into a set of small loosely-coupled components,
each of which is optimised to tackle a particular well-defined subset of the com-
plete set of requirements of the system. Each service has a contract that it makes
with its clients, it has an explicit set of inputs that it knows how to process, it
has an interface that defines the modes of communication it supports, it has a set
of outputs that it produces according to its capabilities, and it has a set of opera-
tional characteristics that makes explicit commitments about the service’s reliability,
speed, etc[47]. This has a number of benefits - a service can be small enough that
it optimises the solution to a particular problem without being subject to the same
competing constraints that larger tools are subject to, which provides opportunities
for improved performance and hardware utilisation. As long as the service respects
its input and output commitments it is free to maintain arbitrary internal represen-
tations of the data enabling optimisation of data storage and query costs (cs and cr).
A service can be monitored such that hardware is allocated elastically up and down
based on demand to ensure optimal utilisation, as well as providing a continued
measure of whether the service is meeting its operational reliability requirements
to its clients[48]. This is especially useful in contexts where demand for certain
calculations is highly variable.

The issue of inter-service communication is of major importance because of the
large size of the data-set and the potential for various difficult-to-debug run-time
race and error conditions inherent in a distributed system[49]. Currently, most
bioinformatics tools do not communicate with each other directly via an API, instead
they use popular file formats such as SAM/BAM/CRAM[20, 50], and VCF[21], as
well as a myriad of more esoteric file formats not only as a storage medium but also
as a means of communicating information between each other. This paradigm hurts
the ultimate scalability of the entire system because of the necessity to write data to
disk and possibly move it over the network in order to enable communication across
tools. Furthermore, a file-based information exchange mechanism forces a coarse-
grained, sample-level, communication between components that wish to avoid tight
coupling between each other, even though most of the reasoning about genomic data
occurs at locus, or small locus-neighbourhood, levels[51].

Figure 1.2 shows the high level architecture of the Rheos system. Rheos adopts a
data and event stream approach to accomplish scalable fine-grained communication
between services[52]. This approach allows each service to listen to and produce data
at the level of granularity that it needs to make decisions, and that its downstream
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dependencies are interested in (for instance at read, locus, or breakpoint levels).
When primary data is ingested into the Rheos system (from a sequencer, or a data
repository) the data stream can start to be analysed immediately[53], unlike file-
based systems that need to wait for the entire sample to transmit before beginning.
This approach can potentially enable real-time analysis given sufficient allocation of
computational resources[54]. Since the raw data is extremely large, it is advanta-
geous to move this data between machines, and between disk and RAM as little as
possible, thus instead of passing the raw data around the network various services
pass around events of interest about the raw data amongst themselves[55]. When a
particular service needs the raw data (rather than the corresponding events) for its
decision-making it can be shipped this data as necessary, or it can be instructed to
run on the host that has already cached this data in memory. Data streaming allows
for extreme scalability, but a key challenge when dealing with data streams is that
one is no longer guaranteed to ever be able to see ”all of the data” for a particular
sample, at least in any meaningful amount of time[56]. Because genomic algorithms
frequently make use of various summary statistics accumulated over the data-set[57,
58], not being able reason over all the data at once means that approximations for
these summary statistics are required. Rheos uses approximations calculated within
time windows over the data stream[59, 60] and we consider their properties in detail
in the body of this thesis.

Figure 1.2: High level architecture of the Rheos framework.

A key assumption made by nearly all algorithms in the genomics space that
participate in variant calling and reason over sequence reads is that the reads are
coordinate-sorted with respect to the reference genome to which they are aligned[20,
61, 62, 63]. The algorithms then proceed by traversing the genome in coordinate-wise
fashion from the beginning of chromosome 1 to the end of chromosome Y interrogat-
ing each locus in turn by examining the set of reads that overlap that locus (a read
pileup)[20]. Getting the reads into a state that is usable by these algorithms then
requires, at a minimum, that all the reads for a given sample have been generated,
have gone through QC[64], have been aligned[37], have been investigated for PCR
duplicates[41], and have been sorted[41]. Each of these steps can take hours or even
days to complete, especially on high coverage whole genome samples. We take a
different approach with Rheos by relaxing the requirement for the reads to have
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been sorted before any variant calling can take place, and instead develop a set of
variant calling algorithms that do not assume any particular order within the data
that they observe. This allows Rheos to make use of sequence data as soon as it
comes off the sequencing machine, thereby dramatically reducing the total time T
required to process genomic data compared to the current generation of algorithms.
Rheos accomplishes this by employing the service- and stream-based approaches dis-
cussed above to process each read on-the-fly as it moves through the system. The
read is first assessed for quality, then aligned to a reference genome by the align-
ment service. This service emits an event with a coordinate that corresponds to
the alignment. Variant calling services listen to this event stream and incorporate
the evidence for genomic variation supplied by this read into their models of the
genomic features that exist at that particular locus for that sample via a statistical
framework based on an iterated application of Bayes’ rule[65, 66].

Because current generation tools can see all of the data for a particular locus at
once they can incorporate all of the evidence supplied by this data in a minimal
number of calculations, corresponding to each particular algorithm[20, 61]. Rheos,
on the other hand, to incorporate the same amount of evidence will need to perform
a larger number of calculations in a redundant manner, incorporating the data as it
is observed. This cost is compensated for, however, by the fact that Rheos can im-
mediately incorporate new data about a particular locus when it becomes available
without the need to have accumulated all of the data for all of the loci, generating
significant time savings. Furthermore, because data arrives in no particular order
the set of variant calls produced by Rheos at any given point in time represent
a comprehensive characterisation of the sample as if the sample was sequenced at
an average coverage consistent with the amount of data that has been observed so
far. Observing more data is equivalent to raising the average coverage uniformly
throughout the genome, thereby improving call accuracy[67]. This provides us with
a framework to actively and dynamically trade off call-set accuracy A for processing
time T and cost C as actual data is being observed thereby enabling novel applica-
tions whereby sequencing is abandoned early when issues such as sample-swap[68],
or contamination[69] are detected. In addition, when sufficient accuracy is reached
based on observed data at a particular locus, the framework may choose to stop look-
ing at further data, whereas current generation approaches necessitate committing
to a particular sequencing depth a-priori. Furthermore, because current methods
iterate through the data in a coordinate-wise manner, their partial results are not
really usable until the entire data-set has been traversed (as they represent only
a particular region of the genome), whereas Rheos call-sets represent progressive
elaboration of a complete genomic characterisation and are thus usable at any level
of accuracy that is fit for the purposes of the underlying analysis. We develop the
details of the statistical framework used by Rheos and compare its performance to
current generation frameworks in the body of this thesis.

We conceived of Rheos as a modern bioinformatics framework that aims to en-
able the large scale genomics studies of the future[13, 70, 71] in both research and
clinical contexts by providing a toolset that allows for interpretation and compre-
hensive characterisation of high coverage human whole genome samples at the scale
of millions of samples. In order to meet the diverse requirements of its users the
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framework allows users to make informed and dynamic tradeoffs along the optimi-
sation dimensions of of cost, accuracy, and time. Rheos unique abilities rest upon
three characteristics that set it apart from current generation tools, these are: ser-
vice orientation, data streaming, and random data ordering. Taken together these
characteristics enable Rheos to perform at unprecedented levels of scale while re-
taining call-set accuracy and reducing per-sample processing time. We dedicate
the main body of this thesis to the development of the theoretical framework un-
derlying Rheos, exploring its characteristics, benefits and tradeoffs, discussing its
implementation, and evaluating and comparing Rheos’ performance to the current
best practices in genomics algorithms on real data.

1.4 Thesis Outline

This thesis focuses on the development of the conceptual framework behind the
Butler and Rheos platforms, the properties of the various workflows and algorithms
employed by these tools, and the implementation and experimental validation of
the frameworks on real data. Chapter 2 provides an introduction to the fields of
genomics, including cancer genomics and clinical genomics, a survey of the main
tools and algorithms that are commonly used in genomics is provided including
the details of the underlying statistical models and operational characteristics. The
chapter concludes with a look at workflow frameworks that tie individual algorithms
together into computational pipelines. Chapter 3 describes the set of requirements
necessary for building a large scale scientific workflow framework, and proposes a
system architecture the implements these requirements. Chapter 4 describes the
actual implementation of the Butler framework and provides a detailed analysis of
system performance in the context of real projects. Chapter 5 sets up and describes
the conceptual framework underlying Rheos based on the approaches of Service
Orientation, Data Streaming, and Random Data Ordering, mentioned above. We
describe the overall architecture (Section 5.2) as well as the model behind individ-
ual services that comprise Rheos and investigate the properties of the algorithms
that underlie Rheos-based genomic analysis (Section 5.3). Section 5.4 describes the
actual implementation of the Rheos framework’s components and investigates their
operational characteristics. Section 5.5 is dedicated to the experimental evaluation
of Rheos in comparison to other extant frameworks and algorithms using real ge-
nomic data. We conclude this work in Chapter 6 with a discussion of the results
and an examination of the future direction of Butler and Rheos development.
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Chapter 2

Background and Related Work

2.1 Genomics

The field of genomics is closely related to, yet distinct, from the field of genet-
ics, which itself stems from the work of such seminal figures as Charles Darwin[72]
and Gregor Mendel[73]. While genetics largely focuses on the study of single (or
relatively small numbers of) genes - the genotype, and how genetic variation and mu-
tation affect the physical traits of a given cell or organism - its phenotype, genomics
focuses on larger scale events and mechanisms that tend to act on the entirety of an
organism’s genome, shaping its architecture and ultimately affecting its survival.

2.1.1 History of Genomics

Each living cell is a bio-chemical machine that carries out a number of com-
plex behaviours such as interactions with the surrounding environment, motility,
metabolism, and reproduction, that are necessary for its survival and proliferation,
based on a genetic program that is encoded within the cell’s DNA. The DNA is
nominally subdivided into functionally distinct areas known as genes. The cell
utilises the program within each gene by first transcribing the DNA into an interme-
diary information-carrier molecule called RNA, and then translating this RNA into
molecules called proteins that are utilised by the cell to carry out the majority of
its functions. Understanding and interpretation of the underlying genetic program
thus underpins our ability to comprehend the entirety of the different behaviours
that each cell undertakes.

The success of this undertaking is contingent, first and foremost, on our ability to
effectively read off the information encoded in the DNA, an activity known as se-
quencing. We are able to sequence DNA thanks to the pioneering work of researchers
Rosalind Franklin[74], James Watson, and Francis Crick[75] who first elucidated the
physical structure of DNA, then followed by the work of Fred Sanger[76, 77] who
devised the first effective DNA sequencing method. The sequencing method allows
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us to transform information that is physically encoded on the DNA molecule via
a sequence of four distinct types of basepairs - Adenine, Cytosine, Guanine, and
Thymine into a string stored on a computer using a four-letter alphabet - A,C,T,
and G, thus turning DNA interpretation into a digital information processing prob-
lem.

While the entire length of the DNA of an organism ranges from several hun-
dred thousand basepairs for simple organisms like viruses and bacteria, to about
3,000,000,000 basepairs for a human, to over 150,000,000,000 for certain plants[78]
the limitations of Sanger DNA sequencing technology are such that the sequencing
machine can only produce DNA fragment strings, known as reads that are 800 -
1,000 basepairs long[76]. Reconstituting the original complete DNA sequence from
partial overlaps between reads is thus a costly, time consuming, and computation-
ally intensive problem known as de-novo assembly[79]. Once one such full sequence
(known as a reference sequence) is assembled however, sequencing other individuals
of the same (or closely related) species becomes a significantly easier undertaking.
Rather than assembling the sequence de-novo one can search for a position on the
reference sequence that provides the best matching alignment between the reference
and each read obtained for the specimen under study. This technique is known as
genomic alignment[32] or mapping and yields for each fragment a coordinate that
represents where on the reference sequence the fragment maps to. Furthermore,
because the DNA of any two organisms of the same species is largely identical,
with differences occurring at about 0.1% of all sites (although this depends on DNA
mutation rate)[80] researchers are able to significantly reduce the amount of infor-
mation that is required to fully represent the genome of a specimen by retaining
only the information that describes the sites where that specimen is different from
the reference sequence for that species.

A general approach has thus emerged, where each new species of interest under-
goes a relatively costly de-novo assembly process for the first genome, which then
becomes the reference genome for that species. The sequencing of further individuals
of that species utilises, relatively cheaper, alignment and identification of variants
(sites where the individual differs from the reference) to investigate the effect these
variants may have on different phenotypes of interest such as disease susceptibility
and survival[81].

Although genomicists study many different types of organisms the study of human
genomes garners by far the most attention and research funding due to the natu-
ral desire of humans to better understand ourselves and influence, where possible,
genetic factors impacting human longevity and health. Subsequent to the develop-
ment of DNA sequencing methods by Fred Sanger one of the most audacious and
crucial projects for the development of genomics as a branch of science has been
The Human Genome Project[1] - an international effort to sequence and de-novo
assemble the first complete human genome consisting of chromosomes 1-22, X, and
Y (as well as mitochondrial DNA) and totalling approximately 3 billion basepairs.
The project ran for over 10 years, completing in 2001, and cost more than $3 billion
USD. Although the main project effort was completed using the Sanger sequencing
method, a competing version of the human genome was simultaneously published
by a commercial company led by JC Venter[82], using a new sequencing method
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called shotgun sequencing[83], a method that formed the basis for a new revolution
in sequencing technology, now termed Next Generation Sequencing[2].

2.1.2 Next Generation Sequencing

The Next Generation Sequencing methodology[84] relies on fragmenting the DNA
of a subject into millions of fragments that are between 100-500 basepairs (bp) in
length, then sequencing all of the short fragments and aligning all the reads to the
reference with the aid of a relatively fast algorithm[37]. Because NGS sequencing
methods are prone to certain errors and biases[85], it is necessary to sequence enough
DNA fragments to overlap (or cover) every location in the genome several times
(typically 10-30), in order to build a statistical model that will be able to determine
the underlying sequence, known as genotyping[86], with a high degree of confidence.
Thus, at present, a single sequenced DNA sample will typically contain 1 billion
reads with a file size of 150GB when compressed.

Figure 2.1: Cost of DNA sequencing (taken from [87])

Figure 2.1 shows the change in the cost of DNA sequencing over the course of the
past 15 years. The precipitous drop in sequencing cost observed since 2008 coincides
with wide adoption of NGS methodologies. This drop in price has made tractable a
new set of large scale genomics sequencing projects that aim to characterise human
genetic diversity at population scale, projects such as the 1000 Genomes Project[88],
and the large scale sequencing of the Icelandic population[4].
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2.1.3 Cancer Genomics

Cancer is a genetic disease that has an extremely high burden on the human pop-
ulation. In 2012, the global incidence of new cases worldwide has been estimated
as 14.1 million, and deaths at 8.2 million[89]. The economic cost of cancer to the
European Union has been estimated at 126 billion euro in 2009[90], and in the US
$124.5 billion USD in 2010[91]. Because of the genetic nature of the disease studying
genomes of cancer patients helps uncover the mechanisms behind the development
and evolution of cancer[92].

Cancerous tumours arise from a single cell that over time accumulates a series
of somatic mutations that cause it to exhibit properties such as: increased mu-
tation rate, increased proliferation, anchorage independent growth, and resisting
cell death[93] . Only certain mutations, however, contribute to the development of
cancer, while others are benign. Cancer genomics studies aim to identify and char-
acterise those mutations that are cancer drivers and play a role in the formation or
progression of tumours[92].

Studying cancer genomes is more complex and expensive than studying the
genomes of healthy individuals because each patient requires that two DNA sam-
ples are collected - that of the normal tissue, and that of the tumour. This is
necessary to identify those mutations that are somatic - i.e. only occur in the
tumour cell population[94].

Figure 2.2: Sequencing sample size required by mutation rate (taken from [95]).

Although there is a large number of identified mutations that are implicated in
cancer (2,002,811 SNV, 10,534 gene fusions, 61,299 genome rearrangements, 695,504
CNV segments in COSMIC v70; August 2014)[96], each mutation has a low chance
of being present in any given tumour. Figure 2.2 demonstrates the sample size
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required to have 90% statistical power to identify 90% of the variants that occur
with a set frequency in tumours with varying background mutation rates. Thus,
identifying 90% of the mutations occurring with a frequency of at most 1% in Lung
Adenocarcinoma requires a sample size of at least 10,000 patients. The necessity
to sequence large cohorts of patients in order to be able to comprehensively detect
cancer related genomic variants has led to the creation of several large scale cancer
sequencing studies.

2.2 Computational Methods for Next Generation
Sequencing

Because the size of a typical genome is millions to billions of basepairs long, and
current DNA sequencing technology frequently generates errors during the sequenc-
ing process[85], requiring multiple samples of each genomic location to be generated,
the amount of data required to be examined in order to characterise even a single
sample is well beyond the capabilities of any human. Thus, a multitude of compu-
tational approaches are required in order to make the task tractable for individual
samples as well as cohorts, and entire populations.

The task of comprehensive characterisation of genomic data for an individual is
typically decomposed into a series of computational steps, each with its own data
representation, and typically developed by a separate research group, which are then
assembled into computational pipelines and executed by workflow engines on diverse
computing environments[97]. Our goal in this section is to enumerate and describe
the individual steps and to provide a survey of the key computational tools and
data formats that presently form the set of best practices in this rapidly evolving
branch of science. Since Rheos is designed to improve upon these best practices we
identify in each section the key mathematical and algorithmic ideas that underpin
each approach in order to adapt and translate them into the Rheos framework.

The data that is used in virtually all modern genomics studies is generated on a
next generation DNA sequencing machine. Several types of sequencers have been
developed but the most frequently used ones are made by Illumina. The raw data
produced by such a sequencer is a set of image files, where the colour of each pixel
represents the corresponding nucleotide base in a DNA strand that is being se-
quenced in each micro-well of a flowcell, representing the sample of interest. The
succession of images produced by each cycle of sequencing then results in a set of
reads, a collection of randomly ordered DNA fragments that are further analysed by
downstream tools. The first challenge in generating these reads is the accurate inter-
pretation of pixel colours and mapping them to the corresponding nucleotide bases,
known as base-calling[98]. Because all of the currently available DNA sequencing
methodologies are imperfect at reading the underlying DNA sequence a number of
errors is introduced into the process at various stages and special QA software is
required in order to detect and assess the location and severity of the errors[99]. A
typical output of the QA process is a filtered set of reads where the lowest quality
reads have been filtered out and each base within each read is assigned a quality
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score, which represents the best current estimate of the probability that the base has
been called incorrectly. The currently most frequently used file format for storing
DNA sequence reads along with their read qualities is a text file known as FASTQ.

Depending on whether the organism under study has previously been sequenced
there may already exist a reference sequence for it i.e. a file that for each genomic
location describes the most frequently occurring nucleotide for that species at that
location. Humans, and many other species of organisms already have reference se-
quences available. If the reference sequence for the organism under study is available
then the next processing step involves searching for the position in the reference se-
quence that best matches each read that has been generated for the sample under
study in the previous step. The coordinate of the best match is then assumed to
be the location in the genome where that particular read has originated from. This
process is known as genome alignment and it is very resource intensive for species
with large genomes such as humans ( 3 billion bases) because a typical sequencing
effort will generate at least 1 billion reads for a single sample, and each read needs
to be mapped to the reference genome[100]. This problem is made more difficult
by the fact that an organism’s genome typically has a large proportion of repeated
sequence fragments and thus the generated reads do not uniquely align to a single
location on the reference. A list of matching positions is generated instead, where
each match needs to be scored and the highest scoring match is assumed to be the
true origin of the read. Many alignment algorithms exist but the most accurate
and fast ones use a two step process of indexing, implemented via hash tables or
prefix/suffix tries, to generate a short list of promising match locations, followed by
a more exact local alignment that uses dynamic programming to generate a best
match. The alignment process is further complicated by the presence of sequencing
errors, various genomic variants, and disease state such as cancer, all of which gener-
ate significant (and sometimes drastic) differences between the obtained reads and
the reference genome, thus necessitating inexact matching approaches. The best
algorithms that are currently available have a typical runtime of 24-48 hours on a
modern 8-core machine. The most widely adopted standard for storing the align-
ment data on disk is the SAM[20] (and its binary and indexed counterpart BAM)
format developed in the context of the 1000 Genomes Project. In addition to the
sequence data and base qualities that are already available in fastq, the SAM format
adds a reference coordinate to each read, an overall mapping quality for the read,
and whether each position in the read matches the reference sequence, along with
other useful metadata.

When a reference sequence does not exist, or when it is undesirable to use one,
genome alignment tools are inapplicable and a different approach, called de-novo
assembly, is used[101]. Under this approach each read is broken into smaller sub-
sequences called k-mers (of length k), these k-mers are then used to build a graph
structure called a de Bruijn graph[102]. Unique paths through the graph represent
possible arrangements of reads that correspond to the underlying sequence and the
highest scoring path is chosen as the true sequence. Using the de-novo assembly
approach has some advantages over alignment-based methods because it models the
structure of the organism’s genome directly as it is observed rather than in relation
to a reference. This is because no reference is perfect, but instead each reference
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has its own set of errors that were introduced in its construction. Furthermore, ge-
nomic structural variants, which represent large (hundreds to millions of basepairs
long) sequences that may be deleted, duplicated, or inverted within a given genome
challenge alignment software because of the alignment errors that they introduce
and require sophisticated algorithms to later detect, whereas in the de-novo assem-
bly approach these variants are directly modelled as they occur in the underlying
sequence and are thus easier to identify. De-novo assembly has its own set of chal-
lenges however related to difficulties dealing with repetitive sequences that are found
within the genome, as well as the extremely high resource requirements of de-novo
assembly algorithms, especially when it comes to memory. The de Bruijn graph is
typically built in memory and can be multiple terabytes in size, thus requiring com-
puters with extremely high memory to process. Since, even when using in-memory
graph construction the runtime for a single sample is typically several days, it is
impractical to move the graph representation to disk without dramatically increas-
ing the algorithm runtime to the point where its duration becomes unreasonable.
In practice whole genome de-novo assembly is currently rarely used for processing
human genomic data because of the challenges described above. Instead, modern
algorithms supplement read alignment with local assembly of particular genomic
regions of interest in order to reap some of the benefits offered by assembly-based
methods without incurring all of the costs.

Once the reads have been aligned they are typically sorted by genomic coordinate
so that all of the reads that overlap a given coordinate can be examined together at
once. This is an expensive sorting step that does not lend itself well to parallelisation
and takes several hours to complete per sample[103]. Subsequent to the sorting step
is another round of data QA, which aims to throw out low quality reads that poorly
align to the reference. Care must be taken however, because these low quality reads
may not only signal underlying data or sequencing issues like sample contamination,
or lane-swap, but may also signal the presence of structural variants or integration
of retrovirus DNA into the host under study, both of which are of high interest to
properly identify. Thus, it is common to split the sample into reads of high quality
that are further assessed with one set of algorithms and a set of reads that map with
low quality, or fail to map at all, to be assessed with a different set of algorithms.

At this point the data is ready to begin the process of variant calling, that is,
identifying the genomic features of the sample that are different from the reference
sequence for that organism (i.e. mutations). It is important to distinguish germline
variant calling from somatic variant calling at this time. In germline variant calling
we are trying to identify the set of variants that have been passed to the individuals
under study from their parents and are thus present in every cell of the organism
forming the underlying genetic background of that individual where some variants
may be neutral to the organism’s survival, some may be beneficial, and some may
be deleterious. Comprehensively identifying and classifying these is of significant
research and clinical interest as they confer susceptibility or resistance to certain
disease vectors as well as potential medical remedies and may act as biomarkers to
predict disease prognosis or response to treatment within the groups of patients that
harbour them[104].
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Somatic mutations are those that each individual cell accumulates over its lifetime
and they are of especial interest in the context of cancer where a certain set of
mutations accumulated in a particular sequence and over a period of time disrupt the
normal cell lifecycle and result in the formation of a malignant tumour[105]. In this
context researchers typically sequence both healthy cells (such as those drawn from
the patient’s blood) and cancerous cells. Mutations are identified in both and the
difference between these sets of mutations is then stipulated to be the set of somatic
mutations present within that tumour. Just like in the germline case, not all of the
somatic mutations contribute to the formation of the cancer and the appropriate
identification and classification of those mutations that do (so-called cancer drivers)
is an important question of significant clinical and research importance, which we
consider further below[24]. From a technical standpoint calling somatic variants
is significantly more complex than calling germline variants because healthy cells
generally conform to the underlying genetic characteristics of the organism, such
as the number of chromosomes and ploidy (23 chromosomes, diploid, for humans),
whereas in the cancer cells these characteristics can be severely disrupted with entire
chromosomes missing or present in amplified copy number, requiring different and
more complex statistical models to accurately identify. An additional complexity
that is unique to somatic variant calling is the concept of sub-clonal mutations[62].
These are mutations that have been acquired only by some of the cells within a
tumour. Since sequencing samples data from a large number of cells within a tumour
the reads from which are all pooled together, only a comparatively low number of
reads will contain information about sub-clonal mutations, thus making them more
difficult to detect, even though such mutations may have a significant impact on the
tumour phenotype and thus would be very important to properly identify.

We typically think of three classes of genomic variants that are identified by dif-
ferent methods and oftentimes by separate tools. The simplest to accurately detect,
and most frequently occurring are Single Nucleotide Polymorphisms (SNPs), in the
germline case, and Single Nucleotide Variants (SNVs), in the somatic case. These
are single basepair substitutions where the germline genome differs from the refer-
ence sequence by a single letter (for SNPs), or the somatic genome differs from the
germline genome by a single letter (for SNVs). SNPs are quite common in humans
and occur at the rate of approximately 1 per 1,000 bases on average, or, equiv-
alently, 3 million per individual. Somatic SNVs have a widely varying incidence
rate depending on the type of cancer involved with typical rates between (INSERT
RATES HERE). For humans, which are diploid (i.e. have two copies of each of
the chromosomes, except for the sex chromosomes X and Y), we classify SNPs and
SNVs as being either heterozygous (with one reference allele and one variant allele)
or homozygous (with both alleles being variant). Methods to detect and accurately
genotype SNPs and SNVs typically rely on counting the reads that overlap a given
genomic position and evaluating a statistical model that contrasts the probability
of the site being reference versus the probability of the site being variant in the face
of potential sequencing errors, which are expressed as base quality scores and map-
ping quality scores (as previously described)[86]. The models employed for somatic
SNV detection and genotyping are significantly more complex than the models for
germline variant detection because of the possibility of sub-clonal mutations (as pre-
viously described) as well as regions of amplified copy number (i.e. regions where
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the organism is no longer diploid but can have any number of additional copies of
a chromosomal region, or an entire chromosome). More advanced methods output
not only lists of variant sites for a sample but calculate a distribution of genotype
likelihoods, i.e. all the possible genotypes at a given variant site along with their
relative probabilities so that these can be integrated into the models of downstream
statistical analyses in a comprehensive manner[61].

Indels represent sequence insertions and deletions that are anywhere from 1 base-
pair (bp) to about 50 basepairs long. There is no strict upper bound on the length
of an indel and individual tools typically decide on their own cutoffs for length al-
though pretty much all tools place their cutoff at a length that is smaller than the
typical read length (150 - 500 bp presently). Indel callers typically look for several
mismatched bases in a row between the reference and the sample under study and
classify the entire length of the mismatched sequence as an insertion or deletion cor-
respondingly. Other indel callers borrow some of the methodology from structural
variant callers, since structural variants are similar to indels, only typically bigger
in size, and are potentially more complex[106].

Structural variants (SVs) are more large scale genomic rearrangements that oc-
cur in both germline and somatic genomes and can have a very drastic effect on
the organism’s phenotype because they can affect a large number of genes at once,
resulting in the loss of function of particular important genes, or the creation of
gene fusions where, because of a rearrangement, one gene comes under the program-
matic control of another gene thereby disrupting important cellular processes. The
most common types of structural variants include insertions, deletions, segmental
duplications, inversions, and translocations. Simpler structural variants sometimes
combine to produce more complex events that are especially difficult to detect prop-
erly. The methods for calling and genotyping of structural variants typically rely on
looking at the reads that are deemed low quality for the SNP calling process[107].
These are reads that fail to map to the reference genome, split-reads, which are reads
where one part of the read maps to one location on the reference and another part
of the read maps to another location, and divergently mapped reads (sequencing is
frequently done on read pairs where two ends of a DNA fragment of standard size
are sequenced in the opposite directions generating a pair of reads with a standard
distance, called inner size, in-between them), with a shorter or longer than expected
inner size. SV callers break down these reads into smaller fragments (k-mers) and
attempt to map these k-mers to the reference sequence. The goal is to determine
the location of breakpoints, which are positions on the sample genome where a DNA
strand break is thought to have occurred as part of the genomic rearrangement that
has taken place. Once a list of breakpoints is obtained the algorithm attempts to
reconstruct the most likely event sequence that these breakpoints could have arisen
from, pairing up adjacent breakpoints that are the result of a sequence deletion,
for example. Thus, each pair of breakpoints typically gives rise to a single SV call
in the final output of the caller. SV calling is a complex and error-prone process
that generates double-digit false-positive and false-negative rate, especially in the
somatic case, where patient genomes can undergo drastic rearrangements as a re-
sult of cancer-related processes such as chromothripsis[108] and are thus extremely
difficult to resolve with accuracy.
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Once variants (SNPs/SNVs, Indels, and SVs) have been comprehensively called,
a filtering step is necessary because callers are typically initially tuned for highest
sensitivity in order to detect the most variants, thus admitting an increased number
of false positive calls. Additionally, because calling of SNPs and SVs typically occurs
separately by different tools there can be significant call-set overlap where the SNP
caller sees a region as a group of SNPs, whereas the SV caller will see it as a single
breakpoint. These overlaps need to be resolved in order to avoid redundant calls. A
number of filtering approaches exist, some of which rely on heuristics such as strand
bias, or read support to filter out low quality variants. Other filtering approaches
rely on curated variant databases or machine learning methods in order to reduce
the number of false positive calls. One popular filtering approach involves ensemble
calling where several different variant calling methods are used on the same dataset
and a variant is excluded unless it is called by multiple tools. These methods are
typically able to reduce the false positive rate of the call-set by 5-10% while only
nominally affecting the false negative rate[41].

When a filtered high quality call-set has been prepared it is of interest to deter-
mine which of the variants are likely to have an effect on the organism’s phenotype
and which variants are likely to have no consequence. This is accomplished via
variant annotation[35]. The annotation process consults a database of known genes
and other genomic elements (promoters, enhancers, etc.) to determine the likely
consequence of each variant based on the type of mutation that it represents i.e. a
synonymous mutation (that does not change the underlying amino acid) is likely to
have no phenotypic effect, whereas a stop gain mutation inside the coding region of
a known gene may indicate a potential loss of function of that gene and may thus
have a considerable effect on the observed phenotype. When annotating somatic
mutations it is important to consider known cancer genes and delineate whether
mutations are ”passengers” or ”drivers” depending on whether they are thought
to be driving the carcinogenesis process by constitutively activating a cancer gene
or deactivating a tumour suppressor, or they are simply acquired as part of the
genomic instability that is induced by carcinogenesis. An outcome of the variant
annotation process then, is a list of somatic or germline variants accompanied by a
designation of the known genomic features that they fall in, along with an assigned
functional impact. This is typically the last step of an NGS analysis pipeline after
which the variant call-set is considered completed and can be used for any number
of downstream analyses depending on the particular research question or clinical
application being considered. For instance, the variants may be used as input into a
Genome Wide Association Study (GWAS)[109], a Quantitative Trait Locus (QTL)
analysis[110], a rare variant association study[111], or as input into the computation
of a clinical biomarker[112].

2.2.1 File Formats

DNA sequencing studies generate large amounts of data - a single whole-genome
sample sequenced at 30x coverage on a modern Illumina sequencer generates roughly
109 reads, which are strings of length 150 characters and take 100 GB of space on
disk when compressed with gzip. Thus, even a moderately-sized study of several
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thousand individuals needs to grapple with the efficient management of hundreds
of terabytes of data. Because of the size of these datasets data storage, access,
and exchange formats play a major role in determining the speed, cost, and ef-
ficiency with which large-scale analyses can be undertaken. The field of genomics
has developed in bursts associated with the major international projects that have
been undertaken in the past 30 years, including the Human Genome Project[1], the
HapMap Project[113], and the 1000 Genomes Project[88]. It is the latter project
that has given rise to most of the currently adopted file format standards in use
today, including FASTA/FASTQ for raw sequence data, SAM/BAM for reference-
mapped sequence data, and VCF for representing genomic variants. Because these
file formats have become the primary information exchange medium in the field of
genomics they have a large influence on software tools and data access patterns that
are in common use today and thus warrant a closer look.

FASTA/FASTQ

The FASTA/FASTQ file format is a text file format developed at The Sanger Insti-
tute for representing genomic sequencing reads[114]. Each read in the file consists
of four lines:

• The first is a unique identifier (that encodes some information about the se-
quencing process). For example - HWUSI-EAS100R:6:73:941:1973#0/1

• The second is the read sequence itself: S = {si : s ∈ {A,C,G, T,N}}. For
example - ACGTCCCGTCCCTNTCCA

• The third is a + sign acting as a separator.

• The fourth is a set of per-base quality scores, represented on the Phred scale,
that represent an estimate of the probability that the base has been called cor-
rectly. If the error probability is defined as ε then Qphred = −10× log10(ε) and
conversely ε = 10

−Qphred
10 . In the actual file Phred scores are represented with

ASCII characters from !”#$%&’()*+,-./0123456789:;<=>?@ABCDEFG HI-
JKLMNOPQRSTUVWXYZ[\]_̂àbcdefghijklmnopqrstuvwxyz{|}~ordered by
increasing quality, where ! is the lowest possible quality and ~is the high-
est.
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Figure 2.3: Excerpt from a FASTQ file. /1 and /2 at the end of read ID indicate
whether read is first or second in pair.

Since FASTQ is a large text file with highly repetitive content it is typically stored
in a compressed manner.

SAM/BAM

The Sequence Alignment Map (SAM) text file format and its accompanying binary
compressed version BAM was created for sequencing data storage and analysis in
the context of the 1000 genomes project[20]. These files provide additional fields on
top of the ones available in FASTA/FASTQ in order to relay information related
to sequence alignment to a reference genome, and are the most widely used format
for storing DNA sequencing data today. A SAM file consists of a header and a
body. These are described below. All tables, descriptions, and definitions in this
section are reproduced or adapted from the SAM file specification at https://sam-
tools.github.io/hts-specs/SAMv1.pdf.

SAM Header Each line of the header begins with the character ‘@’ followed by
a header record (see Table 2.1). Each line is TAB-delimited and, apart from @CO
lines, each data field follows the format ‘TAG:VALUE’ where TAG is a two-character
string that defines the format and content of VALUE.
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Table 2.1: SAM file header record and column definition. Tags listed with ‘*’ are
required. (adapted from https://samtools.github.io/hts-specs/SAMv1.pdf)

Tag Description
@HD The header line. The first line if present.

VN* Format version. Accepted format: /^[0-9]+\.[0-9]+$/.
SO Sorting order of alignments. Valid values: unknown (default), unsorted,

queryname and coordinate.
GO Grouping of alignments, indicating that similar alignment records are grouped

together but the file is not necessarily sorted overall. Valid values: none (default),
query (alignments are grouped by QNAME), and reference (alignments are
grouped by RNAME/POS).

SS Sub-sorting order of alignments. Valid values are of the form sort-order:sub-
sort, where sort-order is the same value stored in the SO tag and sub-sort is an
implementation-dependent colon-separated string further describing the sort or-
der. Regular expression: (coordinate|queryname|unsorted)(:[A-Za-z0-9_-
]+)+

@SQ Reference sequence dictionary. The order of @SQ lines defines the alignment sort-
ing order.

SN* Reference sequence name. The SN tags and all individual AN names in all @SQ
lines must be distinct. The value of this field is used in the alignment records in
RNAME and RNEXT fields. Regular expression: [!-)+-<>-~][!-~]*

LN* Reference sequence length. Range: [1, 231 − 1]
AH Indicates that this sequence is an alternate locus.
AN Alternative reference sequence names.
AS Genome assembly identifier.
DS Description. UTF-8 encoding may be used.
M5 MD5 checksum of the sequence.
SP Species.
UR URI of the sequence.

@RG Read group. Unordered multiple @RG lines are allowed.
ID* Read group identifier. Each @RG line must have a unique ID.
BC Barcode sequence identifying the sample or library.
CN Name of sequencing center producing the read.
DS Description. UTF-8 encoding may be used.
DT Date the run was produced (ISO8601 date or date/time).
FO Flow order. The array of nucleotide bases that correspond to the nucleotides

used for each flow of each read.
KS The array of nucleotide bases that correspond to the key sequence of each read.
LB Library.
PG Programs used for processing the read group.
PI Predicted median insert size.
PL Platform/technology used to produce the reads. Valid values: CAPILLARY, LS454,

ILLUMINA, SOLID, HELICOS, IONTORRENT, ONT, and PACBIO.
PM Platform model. Free-form text providing further details of the platform/tech-

nology used.
PU Platform unit (e.g. flowcell-barcode.lane for Illumina or slide for SOLiD). Unique

identifier.
SM Sample. Use pool name where a pool is being sequenced.
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Table 2.3: SAM file alignment record mandatory column definition. (adapted from
https://samtools.github.io/hts-specs/SAMv1.pdf)

Col Field Type Regexp/Range Brief description
1 QNAME String [!-?A-~]{1,254} Query template name
2 FLAG Int [0, 216 − 1] bitwise flag
3 RNAME String \*|[!-()+-<>-~][!-~]* Reference sequence name
4 POS Int [0, 231 − 1]

1-based leftmost mapping
position

5 MAPQ Int [0, 28 − 1] Mapping Quality
6 CIGAR String \*|([0-9]+[MIDNSHPX=])+ CIGAR string
7 RNEXT String \*|=|[!-()+-<>-~][!-~]* Ref. name of the mate/next

read
8 PNEXT Int [0, 231 − 1]

Position of the mate/next
read

9 TLEN Int [−231 + 1, 231 − 1] observed Template length
10 SEQ String \*|[A-Za-z=.]+ segment sequence
11 QUAL String [!-~]+

ASCII of Phred-scaled
base quality+33

SAM Body The body of a SAM file contains alignment records (see Section 2.2.2
on details of alignment algorithms). Each record has 11 mandatory fields. These
fields always appear in the same order and must be present, but their values may
be ‘0’ or ‘*’ (depending on the field) if the corresponding information is unavailable.
Table 2.3 lists the mandatory fields in the SAM format:

Alignment records represent the information contained in a sequencing read sub-
sequent to it being aligned to a reference genome (see Figure 2.4).

Figure 2.4: A read-pair that is aligned to the reference.

1. QNAME: Query template NAME. Reads/segments having identical QNAME
are regarded to come from the same template. A QNAME ‘*’ indicates the in-
formation is unavailable. In a SAM file, a read may occupy multiple alignment
lines, when its alignment is chimeric or when multiple mappings are given.
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2. FLAG: Combination of bitwise FLAGs. Each bit is explained in the following
table:

Bit Description
1 0x1 template having multiple segments in sequencing
2 0x2 each segment properly aligned according to the aligner
4 0x4 segment unmapped
8 0x8 next segment in the template unmapped
16 0x10 SEQ being reverse complemented

32 0x20
SEQ of the next segment in
the template being reverse
complemented

64 0x40 the first segment in the template
128 0x80 the last segment in the template
256 0x100 secondary alignment
512 0x200 not passing filters, such as platform/vendor quality controls
1024 0x400 PCR or optical duplicate
2048 0x800 supplementary alignment

• For each read/contig in a SAM file, it is required that one and only one
line associated with the read satisfies ‘FLAG & 0x900 == 0’. This line is
called the primary line of the read.

• Bit 0x100 marks the alignment not to be used in certain analyses when
the tools in use are aware of this bit. It is typically used to flag alternative
mappings when multiple mappings are presented in a SAM.

• Bit 0x800 indicates that the corresponding alignment line is part of a
chimeric alignment. A line flagged with 0x800 is called as a supplementary
line.

• Bit 0x4 is the only reliable place to tell whether the read is unmapped.
If 0x4 is set, no assumptions can be made about RNAME, POS, CIGAR,
MAPQ, and bits 0x2, 0x100, and 0x800.

• Bit 0x10 indicates whether SEQ has been reverse complemented and
QUAL reversed. When bit 0x4 is unset, this corresponds to the strand
to which the segment has been mapped. When 0x4 is set, this indicates
whether the unmapped read is stored in its original orientation as it came
off the sequencing machine.

• Bits 0x40 and 0x80 reflect the read ordering within each template in-
herent in the sequencing technology used.1 If 0x40 and 0x80 are both
set, the read is part of a linear template, but it is neither the first nor
the last read. If both 0x40 and 0x80 are unset, the index of the read in
the template is unknown. This may happen for a non-linear template or
when this information is lost during data processing.

• If 0x1 is unset, no assumptions can be made about 0x2, 0x8, 0x20, 0x40
and 0x80.

1For example, in Illumina paired-end sequencing, first (0x40) corresponds to the R1 ‘forward’
read and last (0x80) to the R2 ‘reverse’ read. (Despite the terminology, this is unrelated to the
segments’ orientations when they are mapped: either, neither, or both may have their reverse flag
bits (0x10) set after mapping.)
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• Bits that are not listed in the table are reserved for future use. They
should not be set when writing and should be ignored on reading by
current software.

3. RNAME: Reference sequence NAME of the alignment. If @SQ header lines are
present, RNAME (if not ‘*’) must be present in one of the SQ-SN tag. An
unmapped segment without coordinate has a ‘*’ at this field. However, an
unmapped segment may also have an ordinary coordinate such that it can be
placed at a desired position after sorting. If RNAME is ‘*’, no assumptions
can be made about POS and CIGAR.

4. POS: 1-based leftmost mapping POSition of the first CIGAR operation that
“consumes” a reference base (see table below). The first base in a reference
sequence has coordinate 1. POS is set as 0 for an unmapped read without
coordinate. If POS is 0, no assumptions can be made about RNAME and
CIGAR.

5. MAPQ: MAPping Quality. It equals−10 log10 Pr{mapping position is wrong},
rounded to the nearest integer. A value 255 indicates that the mapping quality
is not available.

6. CIGAR: CIGAR string. The CIGAR operations are given in the following table
(set ‘*’ if unavailable):

Op BAM Description Consumes
query

Consumes
reference

M 0 alignment match (can be
a sequence match or mis-
match)

yes yes

I 1 insertion to the reference yes no
D 2 deletion from the reference no yes
N 3 skipped region from the ref-

erence
no yes

S 4 soft clipping (clipped se-
quences present in SEQ)

yes no

H 5 hard clipping (clipped se-
quences NOT present in
SEQ)

no no

P 6 padding (silent deletion
from padded reference)

no no

= 7 sequence match yes yes
X 8 sequence mismatch yes yes
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Figure 2.5: Example of an alignment CIGAR string.

• “Consumes query” and “consumes reference” indicate whether the
CIGAR operation causes the alignment to step along the query sequence
and the reference sequence respectively.

• H can only be present as the first and/or last operation.
• S may only have H operations between them and the ends of the CIGAR

string.
• For mRNA-to-genome alignment, an N operation represents an intron.

For other types of alignments, the interpretation of N is not defined.
• Sum of lengths of the M/I/S/=/X operations shall equal the length of

SEQ.

7. RNEXT: Reference sequence name of the primary alignment of the NEXT
read in the template. For the last read, the next read is the first read in the
template. If @SQ header lines are present, RNEXT (if not ‘*’ or ‘=’) must be
present in one of the SQ-SN tag. This field is set as ‘*’ when the information
is unavailable, and set as ‘=’ if RNEXT is identical RNAME. If not ‘=’ and
the next read in the template has one primary mapping (see also bit 0x100 in
FLAG), this field is identical to RNAME at the primary line of the next read.
If RNEXT is ‘*’, no assumptions can be made on PNEXT and bit 0x20.

8. PNEXT: 1-based Position of the primary alignment of the NEXT read in the
template. Set as 0 when the information is unavailable. This field equals POS
at the primary line of the next read. If PNEXT is 0, no assumptions can be
made on RNEXT and bit 0x20.

9. TLEN: signed observed Template LENgth. If all segments are mapped to the
same reference, the unsigned observed template length equals the number of
bases from the leftmost mapped base to the rightmost mapped base. The
leftmost segment has a plus sign and the rightmost has a minus sign. The
sign of segments in the middle is undefined. It is set as 0 for single-segment
template or when the information is unavailable.

10. SEQ: segment SEQuence. This field can be a ‘*’ when the sequence is not
stored. If not a ‘*’, the length of the sequence must equal the sum of lengths
of M/I/S/=/X operations in CIGAR. An ‘=’ denotes the base is identical to the
reference base. No assumptions can be made on the letter cases.

11. QUAL: ASCII of base QUALity plus 33 (same as the quality string in the
Sanger FASTQ format). A base quality is the phred-scaled base error proba-
bility which equals −10 log10 Pr{base is wrong}. This field can be a ‘*’ when
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quality is not stored. If not a ‘*’, SEQ must not be a ‘*’ and the length of the
quality string ought to equal the length of SEQ.

BAM Files BAM files are SAM files that have been compressed with block gzip
compression[115]. If the reads inside the BAM file are sorted in increasing order
of reference coordinate, the BAM file supports random access via a supplementary
BAM index (*.bam.bai) file. Each block inside a BAM file is a separate gzip archive
up to 64Kb in size with extra metadata to encode the read positions contained inside
the block. The BAM index file contains offsets into the BAM file that correspond
to particular genomic coordinate ranges. The BAM file this provides a binary com-
pressed structure that supports indexed search on genomic coordinates. No other
indexing, including by ID, is currently supported. The majority of DNA sequencing
data in the world is currently stored as BAM files.

VCF Files

The Variant Call Format (VCF)[21] is a type of text file that was created in the
context of the 1000 Genomes project to allow the representation of various types
of genetic variation that are discovered via NGS experiments. VCF files describe
variants in a reference-relative manner - i.e. all genetic variation is shown with
respect to a given reference genome build. VCF files have a tabular form and allow
one to describe genetic variants as they occur in (or are absent from) a entire cohort
of samples using a single file. This file format, despite several significant limitations,
has become the widely adopted standard for representing genetic variation. All
descriptions in this section have been reproduced or adapted from the 2011 Danecek
et al. paper and the VCF specification ()

A VCF file consists of the following sections - Meta-information section describes
the format and content of the data contained in the file, header section specifies the
columns present in the file, data section contains the actual variant calls that are
being described.

Meta-information The meta-information section contains a number of lines that
describe the data section. The first line of this section is a fileformat line that
specifies what version of the VCF spec the file adheres to. There can be any number
of lines describing INFO fields. These fields are populated into the INFO column
of the data section. A single INFO field may describe a single value or a tuple of
values. These values can be Integer, Float, Flag, Character, or String. All of the
INFO fields thus described are to be placed into the INFO column as a string of
semi-colon-separated key-value pairs. The FILTER field describes any filters that
have been applied to the variants. The FORMAT field describes the format of the
genotype columns that are specified in the data section. The ALT field describes
symbolic alternate alleles, that result from variants that have been called but not
accurately genotyped. The contig field lists the contigs that the variants specified
in the file have been called relative to (typically these are chromosome names from
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the reference sequence). The SAMPLE field specifies the samples that the variants
map to. The PEDIGREE field specifies pedigree relationships between samples in
the file.

Header The header section is a single tab-delimited line that lists what columns
are present in the body. The mandatory columns are:

• #CHROM

• POS

• ID

• REF

• ALT

• QUAL

• FILTER

• INFO

If the VCF file contains genotypes then the INFO column is followed by a FOR-
MAT column, followed by one column for each present sample where each column
name is the respective sample ID and all sample IDs are unique within the file.

Data The data section of a VCF file contains the actual list of variants and their
genotypes in all samples in tabular form where the columns align with the header
section. The values are tab-separated. Any missing values are indicated with a ’.’
(dot). The line contents are as follows:

CHROM - An identifier of the chromosome where the variant resides. The ID of
the chromosome should match one of the contig entries in the meta-information
section. All of the variants that belong to a single CHROM should exist in a
single contiguous block of rows in a VCF file.

POS - 1-based position of the variant with respect to the reference chromosome
specified in CHROM. Variant positions should be sorted numerically in in-
creasing order.

ID - A semi-colon separated list of unique identifiers, where they exist. If no iden-
tifier exists a missing value should be indicated.

REF - the reference bases corresponding to the variant location where each base
b ∈ {A,C,G, T,N}.
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ALT - a comma separated list of alternative alleles. The alleles do not have to called
in any of the samples. Value can be either a String of b ∈ {A,C,G, T,N, ∗}
or a missing value (when there is no variant).

QUAL - the PHRED scale variant quality. When ALT is present QUAL is
−10 log10(novariant) and when ALT is missing QUAL is −10 log10(variant).
If QUAL is unknown then missing value must be specified.

FILTER - encodes the filter status. If the variant passes all QC filters the value
should be PASS. Otherwise there should be a semi-colon separated list of codes
for filters that have not passed. If FILTER information is not available there
should be a missing value.

INFO - A list of key-value pairs for the additional fields encoded for each variant as
specified in the INFO lines of the metadata section. Keys without correspond-
ing values may be used to indicate group membership. There is a number of
frequently used reserved keys (see Table 2.4).

Key Number Type Description

AA 1 String Ancestral allele
AC A Integer Allele count in genotypes, for each ALT al-

lele, in the same order as listed
AD R Integer Total read depth for each allele
ADF R Integer Read depth for each allele on the forward

strand
ADR R Integer Read depth for each allele on the reverse

strand
AF A Float Allele frequency for each ALT allele in the

same order as listed (estimated from pri-
mary data, not called genotypes)

AN 1 Integer Total number of alleles in called genotypes
BQ 1 Float RMS base quality
CIGAR A String Cigar string describing how to align an al-

ternate allele to the reference allele
DB 0 Flag dbSNP membership
DP 1 Integer Combined depth across samples
END 1 Integer End position (for use with symbolic alleles)
H2 0 Flag HapMap2 membership
H3 0 Flag HapMap3 membership
MQ 1 Float RMS mapping quality
MQ0 1 Integer Number of MAPQ == 0 reads
NS 1 Integer Number of samples with data
SB 4 Integer Strand bias
SOMATIC 0 Flag Somatic mutation (for cancer genomics)
VALIDATED 0 Flag Validated by follow-up experiment
1000G 0 Flag 1000 Genomes membership

Table 2.4: Reserved INFO keys (from https://samtools.github.io/hts-
specs/VCFv4.3.pdf).
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If genotype information is present, the exact same definition is used for all samples.
The FORMAT field specifies a column-separated list of the data types and their
order that are present in the genotype columns. This is followed by one data block
for each sample that contains the genotype data as described in the FORMAT
column. All keys are optional but missing values should be indicated. There is a
number of frequently used and reserved keys (see Table 2.5).

Field Number Type Description

AD R Integer Read depth for each allele
ADF R Integer Read depth for each allele on the forward

strand
ADR R Integer Read depth for each allele on the reverse

strand
DP 1 Integer Read depth
EC A Integer Expected alternate allele counts
FT 1 String Filter indicating if this genotype was

“called”
GL G Float Genotype likelihoods
GP G Float Genotype posterior probabilities
GQ 1 Integer Conditional genotype quality
GT 1 String Genotype
HQ 2 Integer Haplotype quality
MQ 1 Integer RMS mapping quality
PL G Integer Phred-scaled genotype likelihoods rounded

to the closest integer
PQ 1 Integer Phasing quality
PS 1 Integer Phase set

Table 2.5: Reserved genotype keys (from https://samtools.github.io/hts-
specs/VCFv4.3.pdf).

The following keys are most important and frequently used:

GT - The genotype, encoded as allele values separated by / for unphased genotypes
and | for phased genotypes. The values are 0 for reference allele, 1 for first allele
listed in ALT, 2 for the second, and so on (for instance 0/1 for heterozygous
variant in a diploid sample). When a call cannot be made the missing value
is used (for instance ./.).

GL - Genotype likelihoods. A comma separated list of log10 likelihoods for all
possible genotypes given the set of REF and ALT alleles at the locus.

GP - Genotype posterior probabilities, in the same order as GL field.

GQ - Genotype Quality in PHRED scale. Probability the genotype call is wrong
given that the site is variant.

AD - Allele Depth. Per-sample read depth for each allele.
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DP - Read Depth.
∑

i ADi.

See Listing 33 for an example of a VCF file.

Remarks

The SAM/BAM and VCF file formats have become the de-facto standards for rep-
resenting sequencing read data and genetic variation respectively. Because of this
status most computational tools that exist in this space either consume or produce
one of these data-types and the data analysis process is influenced by the file access
patterns inherent in these standards. This introduces a number of challenges and
limitations that have held back scalability of the existing tools to larger data sets.
Specifically:

• The focus on files for information storage and retrieval implies that sophisti-
cated file management schemes must be deployed for successful management
of large cohorts of samples. This includes concerns of data security, and data
migration that must be implemented at the file-system level.

• Storage of sequence data at sample level of granularity in SAM/BAM files
creates very large files that are typically greater than 150 GB in size per
sample and are thus quite cumbersome to work with.

• Lack of usage of databases implies only basic indexing and querying schemes
are possible for sequencing and variant data. Large amounts of data thus need
to be loaded into memory in order to perform basic queries.

• Indexing only by genomic coordinate implies a coordinate-based data traversal
mechanisms that process a genome linearly from beginning to the end.

• The multi-sample VCF format makes it easy to interpret all carriers for a
single variant (by reading a single row), but is not well suited for interrogating
all variants for a single individual (scanning all rows for a single column) in a
text file.

• Storage of sequencing data in multiple per-sample files does not take advantage
of extreme sequence similarity between samples at a given genomic locus, thus
reducing the opportunities for data compression and driving up project costs
for large scale sequencing efforts where data set size exceeds 1PB.

The stream-based approach adopted by the Rheos framework described in this
work attempts to address many of the above issues.
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2.2.2 Alignment

Genome alignment (also called mapping) is the process that, given a DNA sequenc-
ing read, finds the location in a reference genome that the read best matches to.
This is an important process in a next generation sequencing pipeline because it
provides a way of ordering the otherwise unordered collection of raw reads (by ref-
erence coordinate) that can be used to find locations where the sample genome is
different from the reference (see Figure 2.6).

Figure 2.6: Collection of reads aligned to a reference genome and evaluated at a
locus that contains a heterozygous SNP.

This process is equivalent to substring search where the string being searched is
3 × 109 characters long and there are 109 patterns of length 150 to be found. This
process is complicated by the fact that reads from a sample have both sequencing
errors and genuine genetic variation that make them differ from the reference, and
the fact that certain regions of the genome can be highly repetitive, with the same
sequence pattern occurring hundreds of times, making unique mapping challenging.

There are several key applications of alignment that involve sequences of varying
length, require different properties, and may not all be best accomplished by the
same algorithms.
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These are:

• Alignment of individual single-end and paired-end reads to a human reference
sequence. Where most of the read is expected to match successfully. This
is the most abundant use case and the one towards which most alignment
algorithms and software implementations are geared.

• Alignment of split-reads to a reference sequence. Split-reads are those where
a part of the read maps to one position in the reference sequence and another
part of the read maps to a different part of the reference indicating that the
read spans a genomic rearrangement. Reads that admit a split alignment may
come out unmapped from a normal alignment stage. This type of alignment is
important for both germline structural variant calling and somatic structural
variant calling where genomic aberrations are more common.

• Alignment of reads to a group of reference genomes for common pathogens
(viruses, bacteria), as well as other common sample contaminating species.

• Alignment of assembled contigs to the reference sequence after local assembly.
Some variant calling methods will perform local assembly of reads into a group
of potential haplotypes and will perform alignment of these haplotypes to the
reference sequence to identify where the actual variants are. The haplotypes
may be anywhere from hundreds to millions of bases long.

• Alignment of reads to a group of alternative haplotypes. Variant callers may
generate a list of candidate alternative haplotypes and reads need to be aligned
to all of these in order to determine which haplotype is best supported by the
reads data.

Initially, algorithms for mapping sequencing reads (such as Maq[116], and
SOAP[117]) have used a hash table approach[118] (building up tables of sub-
sequences) for finding promising approximate locations for a read within the
reference, and then using the Smith-Waterman[119] dynamic programming al-
gorithm for selecting the best matching location. These approaches, however,
have proven to be quite slow with typical runtimes exceeding 72 hours on a
single high coverage whole genome sample. For the past decade the best avail-
able genome alignment approaches in terms of balanced accuracy and speed of
processing have been based on the Burrows-Wheeler Transform (BWT)[120] and
the FM index[121]. Two of the most popular and widely used are Bowtie[122]
and BWA[32]. With recent improvements in computer power, hash table based
approaches, such as minimap2[123] and SNAP[124] have made a comeback and
are again becoming competitive in the alignment space. A commercial tool called
Novoalign (http://www.novocraft.com/products/novoalign/) has consistently been
a top performer in terms of speed and accuracy, but the method is not publicly
available.
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Figure 2.7: Comparison of several aligners on simulated a)long reads >1000 bp, and
b) short reads 150bp (taken from [123]).

String search is a well studied field, and many genome aligners use the equivalence
relationship between suffix trees, suffix arrays, and the BWT (see Figure 2.8) to
construct searchable and compressed data structures suitable for genome alignment
applications.

Figure 2.8: Equivalence between a Suffix Tree, Suffix Array, and the BWT matrix
of the string BANANA (taken from [125]).

Suffix Tree A suffix trie T is a tree data structure that given a string s =
c1, c2, ..., cn over an alphabet Σ, such that ci ∈ Σ encodes all of the suffixes of s
from the root to the leaves. s is terminated with a sentinel character $. For any
character c ∈ Σ and node ni ∈ T , ni has at most one child labeled c. Every leaf is
the sentinel character $. See Figure 2.9 for example.
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Figure 2.9: Suffix trie of string abaaba$ (taken from [125]).

Because every substring of s is a prefix of some suffix of s, given a search query q
one can check whether q is a substring of s in O(|q|) time by progressively matching
each character of q from the root of T until either all of q is matched (hence q is a
substring of T ) or at some point a character of q does not have a matching node in
T , indicating that q is not a substring of T . The size (number of nodes) of the trie
can grow with O(|s|2)
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Figure 2.10: Create suffix tree by coalescing non-branching paths into single nodes
(taken from [125]).

The size of the tree can be reduced by coalescing all non-branching subpaths of
T into single nodes (see Figure 2.10).

Figure 2.11: Reduce size by replacing substrings by offsets into the original string
(taken from [125]).

The size can be further reduced to O(|s|) by replacing string nodes with pairs of
offsets into the original string s (see Figure 2.11).
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Figure 2.12: Aid search by storing index of substring in leaves (taken from [125]).

Searching can be aided by storing offsets of suffixes in the leaf node of the path
spelling out that suffix. See Figure 2.12. The online construction algorithm by
Ukkonen[126] allows creation of suffix trees in O(|s|) time and space. Although
search against the suffix tree is very fast - O(|q|), the tree size is still an issue when
considering applications to human genome sequencing. A suffix tree for a human
would take occupy more than 45 GB of memory[125]. Furthermore, alignment of real
reads is made more complex because reads have errors and encode genetic variation,
thus inexact searching mechanisms are required.

Suffix Array Suffix arrays were developed by Manber and Myers[127] as a data
structure that is equivalent to a suffix tree but occupies less space. Given a string
s = c1, c2, ...., cn, and letting s[i, j] be a substring of s between indexes i and j, the
suffix array SA of s contains integers providing the starting positions of suffixes of
s sorted in lexicographical order, s.t. ∀i ∈ [1, n] : s[SA[i − 1], n] < s[SA[i], n]. See
Figure 2.8 for an example suffix array representing the string banana. Because the
array is sorted, a simple binary search is possible that finds or rules out a match
of query q in s in O(|q| log |s|), although a more sophisticated search algorithm in
O(|q| + log |s|) is possible[127]. A suffix array can be constructed by a depth-first
traversal of a suffix tree in O(|s|) time, with the best current algorithm due to
Kärkkäinen[128]. Using the array can bring the space requirements for a human-
sized genome search index down to about 16GB[125].

The BWT (see Figure 2.13) is constructed from an original string s by appending
a special termination character $ that is lexicographically smaller than all other
characters and does not occur in s. Then a matrix of all cyclic rotations of s$ is
constructed and sorted in ascending lexicographical order (Figure 2.13 a). The last
column of this matrix is the BWT, which can be used to reconstruct the original
string and perform substring searches on it. This mechanism relies on the fact that
all common prefixes of substrings occupy a contiguous block of rows in the BWT
matrix (because of lexicographical ordering, Figure 2.13 c)), and the LF (last-first)
property of the BWT. Namely, the character in the last column of the BWT directly
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precedes the character in the first column of the BWT in the original string. And,
the index of the occurrence of a character in the last column of the BWT is the same
as the index of the occurrence of the same character in the first column of the BWT
(see Figure 2.13 b)) i.e. the first occurrence of g in the last column corresponds to
the first occurence of g in the first column. The third occurrence of a in the last
column corresponds to the third occurrence of a in the first column, etc.

Figure 2.13: a) Creating the BWT of a string. b) All substrings with the same
prefix occupy adjacent rows. c) The original string can be recovered from the BWT
by using the LF rule (taken from [122]).

Alternatively the BWT can be constructed from the suffix array via:

BWT [i] =

{
s[SA[i]− 1], if SA[i] > 1

$, otherwise
(2.1)

, per [129]

The entire original string can be recovered from the BWT in the following manner.
The last column is the BWT. The first column is the lexicographically sorted BWT.
Find the row that starts with $. The character in the last column in that row is the
last character of original string s (g in the example above). Find the first occurrence
of that character in the first column. Look up the character in the last column of
that row (c in the example above). This is the second-last character of s. Note the
index of its occurrence in the last column (it is a second c in the example). Find
the row with the same character and the same index in the first column (second c
in the first column). The last character in that row is the second-last character of s.
Repeat this process until the last character in a row is $. This recovers the original
string.
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Bowtie Bowtie is a popular aligner developed by Ben Langmead in 2009, with
a focus on fast alignment of short reads[122], later followed up and enhanced with
Bowtie 2 for longer reads[38], and adapted massively parallel deployment on the
AWS cloud with Crossbow[130]. Since the <50bp long short-reads that the original
Bowtie was created for are no longer seen we focus our exposition on Bowtie 2.

Figure 2.14: Steps used by Bowtie 2 alignment (taken from [38]).

Figure 2.14 shows the sequence of steps used by the Bowtie 2 alignment process.
One of the big challenges for aligners is the ability to deal with gapped alignment
i.e. sequences in the reads that are inserted or deleted with respect to the reference.
These may be the result of sequencing errors or genuine genetic variation present
in the sample. Since the read sequence cannot be matched to the reference exactly,
gapped alignment drastically increases the search space of possible matches that need
to be considered, corresponding to different possible gap sizes. In order to mitigate
the degrading effect of gapped alignment on performance, Bowtie adopts a seed-
and-extend mechanism where it performs ungapped exact alignments of substrings
of the read that become seeds, followed by a gap-aware dynamic programming-based
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seed extension to obtain the final alignment. The index is built using a variant of
[128] and occupies 2.2 GB of disk space for the human reference.

For alignment every read and its reverse complement are divided into overlapping
subsequences that become the potential seeds. Each seed is aligned to the reference
using the FM index in an ungapped fashion, but allowing a configurable number of
mismatches. For a given read, if the FM index search fails to match the seed to the
reference at some location i it backtracks and attempts a base substitution at that
position that can be successfully matched and in a way that maximises the overall
alignment quality. It performs up to k (configurable, default 1) such substitutions
per read. Since the substitutions are made in a greedy manner the alignment result
may not be globally optimal. To avoid potentially excessive backtracking Bowtie
builds both a forward and a mirror index of the reference genome and attempts
to match both ends of the read one after the other, with the forward and mirror
index respectively attempting to obtain a high scoring alignment of both ends. The
number of backtracking steps is further cut off at a hard threshold for performance
reasons.

The FM index search produces sets of ranges between which each seed matches.
Seeds are assigned priorities based on the number of potential matches, where seeds
that have fewer potential matches (i.e. map more uniquely) are given higher priority.
Seeds are then selected in priority order for exact resolution. Using the BWT LF
property and the FM occurrence array the selected range is resolved to an actual
matching location for a given seed. The seeds are then extended in both directions
using an adaptation of SIMD-accelerated Smith Waterman alignment via dynamic
programming. The striped Smith-Waterman algorithm[131] that Bowtie 2’s align-
ment is based on allows end-to-end alignment in the neighbourhood of the seed with
arbitrary numbers of mismatches and gaps and is base quality aware. When reads
align to repetitive regions there may be many thousands of match locations for the
seeds. To more accurately position these reads Bowtie employs a reseeding strategy
where the seeds are selected from a read multiple times using a sliding window in
an attempt to find a more accurate seed location.

Bowtie uses information about paired-end reads to attempt to perform a more
accurate alignment of the pairs. When the user supplies an expected DNA fragment
length and read orientation and one read in a pair is fully aligned, Bowtie calculates
a window of reference coordinates where the other read in the pair would be ex-
pected to reside and attempts to align the other read in that window using dynamic
programming. If it is not able to produce a high quality alignment in this fashion
it will attempt to align the other read using the full normal procedure.

A performance comparison by the tool’s author Ben Langmead from [38] is shown
in Figure 2.15. Bowtie 2 can be seen to be the same or slightly better than BWA
and significantly better than Bowtie and SOAP2 on the simulated dataset.

BWA BWA is a tool by Heng Li that implements a series of algorithms for genome
alignment based on the BWT and the FM index and described in a series of papers -
[32, 132, 58]. Although the original BWA algorithm was focused towards reads that
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Figure 2.15: Performance comparison of Bowtie 2 to other callers on simulated data
a) 100 and 150 bp unpaired, b) 100x100 and 150x150 paired, and c) 250 and 400
long reads (taken from [38]).

are fewer than 50 basepairs long and is no longer relevant, the subsequent BWA-SW,
and BWA-MEM algorithms remain very popular. Since BWA-MEM is seen as the
ultimate successor to the previous BWA algorithms we focus our discussion on this
implementation of alignment.
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The following common notation is adopted (see Table 2.6)

Table 2.6: BWA Common notation[58, 133]

Symbol Description

Σ = {$, A, C,G, T,N} alphabet of DNA strings with lexico-
graphical order $ < A < C < G < T <
N

$ Is a sentinel character
N Is an ambiguous DNA base
T String: T = a0a1 . . . an−1 with an−1 = $
|T | Length of T including sentinels: |T | =

n
T [i] The i-th symbol in string T : T [i] = ai
T [i, j] Substring: T [i, j] = ai . . . aj
Ti Suffix: Ti = T [i, n− 1]
S Suffix array; S(i) is the position of the

i-th smallest suffix
B BWT: B[i] = T [S(i)− 1] if S(i) > 0 or

B[i] = $ otherwise
C(a) Accumul. count array: C(a) = |{0 ≤

i ≤ n− 1 : T [i] < a}|
O(a, i) Occurrence array: O(a, i) = |{0 ≤ j ≤

i : B[j] = a}|
P ◦W String concatenation of string P andW
Pa String concatenation of string P and

symbol a: Pa = P ◦ a
P Watson-Crick reverse complement of

DNA string P

The suffix array interval ll(P ), lu(P ) of a string P is defined as:

ll(P ) = min {k : P is the prefix of TS(k)}
lu(P ) = max {k : P is the prefix of TS(k)}

ls(P ) = lu(P )− ll(P ) + 1 - the interval size

Based on the definition of the FM index:

I l(aP ) = C(a) +O(a, I l(P )− 1) (2.2)
Iu(aP ) = C(a) +O(a, Iu(P ))− 1 (2.3)

and I l(aP ) ≤ Iu(aP ) if and only if aP is a substring of T .
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A string that terminates with a $ is called a text. A text may have multiple
sentinels and every sentinel has a different lexicographical rank i.e. given a text T if
there exist T [i] = $ and T [j] = $, then T [i] < T [j] iff i < j. Given an ordered set of
texts their ordered string concatenation is called a collection. Given a set of DNA
texts R0, . . . , Rn, let T = R0R0R1R1, . . . , Rn−1Rn−1 be a bidirectional collection
of R. The FM index of T is called the FMD index, and the bi-interval of P is
[ll(P ), ll(P ), ls(P )]. Using the fact that we can compute the suffix array interval of
aP via Equation 2.2, and that Is(cP ) = Is(cP ) the full bi-interval of aP can be
derived. This can be used, as in Algorithms 2 and 1 to bi-directionally extend a
substring match P and its complement P in either direction.

Algorithm 1: Backward extension (taken from [133])
Input: Bi-interval [k, l, s] of string W and a symbol a
Output: Bi-interval of string aW

Function BackwardExt([k, l, s], a) begin
for b← 0 to 5 do

kb ← C(b) +O(b, k − 1) sb ← O(b, k + s− 1)−O(b, k − 1)

l0 ← l
l4 ← l0 + s0
for b← 3 to 1 do

lb ← lb+1 + sb+1

l5 ← l1 + s1
return [ka, la, sa]

Algorithm 2: Forward extension (taken from [133])
Input: Bi-interval [k, l, s] of string W and a symbol a
Output: Bi-interval of string Wa

Function ForwardExt([k, l, s], a) begin
[l′, k′, s′]←BackwardExt([l, k, s], a)
return [k′, l′, s′]

A MEM (maximal exact match is an exact pattern match to the index that cannot
be extended in either direction, and a SMEM (supermaximal exact match) is a MEM
that is not contained in other MEMs of the pattern. Building on match extension,
Algorithm 3[133] provides a mechanism for finding SMEMs of a read in the reference
sequence. BWA-MEM generates SMEMs that cover each position in a read, it then
performs greedy SMEM filtering and chaining, linking together SMEMs that are
located close to each other and filtering out chains that are contained in other longer
chains. The list of seeds generated through this process is ranked by the length of
its chain and the length of the seed itself.

The seeds are extended using a banded affine gap-penalty dynamic programming
alignment implementation. A number of heuristics is deployed to limit the search
space. For paired-end mapping, BWA-MEM performs Smith-Waterman alignment
in a window of [µ − 4σ, µ + 4σ] from a mapped read, when its mate in unmapped.
When selecting how to match paired alignments BWA-MEM uses a score of Si,j =
Si + Sj − min {−a log4 P (di,j, U}, where Si and Sj are individual read alignment
scores, di,j is the insert distance between two reads, P (di,j) is the probability of
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Algorithm 3: Finding super-maximal exact matches (SMEMs)[133]
Input: String P and start position i0; P [−1] = 0
Output: Set of bi-intervals of SMEMs overlapping i0

Function SuperMEM1(P, x) begin
Initialise Curr, Prev and Match as empty arrays
[k, l, s]← [C(P [i0]), C(P [i0]), C(P [i0] + 1)− C(P [i0])]
for i← i0 + 1 to |P | do

if i = |P | then
Append [k, l, s] to Curr

else
[k′, l′, s′]←ForwardExt([k, l, s], P [i])
if s′ 6= s then

Append [k, l, s] to Curr
if s′ = 0 then

break
[k, l, s]← [k′, l′, s′]

Swap array Curr and Prev
i′ ← |P |
for i← i0 − 1 to −1 do

Reset Curr to empty
s′′ ← −1
for [k, l, s] in Prev do

[k′, l′, s′]←BackwardExt([k, l, s], P [i])
if s′ = 0 or i = −1 then

if Curr is empty and i+ 1 < i′ + 1 then
i′ ← i
Append [k, l, s] to Match

if s′ 6= 0 and s′ 6= s′′ then
s′′ ← s′

Append [k, l, s] to Curr

if Curr is empty then
break

Swap Curr and Prev
return Match

observing di,j under a normal model of insert sizes, and U is a sensitivity threshold.
Figure 2.16 shows a comparison performed by BWA-MEM author between BWA-
MEM and other popular aligners. BWA-MEM is seen to outperform all aligners
except the commercial tool Novoalign on accuracy and be in the top two tools for
speed.

Minimap2 Bowtie 2 and BWA-MEM that have been presented so far represent
state-of-the-art algorithms for the alignment of short (<500 bp) reads to a reference
genome using an FM-index. There are, however, several legitimate cases for the
alignment of much longer reads to one or several references, and for finding over-
laps between groups of long reads. New DNA sequencing technologies, including
Single Molecule Real-Time (SMRT)[134] from Pacific Biosciences Inc., and Oxford
Nanopore Technologies’ (ONT)[135], have been producing reads that range from
1000 bp to > 106 bp albeit with a much higher error rate than those from Illumina
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Figure 2.16: Performance of multiple aligners on simulated single-end and paired-
end 101 bp reads (taken from [58]).

short reads. These long reads can be used to resolve structural variation encoun-
tered in repeat-enriched areas of the genome that are not possible to uniquely resolve
with shorter Illumina-based reads[136]. Additionally, tools such as the GATK Hap-
lotypeCaller (see Section 2.2.4) create locally assembled haplotypes (that can be
thousands of basepairs long) and align these to the reference sequence to detect
variants. Yet, tools that have been developed primarily for short read alignment
(like BWA-MEM) either crash or perform exceedingly slow when aligning long read
sequences. Minimap 2[123] has been created to solve the efficient alignment problem
for long reads using hashmap-based approach. All of the formulas in this section
have been reproduced from the 2018 paper by Heng Li[123].

Minimap2 uses a hashmap approach based on building a database of representa-
tive k-mers, called minimizers, for a reference sequence, and searching against this
database. Minmizers have been introduced by Roberts et al.[137] as a way of reduc-
ing the storage required for comparing biological sequences. The intuitive notion
is that if one is comparing two strings with a significant overlap, extracting and
comparing a set of representative k-mers from both strings will produce a match
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between the k-mers that can then be used as the basis for a seed-and-extend algo-
rithm for more accurate matching. In this case, rather than storing all k-mers, one
may store only the minimizers and use them when searching for seeds.

Given a string Ti = a1a2...an where ai ∈ Σ = {A,C,G, T,N}, a k-mer triple is a
tuple (s, i, p) that stores the k-mer string s, index i that identifies Ti and p the start
index of s in Ti. Assume there exists an order on elements of Σ. If we consider w
consecutive k-mers, covering w+k−1 letters of Ti, then the smallest k-mer is called
a (w, k) minimizer of Ti (See Figure 2.17). If two strings have a substring of length
w + k − 1 in common, then they have a (w, k) minimizer in common.

Figure 2.17: Examples of minimizers - a) (5,3)-minimizer, b) (6,7)-minimizer (taken
from [137].

Minimap2 builds a list of of minimizers of the reference sequence and stores them
in a hash table where the key is the hash of the minimizer string and the value is
the list of offsets into the reference where that minimizer is found. For each query
sequence that needs to be aligned, minimap2 builds minimizers of the query and
searches the reference hash table for them. The matches that are found become
alignment anchors and sets of anchors that are in the same order and orientation in
the query and the reference are joined into chains. The gaps between anchors in a
chain are then filled using dynamic programming with a 2-piece affine gap penalty
to produce a final base-level alignment.

On simulated long reads (Figure 2.7 a)), minimap2 is more accurate than other
aligners and is up to 30 times faster. On real SMRT reads minimap2 was 70 times
faster than short-read aligners. On short reads (Figure 2.7 b)), minimap2 was less
accurate than BWA-MEM but was up to 3 times faster. Using data from a synthetic
diploid cell-line[138] minimap2 shows a higher false negative rate compared to BWA-
MEM (FNR 2.6% vs. 2.3%), but a lower false positives per million bases (FPPM,
7.0 vs. 8.8) for SNPs, and similar performance for indels.

2.2.3 Raw Data QC

The data that is generated as part of NGS experiments can have widely varying
quality, and may suffer from systematic biases introduced by the experimental pro-
tocol employed, the technology used, as well as individual events such as sample
contamination[69, 85, 139, 140]. The effect of low quality data such as sequencing
errors on downstream analysis can be quite significant, not only because it may
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introduce false positive variants in the final output, but also because it can pro-
duce a large number of potentially variant sites that need to be evaluated and will
consume a large amount additional computational resources to eventually rule out.
A wide variety of computational methods exist for examining the data after it has
been generated in order to identify and fix or filter out low quality data. The most
widely used tools include Picard[141], FastQC[99], QC Toolkit[57], QC-Chain[142],
and FASTX-Toolkit[143]. These tools evaluate data at two granularities - read-level,
and sample-level. Some of these can act on sequencing data pre-alignment, while
others either work post-alignment or actively make use of a built-in aligner. The
QC process is generally organised into a QC pipeline (see Figure 2.18). Further-
more, some tools, like FastQC and Picard tend to only collect various QC metrics
and generate reports, leaving the filtering based on these metrics up to the user,
while other tools, such as QC Toolkit and QC-Chain perform the actual filtering
themselves.

Figure 2.18: The QC-Chain pipeline involves trimming low quality bases, removal of
adapter sequences, removal of duplicate reads, and contamination detection (taken
from [142]).

At individual read level the following QC measures are of interest:

Base Quality Distribution - Reads in FASTQ format have a base-quality score
associated with each nucleotide, which serve as estimates of the probability
that the base has been called correctly by the base-caller software. Bases
towards the end of Illumina reads tend to suffer from deteriorating quality([85]
and may not be usable for downstream analysis.
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Adapter Sequence Presence - The NGS library preparation protocol involves
ligating an adapter sequence to the end of DNA fragments in order to bind
the fragment to the sequencing flowcell. Sometimes the sequencing process
does not stop at the end of the actual DNA molecule and also sequences the
adapter. It is necessary to detect and trim out these adapter sequences as
they do not belong to the genome[144].

Duplicate Detection - in NGS libraries that use PCR amplification a particular
DNA fragment may be sequenced multiple times resulting in increased ap-
parent, and depleted actual coverage of that region of the genome, possibly
influencing downstream variant calling efforts. Both Picard[141] and Sam-
tools[145] have utilities for detecting PCR duplicates, although the additional
benefit of this processing step may be marginal[146].

Sample Contamination/Sample Swap - Sample contamination during library
preparation may result in the presence of foreign DNA in the generated se-
quence. The foreign sequence may originate from the same or from foreign
species. Furthermore, entire samples may be swapped or mislabelled (for in-
stance, cancer samples with tumour from one patient, but normal sample
from another patient). Contamination may be detected by aligning reads to
a panel of potentially contaminating species’ reference genomes[142], or when
a surprising number of variants is found in a given genome.

At the sample level the following QC measures are important:

Insert Distribution - summary statistics (mean, median, standard deviation) re-
lated to the distribution of the distance between paired-end reads.

Per-base Quality Distribution - distribution of base qualities for each position
in a read, aggregated over all reads.

Figure 2.20: Taken from https://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc.
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Figure 2.19: Frequency of wrong base calls in Illumina reads based on position in
the read from 5’ to 3’ (taken from [85]).

Per-read Quality Distribution - distribution of average read qualities.

Per-base Sequence Content Distribution - distribution of nucleotide frequen-
cies for each position in a read, aggregated over all reads.

Figure 2.21: Taken from https://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc.
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Per-read GC Content Distribution - distribution of average GC content per
read.

Figure 2.22: Taken from https://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc.

Read-length Distribution - summary statistics of read lengths.

Per-base N Content - distribution of uncalled bases for each position in a read,
aggregated over all reads.

Sequence Duplication Distribution - distribution of counts for duplicated se-
quences.

Overrepresented Sequence Distribution - frequency of sequence fragments
that occur more frequently that expected.

Per-base Adapter Content Distribution - frequency of adapter sequence pres-
ence for each position in a read, aggregated over all reads.

Figure 2.23: Taken from https://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc.
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Many other QC metrics can be of interest and are listed on the individual
tools’ pages (for instance https://broadinstitute.github.io/picard/picard-metric-
definitions.html). Once collected, these metrics can be used for visualisation,
manual curation, threshold-based filtering, or machine learning approaches to QC.

2.2.4 Germline SNP Calling

Single Nucleotide Polymorphisms or SNPs are locations in an individual’s genome
where that individual differs from the reference sequence at a single position. The
reference sequence is haploid i.e. it provides a single base (for instance T) at every
genomic location, whereas the human genome is diploid (there are two copies of
each chromosome, and thus two bases at each location) for chromosomes 1-22, and
chromosome X for females, while being haploid for chromosomes X and Y for males.
Thus, at each genomic location, the human genome may be:

Homozygous Reference - When both alleles carried by the individual at that
location match the reference.

Heterozygous - When one allele matches the reference and one is different from
the reference.

Homozygous Alternate - When both alleles are the same and different from the
reference.

Multiallelic - When both alleles are different from the reference and are different
from each other[147].

SNPs are the most common type of genomic variant, with every individual car-
rying over 3 million SNPs on average[148]. Furthermore, the presence of certain
SNPs is strongly associated with disease[149], where some SNPs are known to be
causative[150], while others, are merely associated with a disease phenotype[151]. A
large number of scientific studies[152] and clinical practice[153] is thus enabled by
efficient and comprehensive characterisation of the gamut of human SNPs to assess
their contribution to disease risk, see Figure 2.24.

There are a number of methods that have been used for assessing SNPs with
the aid of microarray technology[155], but here we focus on methods that make
use of Next Generation Sequencing (NGS). Since the primary data type generated
by NGS is a sequencing read, most presently used methods for SNP detection rely
on investigating the collection of sequencing reads that overlap each genomic locus
and comparing the observed data to the reference sequence. It is important to
distinguish two typically separate activities that take place as part of SNP calling -
variant calling, and genotyping. Variant calling attempts to locate positions in the
sample genome where that sample is different from the reference, whereas genotyping
attempts to assign an actual genotype (e.g. homozygous-alternate), along with a
measure of confidence, to each putative variant. We present several of the key
computational methods currently used in SNP calling with additional detail. These
are:
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Figure 2.24: Distribution of mutations by population frequency against phenotypic
effect size (taken from [154]).

• samtools

• freebayes

• GATK

• platypus

These tools have been selected because they have been developed independently,
at different institutions, and have been repeatedly demonstrated to produce consis-
tent and high-quality results. See Figure 2.25 for a recent comparison.

samtools

Samtools[20] is a software package for genomic data processing developed by Heng
Li et al. in the context of the 1000 Genomes Project[88] and implemented as a C
program with a CLI interface. This tool has enjoyed continued and widespread use
in the bioinformatics community for the purposes of small variant calling (including
SNPs). All of the mathematical results in this section are reproduced from the 2011
paper by Li[145] that describes the method, as well as a set of mathematical notes
made available separately by Li[156] in 2010.
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Figure 2.25: Comparison of samtools,freebayes, GATK, and platypus on three
benchmark data sets - Syndip, GIAB, and PlatGen. Here FPPM - number
of false positives per megabase of sequence, and FNR - false negative rate =
100xFN/(TP+FN) (taken from [138]).

Although the samtools framework could be extended to support calling multi-
allelic sites, the framework, as-published, has been developed for calling only bi-
allelic variants. Table 2.7 contains commonly used definitions.

Table 2.7: Samtools common definitions

Symbol Description

n Number of samples
mi Ploidy of the i-th sample (1 ≤ i ≤ n)
M Total number of chromosomes in sam-

ples: M =
∑

i mi

di Sequencing data (bases and qualities)
for the i-th sample

gi Genotype (the number of reference al-
leles) of the i-th sample (0 ≤ gi ≤ mi)1

φk Probability of observing k reference al-
leles (

∑M
k=0 φk = 1)

P (A) Probability of an event A
Li(θ) Likelihood function for the i-th sample:

Li(θ) = P (di|θ)

It is additionally assumed that there are n individuals being sequenced with the
i-th individual having ploidy mi (typically 2 in practice). At a particular genomic
locus, the sequence read data for the i-th individual is di and the genotype is gi, an
integer in [0,mi], counting the number of reference alleles in the individual at that
locus. Furthermore, it is assumed for simplicity that data at individual genomic
loci are independent (which is not necessarily true), as are sequencing and mapping
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errors between loci and individuals.

Because of the above independence assumptions the joint likelihood function of
the data observed for all individuals factors as a product of individual likelihood
functions:

L(θ) =
n∏

i=1

Li(θ) (2.4)

Suppose that a single sample i represents an individual of ploidy mi and a given
locus is covered by k reads. The sequencing data di is composed of an array of bases
where each element has value 1 representing the reference allele and is 0 otherwise.

di = (b1, . . . , bk) = (1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
k−l

)

The error probability of the j-th base is εj, which is taken to be the larger between
sequencing and mapping errors for that read. Under the independence assumptions
above:

Li(0) = P (di|0) =
l∏

j=1

εj

k∏
j=l+1

(1− εj) =

(
1−

k∑
j=l+1

εj + o(ε2)

)
l∏

j=1

εj (2.5)

Li(mi) = P (di|mi) =

(
1−

l∑
j=1

εj + o(ε2)

)
k∏

j=l+1

εj (2.6)

For 0 < gi < mi:

Li(gi) = P (di|gi) =
1∑

a1=0

· · ·
1∑

ak=0

Pr{di|B1 = a1, . . . , Bk = ak}Pr{B1 = a1, . . . , Bk = ak|g}

=
∑
~a

( g

m

)∑
j aj
(
1− g

m

)k−∑
j aj ·

∏
j

pj(aj)

=
(
1− g

m

)k∏
j

1∑
a=0

pj(a)

(
g

m− g

)a

=
(
1− g

m

)k l∏
j=1

(
εj +

g

m− g
(1− εj)

) k∏
j=l+1

(
1− εj +

εjg

m− g

)

=
(
1− g

m

)k{( g

m− g

)l

+

(
1− g

m− g

)( l∑
j=1

εj −
k∑

j=l+1

εj

)
+ o(ε2)

}

where a =
∑

j aj and

pj(a) =

{
εj a = 1
1− εj a = 0
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In particular, for a diploid sample (m = 2), the likelihoods for g = 0, 1, 2 are

L(0) =
l∏

j=1

εj

k∏
j=l+1

(1− εj) (2.7)

L(1) =
1

2k
(2.8)

L(2) =
l∏

j=1

(1− εj)
k∏

j=l+1

εj (2.9)

For instance, taking gi = 2 (i.e. the true genotype is homozygous-reference) as an
example, and under above independence assumptions, the likelihood of observing
the data di is the likelihood of sampling l reads without error (the reads match the
reference) and k − l reads with error (the reads do not match the reference).

Let Φ = {φk} for k ∈ [0,mi] be a prior distribution of genotype probabilities (a
model from population genetics, such as Wright-Fisher, can be used, or an empirical
distribution from another study), the actual genotype for individual i at the given
locus is estimated via Bayes’ Rule as:

ĝi = argmax
gi

Pr{Gi = gi|di,Φ} = argmax
gi

P (di|gi)φk∑
hi
P (di|hi)φh

= argmax
gi

L(gi)φk∑
hi
L(hi)φh

(2.10)

The variant quality is defined as:

Qvar = −10 log10 Pr{G = mi|di,Φ} (2.11)

i.e. the Phred-scaled probability that the locus is homozygous reference given the
observed data. The locus is called variant if the variant quality exceeds a certain
pre-defined threshold.

Equations 2.10 and 2.11 thus represent the key computations corresponding to
the activities of SNP genotyping and variant calling that are performed by samtools
for each genomic locus in a sample.

freebayes

freebayes[61] is a C software package implemented by E. Garrison for discovery
and genotyping of SNPs, indels, and other small variants that builds on a previous
method by G. Marth[157]. Where small means that the variant length is smaller
than the size of a sequencing read. Unlike samtools, which looks at all genomic loci
independently, freebayes uses local sequence context to guide detection and geno-
typing of variants, additionally freebayes builds variant haplotypes[158] i.e. groups
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of variants that are inherited together on the same DNA molecule. All of the figures
and mathematical formulas in this section are reproduced from the 2012 preprint
by Garrison et al[61].

Table 2.8: Freebayes common definitions

Symbol Description

n Number of samples
mi Copy number of the i-th sample (1 ≤

i ≤ n)
M Total number of copies of each locus in

all samples: M =
∑

i mi

{bj : j ∈ [1, K]} Set of K distinct alleles present among
M copies

{Cj : j ∈ [1, K]} Corresponding set of allele counts for
each bK

{fj : j ∈ [1, K]} Corresponding set of allele frequencies
for each bK

Gi Unphased genotype of individual i
{bij : i ∈ [1, n], j ∈ [1, ki]} Set of ki distinct alleles of Gi

{cij : i ∈ [1, n], j ∈ [1, ki]} Set of ki allele counts for each bij
{fij : i ∈ [1, n], j ∈ [1, ki], fi = ci/ki} Set of allele frequencies of Gi

Bi : |Bi| = mi Multiset of alleles equivalent to Gi

Ri = {rj : j ∈ [1, si]} Set of si sequencing observations for
each sample i s.t. there are

∑n
i=1 |Ri|

reads at a given locus
{qj : j ∈ [1, si]} Mapping quality, i.e. probability that

read rj is mis-mapped against the ref-
erence

For a set of n individuals the conditional probability of a combination of genotypes
given the observed data is assessed simultaneously as:

P (G1, . . . , Gn|R1, . . . , Rn) =
P (G1, . . . , Gn)P (R1, . . . , Rn|G1, . . . , Gn)

P (R1, . . . , Rn)
(2.12)

P (G1, . . . , Gn|R1, . . . , Rn) =
P (G1, . . . , Gn)

∏n
i=1 P (Ri|Gi)∑

∀G1,...,Gn
P (G1, . . . , Gn)

∏n
i=1 P (Ri|Gi)

(2.13)

For a single sample at a particular locus there are Ri reads, and ki observed alleles
- B′

i = b′1, . . . , b
′
ki
, which correspond to b1, . . . , bi underlying alleles represented at the

given locus. For each observed allele b′i there is a corresponding count of observations
of s.t. :

∑ki
j=1 oj = si and each b′i corresponds to a true allele bi. The probability of
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a single observation b′i given a genotype in a single sample is:

P (b′i|G) =
∑

∀(bi∈G)

fiP (b′i|bi) (2.14)

where fi is the allele frequency of bi in G. The authors introduce the following
approximation:

P (b′|b) =
{

1 if b′ = b
P (error) if b′ 6= b

(2.15)

where P (error) is derived from the base quality score from the sequencing read.
Using the above approximation the probability of observing the data Ri given the
genotype is estimated as:

P (Ri|G) ≈
(

si
o1, . . . , oki

) ki∏
j=1

f
oj
ij

si∏
l=1

P (b′l|bl) (2.16)

In order to evaluate the posterior probability of a particular combination of geno-
types given the data, the authors derive:

P (G1, . . . , Gn|f1, . . . , fk) =
(

M

c1, . . . , ck

)−1 n∏
i=1

(
mi

ci1 , . . . , ciki

)
(2.17)

counting the number of ways of selecting a set of unphased genotypes Gi given
the allele frequency spectrum fk, and

P (f1, . . . , fk) = P (a1, . . . , aM) =
M !

θ
∏M−1

z=1 (θ + z)

M∏
j=1

θaj

jajaj!
(2.18)

using Ewens’ sampling formula[159], where θ is the population mutation rate and
allele frequencies fi are transformed to frequency counts a1, . . . , aM :

∑M
c=1 cac = M

where each af is the number of alleles in b1, . . . , bk whose allele count in the sample
set is c.

Once variants are initially detected using Equation 2.13, the method continues to
build local haplotypes grouping variants that are inherited together in dynamically-
sized windows based on a distance threshold between successive variants. Each
group of variants is combined into a haplotype observation Hi, with an assigned
quality score that is the minimum of the supporting reads’ mapping quality and
the minimum base quality of the variant allele observations (bases that span the
variants). The size of the window is determined via an iterative process where an
initial variant is used as the seed, and all of the reads that overlap it are added. If
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these reads overlap any other variants, then these are added, along with any reads
that overlap them, and so on, until no new variants can be added.

Once the window is determined, the method uses a gradient descent algorithm to
find a MAP estimate of the genotype for each sample. It starts with the maximum
likelihood estimate for each sample’s genotype given the observed data, and then
attempts to find a genotype assignment that has a higher posterior probability across
all samples.

GATK

The GATK[28] is not actually a tool that is built solely for SNP calling, but is
instead a comprehensive framework for genomic data analysis that includes tools for
data pre-processing and QA, SNP and indel calling, CNV calling, and SV calling,
as well as post-processing and filtering. It is implemented as a Java program and
the latest version makes use of the in-memory computing engine Apache Spark for
efficient computation over large data sets. Here we focus on the SNP calling aspects
of the framework. There are two components in the GATK that deal with SNP
calling, the UnifiedGenotyper, and the HaplotypeCaller. The UnifiedGenotyper is an
older component that has been superseded by the HaplotypeCaller for all practical
purposes and we focus our attention on it. All of the mathematical formulas and
figures, as well as some of the descriptions, in this section have been reproduced
from the 2010 manuscript by McKenna et al.[40], the 2011 manuscript by DePristo
et al.[28], and the GATK website[160]

Figure 2.26: GATK Best Practices pipeline (taken from [160]).

The GATK Best Practices pipeline (see Figure 2.26) is a set of best practices
published by The Broad Institute that describe how to best use their software. In
the context of this section we are primarily interested in the processes that occur in
the middle panel of this figure that deal with processing aligned reads to call and
genotype variants that will then be used for post-processing and filtering.

The HaplotypeCaller, which is the tool that is primarily used for SNP calling
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takes a continued refinement approach, where the data is processed in the following
sequential steps:

Define active regions - The program determines which regions of the genome it
needs to operate on (active regions), based on the presence of evidence for
variation.

Determine haplotypes by assembly of the active region - For each active
region, the program builds a De Bruijn-like graph to reassemble the active
region and identifies what are the possible haplotypes present in the data.
The program then realigns each haplotype against the reference haplotype
using the Smith-Waterman algorithm in order to identify potentially variant
sites.

Determine likelihoods of the haplotypes given the read data - For each
active region, the program performs a pairwise alignment of each read against
each haplotype using the PairHMM algorithm. This produces a matrix of
likelihoods of haplotypes given the read data. These likelihoods are then
marginalized to obtain the likelihoods of alleles for each potentially variant
site given the read data.

Assign sample genotypes - For each potentially variant site, the program applies
Bayes’ rule, using the likelihoods of alleles given the read data to calculate the
likelihoods of each genotype per sample given the read data observed for that
sample. The most likely genotype is then assigned to the sample.

Active regions are defined by targeting loci with high quality reads that are differ-
ent from the refernce and surrounded by soft-clipped bases (bases in the read that
could not be aligned by the alignment algorithm). The region is then smoothed
by a Gaussian kernel and passed onto variant calling if its profile score exceeds a
pre-defined threshold.

For each active region the GATK performs local assembly by first building a de-
Bruijn graph[161] using just the reference sequence for the active region. The graph
is enhanced by comparing each read from the active region and creating nodes in
the graph where the read differs from the graph. Edge weights between pairs of
nodes are increased when a read passes through that edge. The resulting graph
must meet complexity requirements based on the ratio of non-unique to unique k-
mers and presence of cycles (that are a sign of repetitive sequence). When the graph
does not meet complexity requirements it is automatically rebuilt with successively
increased kmer sizes. If a sufficiently complex graph cannot be built, the region is
discarded because the method is not able to produce a high quality variant call in
this case. Once the graph is built it is refined by pruning out paths that are not
supported by a sufficient number of reads. By traversing the paths in the graph and
selecting those with a high aggregate weight the algorithm builds a list of possible
local haplotypes within the active region. Each candidate haplotype is then re-
aligned to the reference sequence using Smith-Waterman[119] alignment to produce
a list of potential variant sites that includes SNPs and other potential variants.
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Reads from the active region are aligned to each haplotype using a Hidden Markov
Model via the PairHMM algorithm[51] to produce a likelihood of each read given
a haplotype. The set of haplotype likelihoods is transformed to a set of likelihoods
per allele where for each allele at a given site the the highest scoring likelihood for
a given read and a given haplotype that supports that allele is selected. Under a
read independence assumption the total likelihood of the allele is computed as the
product of read likelihoods.

For each variant locus the probability of each genotype is calculated using:

P (G|D) =
P (G)P (D|G)∑
i P (Gi)P (D|Gi)

(2.19)

where D is the set of reads, Gi is the set of possible genotypes, and under the
assumptions of a diploid sample, independent read observations, and independent
errors. The prior probability of genotypes P (G) is assumed to be uniform.

Based on the diploid and independence assumptions:

P (D|G) =
∏
j

(
P (Dj|H1)

2
+

P (Dj|H2)

2

)
(2.20)

where P (Dj|Hn) is the likelihood of read given the haplotype previously obtained.

The genotype with the highest P (G|D) is emitted as the genotype for that variant.

Platypus

Platypus[63] is a Python and C package by Rimmer et al., that provides SNP, indel,
and other small and medium (upt to 1kb) variant calling capabilities utilising a
Bayesian statistical framework built on top of reference-free local assembly of hap-
lotypes. All of the figures and mathematical formulas in this section are reproduced
from the 2014 Nature Genetics manuscript by Rimmer et al. See Figure 2.27 for the
general sequence of data processing steps in platypus.

Platypus works by loading batches of reads into memory from a BAM file. 100 kb
(kilobases) are loaded at a time. Low quality reads are filtered out. Sites that are
flagged as potential variants by the aligned become candidate variants. The local
assembly step operates on successive windows of 1.5 kb in size, including all reads
that map to the window as well as their mates, irrespective of where or if they map.
As a first step, the algorithm builds a coloured de Bruijn graph[162] from the reads
and the reference sequence. Candidate variant haplotypes are produced by finding
paths that diverge from the reference and come back to the reference by performing
a Depth First Search from the graph node that diverges and until the reference
is reached again. All such paths are recorded and contain putative SNPs, MNVs,
indels, and larger rearrangements that are up to the window-size in length. A prior
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Figure 2.27: Three stages of data processing in Platypus (taken from [63]).

of 0.33× 10−3 is used for SNPs under the assumption that SNPs occur in humans
at a density of 10−3 per base and every non-reference allele is equally likely. Smaller
windows are created by combining groups of candidate variants that are within 15
basepairs of each other, as long as window size is smaller than read-length and there
are fewer than 8 variants in a group.

Candidate haplotypes are generated by taking all possible combinations of candi-
date variants (assuming diploid sample), resulting in 2n haplotypes. For a window
with 8 variants there are 256 possible haplotypes. The haplotype likelihood P (r|h)
is calculated by aligning reads to each haplotype using a Hidden Markov Model.
Platypus uses the Viterbi algorithm[163] to compute the most likely path through
the HMM as an approximation of the actual likelihood as a matter of optimisation.
After haplotype likelihoods are computed for all combinations of reads and haplo-
types Platypus uses Expectation Maximisation to estimate the frequency of each
haplotype under the following model:

L(R|{hi, fi}i=1...a) =
∏

samples,
s

∑
haplotypes,

i,j

fifj
∏
reads,
r∈Rs

(
1

2
p(r|hi) +

1

2
p(r|hj)

)
(2.21)

where fi is frequency of haplotype hi, a is the number of considered alleles, R is
all reads, Rs reads in sample s.

The posterior probability of a variant v given the data is computed as:

P (v|R) =
P (v)L(R|{hi, fi}i=1...a)

P (v)L(R|{hi, fi}i=1...a) + (1− P (v))L(R|{hi,
fi

1−Fv
}i∈Iv)

(2.22)

here the likelihood of data R given all haplotypes is compared to the likelihood
of R given those haplotypes that do not include v. Iv is the set of haplotype indices
such that hi does not contain v, and Fv =

∑
i∈Iv fi. A variant is called when its

posterior exceeds a pre-defined threshold. Genotype likelihoods for a variant are
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calculated by marginalising over the genotypes at other variants within the window,
and the best likelihood is selected as the genotype.

Remarks

Although samtools, freebayes, GATK, and Platypus are not the only tools that
have been successfully used for germline SNP calling in the past 10 years, they have
enjoyed sustained popularity and continued use in large scale genomics projects
such as 1000 Genomes Project, ExAC[10], PCAWG[12] and others. They thus can
serve as primary examples of how the problem of calling germline SNPs is currently
approached within the field, as well as providing a benchmark for new methods
that attempt to solve similar problems. There are several key distinctions in the
approaches that these tools take to the overall problem, yet a number of key simi-
larities exist that we outline here and adopt as a general framework for tackling the
SNP calling problem in our work.

Site Selection The problem of selecting sites in the genome for detecting variants
has variety of approaches from evaluating every single site independently as one that
potentially harbours a variant (as in samtools) to the varied windowing approaches
used by the other variant callers. Looking at sites independently has the benefit of
simplicity, while the windowing approach, at the expense of additional computation,
allows a more comprehensive evaluation of a genomic region that is not limited to
SNPs but can also support the detection of other types of variants. Thus, even
though an independent site approach may be acceptable in an initial implementa-
tion, some form of windowing is desired in order to benefit from knowledge about
the surrounding sequence context. In general, the interestingness of a site for the
purposes of detecting a potential variant is universally linked to the presence of high
quality reads spanning a particular locus that disagree with the reference sequence
at that locus.

Haplotype Construction Samtools has the simplest model here as it does not
attempt to construct haplotypes at all. This limits the ability of samtools to ac-
curately represent genomic architecture, and prevents it from being able to supply
phasing information for variants, which is of interest. Freebayes has the next sim-
plest model, where putative haplotypes are constructed directly from the observed
read sequences with the observation window. GATK and Platypus actually perform
local assembly in the window to come up with an arrangement of reads that is free of
artefacts[164] associated with alignment to the reference. Although local assembly
appears to improve the ability of these callers to accurately represent sequence vari-
ants (especially non-SNPs) this processing step introduces a significant impact on
the overall processing cost, mostly incurred from the resource-intensive HMM-aided
alignment of reads to the putative haplotypes.
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Allele Frequency Spectrum Estimation A distribution of allele frequencies in
a population is of interest as it can be used as a prior in the calculation of genotype
likelihoods for the samples under analysis and local and population-specific allele
frequencies can vary significantly from values implied by generic population-genetics
models. Most callers provide capabilities for estimating the Allele Frequency Spec-
trum by Expectation Maximisation or similar approaches (Equation (5) in [145], not
covered here, equation 2.18 for freebayes above). Alternatively, a non-informative
prior (as in GATK) can be used.

Genotyping Pretty universally across the methods, genotyping is set up as a
Bayesian inference selecting a Maximum Likelihood Estimate or a Maximum A
Posteriori estimate of the genotype (for a single site or a haplotype) given the reads
data, and taking into account the probability of errors derived from read base quality
and mapping quality scores supplied by the aligner. See Eq. 2.10 for samtools’, Eq.
2.13 freebayes’, Eq. 2.19 GATK’s, Eq. 2.21 Platypus’ model setups. This model
thus remains highly relevant for any new development in the space.

2.2.5 Germline Structural Variant Calling

Structural Variants (SVs) are medium- to large-size alterations (typically >50bp
in length) of the genomic sequence that fall into a several broad categories (see
Figure 2.28) including insertions, deletions, tandem and interspersed duplications,
inversions, translocations, mobile element insertions, as well as complex rearrange-
ments that constitute a combination of the above classes or are otherwise difficult
to classify.

Figure 2.28: Classes of structural variation (taken from [34]).
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Accurate detection of SVs remains an open challenge since both sensitivity and
specificity performance of SV calling is an order of magnitude worse than for SNP
calling. For instance, in the latest data release of the 1000 Genomes Project an
estimated sensitivity of 88% was achieved for deletions, 65% for duplications, 32%
for inversions[165] and False Discovery Rate of up to 89%[166]. A key challenge
that impacts calling accuracy is small read size relative to the size of the variants.
Since SVs can be hundreds of kilobases in length and typical Illumina reads are
only 150-500 basepairs long, accurate reconstruction relies on an agglomeration of
reads in order to produce the variants. Structural Variant detection approaches
typically make use of several sources of evidence (see Figure 2.29) for the detection of
”breakpoints” - regions of the genome where a DNA double-strand break is detected
and sequence is either inserted or excised. The breakpoints are then interpreted to
produce the most likely variants that they represent.

Discordantly-mapped read pairs are pairs of sequencing reads that the align-
ment algorithm has mapped at a distance that is statistically significantly larger or
smaller than the average read-pair distance for that sample, or that have an unusual
read orientation, since read-pairs are supposed to be sequencing from two ends of a
molecule towards each other. Reads that map closer than they are supposed to are
indicative of an insertion, reads that map farther are indicative of a deletion, and
reads that map in an unusual orientation are indicative of an inversion.

Split-reads are read-pairs where one of the reads maps properly but the aligner is
not able to map the other read because different pieces of the read map to different
locations in the genome indicating that this read spans a breakpoint. Distance
between the split read pieces and their mapping orientation are informative of the
type of breakpoint that the read spans.

Read-depth Regions have a higher than normal or lower than normal read depth
(count of reads spanning a region) are indicative of increased or reduced copy number
respectively. Care must be taken to distinguish actual SVs from areas of repetitive
sequence where the same simple sequence pattern is repeated many times. Typically
aligners are not able to accurately resolve such areas and map many reads to the
same set of coordinates making it appear like a duplication.

Assembly-based approaches perform local assembly in a reference-free manner
to reconstruct the variants encoded in the sample sequence that the aligner may
struggle with resolving because of a large number or increased complexity of rear-
rangements.
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Figure 2.29: Sources of evidence for the presence of Structural Variants (taken from
[33]).

We look at several SV callers in closer detail.

Delly

Delly[167] is a structural variant calling tool built in 2011 by T. Rausch et al. in the
context of the 1000 Genomes Project. Delly uses discordantly-mapped reads and
split-reads as sources of evidence for the presence of SVs, is able to characterise a
broad set of variants and has been implemented in C++. All of the mathematical
formulas and figures in this section are reproduced from the 2012 manuscript by
Rausch et al.

The discordantly-mapped reads component of Delly begins by computing the
median and standard deviation of the read insert size (distance between the ends
of the two reads in a pair), as well as the default read orientation by sampling a
pre-defined number of reads from the BAM file. Read-pairs that have an insert
size farther than 3 standard deviations from the median are considered as evidence
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for structural variation. This induces a minimum SV size detectable by Delly. See
Figure 2.30 for the variant types implied by each insert size deviation and read-pair
orientation.

Figure 2.30: Variant classes detectable by Delly based on their read-pair and split-
read signatures (taken from [167]).

Using the list of discordantly-mapped read-pairs Delly builds an undirected,
weighted graph to indicate which read-pairs support the same variant. In the
graph G(V,E), a read-pair pi corresponds to a node vi ∈ V and an edge evi,vj ∈ E
connects two nodes that support the same SV. The weight w(evi,vj) is the absolute
value of the difference between the SV sizes predicted by vi and vj. vi and vj
support the same variant when the corresponding read pairs have the same read
orientation and the absolute difference between the left and right ends of the two
reads is less than the expected insert size. Variants are identified by computing
connected components Ci of G. When components are not fully connected, Delly
sorts the edges in each such component by weight and attempts to find a maximal
clique Mi within Ci using edge with the smallest weight as the seed of the clique.
The clique is extended by searching for the next smallest edge for which one of the
vertices is already in the clique Mi, and requiring that Mi ∪{vl, vm} is also a clique,
until no further vertices can be added. The vertices in Mi are reported as the read
pairs supporting that SV. Each rearrangement type is analysed independently in
this manner.

All of the rearrangements identified in the discordantly-mapped read analysis are
refined using split-read analysis. The reads used for split-read analysis are those
where one read in the pair maps to the reference and the other is unmapped. All
such reads within a distance of 2 standard deviations of the median insert size from
the breakpoint are considered up to a configurable maximum of 1000. Delly splits
each unmapped read into k-mers and aligns the k-mers to the reference sequence
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spanning the SV.

Lumpy

Lumpy[168] is an SV caller developed in 2013 by R. Layer et al. and is a package
implemented in C++. All of the mathematical formulas and figures presented in
this section are reproduced from the 2014 publication by R. Layer et al.

Figure 2.31: Lumpy calling model integrates several signals from a single sample
(taken from [168]).

Lumpy defines an SV breakpoint as a pair of bases that are adjacent in the sam-
ple under study but not in the reference genome. Furthermore, each breakpoint is
represented as a pair of probability distributions that span the predicted breakpoint
regions and represent the uncertainty about the precise location of the breakpoint.
Lumpy integrates multiple signals (see Figure 2.31) to update the probability distri-
butions that represent each breakpoint based on different kinds of evidence provided.
A breakpoint is a tuple b = 〈E, l, r, v〉 where E is the evidence, b.l and b.r are the left
and right intervals each having start and end coordinates, b.l.s and b.l.e for example.
b.l.p is a vector of length b.l.e−b.l.s where each p[i] is the probability that b.l.s+ i is
the true location of the breakpoint. b.v is the breakpoint class (insertion, deletion,
etc.). Overlapping breakpoints are merged together. The intervals that contain
95% of the probability density, as well as the Maximum Likelihood Estimates of the
location of each variant are returned.

The paired-end analysis looks at read pairs 〈x, y〉 where each read is aligned to the
reference genome as R(x) = 〈c, o, s, e〉 where c is the chromosome, o ∈ +,− indicates
alignment orientation, s and e represent the alignment start and end respectively. It
is assumed that x and y align uniquely and that R(x).s < R(x).e < R(y).s < R(y).e.
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S(x) = 〈o, s, e〉 is defined to be the alignment of x with respect to the sample’s (un-
known) genome. Read pairs are assumed to be aligned with R(x).o = +, R(y).o = −
and having R(y).e−R(x).s approximately equal to the library preparation fragment
size. Read pairs that align outside the expected parameters for orientation and dis-
tance constitute evidence for structural variant breakpoints, in particular reads with
the same or switched orientation, and pairs that align at a distance shorter or longer
than the fragment size. Expected fragment length is estimated from the mean frag-
ment length in the sample, along with its standard deviation. Breakpoint variety is
determined as follows:

When R(x).c = R(y).c, the variety is inferred from read orientation. R(x).o =
R(y).o implies an inversion. R(x).o = −, R(y).o = + implies a tandem duplication,
R(x).o = +, R(y).o = − implies a deletion. Insertions are not presently supported.
When R(x).c 6= R(y).c the breakpoint is labelled an interchromosomal rearrange-
ment.

〈x, y〉 are mapped to b.l and b.r as follows. By convention x is assumed to map
to l and y to r. It is assumed that there exists a single breakpoint b between x
and y. Orientation of x determines whether l is upstream or downstream from x.
Thus, if R(x).s = +, then the breakpoint begins after R(x).e. The length of the
breakpoint interval is proportional to expected fragment length and its standard
deviation. The distance of one end of the breakpoint from x is assumed to be less
than expected insert size L plus vfs - a configurable number of standard deviations.
The probability that position i in the breakpoint interval l is part of the actual
breakpoint is estimated as the probability that x and y span i, which is true when
the fragment that had produced 〈x, y〉 is longer than the distance from x to i. Thus,
the quantity of interest is P (S(y).e − S(x).s > i − R(x).s) for R(x).o = + and
P (S(y).e − S(x).s > R(x).e − i) for R(x).o = −. This quantity is estimated from
the empirical distribution of fragment sizes collected from the sample.

Lumpy does not perform its own split-read alignment instead relying on the re-
sults of a split-read aligner like YAHA[169]. Every split-read is a DNA fragment
X that consists of two or more sub-fragments xi, ..., xj that do not map to ad-
jacent locations of the reference. Each sub-fragment pair 〈xi, xi+1〉 is evaluated
independently depending on how it maps with respect to the reference R(x). When
R(xi).o = R(xi+1).o the event is marked as either a deletion or a tandem duplication,
where R(xi).s < R(xi+1).s implies a deletion, and otherwise a tandem duplication.
When orientations do not match, the event is marked an inversion. To account for
potential inaccuracies in the location of the breakpoint with respect to the split-
read pair, each split-read pair is mapped to two breakpoint intervals l and r that
are centered at the split. The probability is modelled to be highest at the split with
an exponential decrease towards the edges, with a configurable width parameter.

SvABA

SvABA[170] is a germline and somatic SV caller by J. Walla et al., created in
2016. SvABA is implemented in C++ and relies on genome-wide local assembly for
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variant detection. Internally SvABA makes use of SGA[171] and BWA-MEM[32]
for assembly and read mapping respectively.

Figure 2.32: The SvABA variant calling method (taken from [170]).

SvABA performs local de-novo assembly in 25-kbp windows tiled across the
genome with a 2kb overlap. First reads that may be indicative of variation are
extracted from a BAM file, these include reads with high-quality soft-clipped bases,
discordant reads (with non-standard orientation or with insert size greater than
four standard deviations away from the sample mean insert size, determined using
a sample of 5 million reads with top and bottom 5% of insert sizes truncated), un-
mapped reads, reads with unmapped mates, and reads with insertions or deletions
indicated in the CIGAR string. Low quality reads that are marked as PCR du-
plicates, have failed QC, and reads with repeats of >20 basepairs are filtered out.
Discordant reads are realigned to the reference with BWA-MEM and those with an
available non-discordant alignment of >70% of the maximum alignment score are
discarded. Reads with many different (>20) high quality candidate alignments are
also discarded. Remaining discordant reads are clustered based on orientation and
insert-size and assembled using SGA.

The contigs produced by SGA are aligned to the reference genome using BWA-
MEM and examined for potential variants. Contigs with an alignment that has fewer
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than 30 non-aligned bases and no alignment gaps are considered reference. Indels are
called when the alignment has gaps, and SVs called when the resulting alignment
is multi-part. In order to evaluate read support for the putative variants, reads
from the windows are aligned to both the reference and the assembled contigs using
BWA-MEM. Reads are considered matching to the contig when the alignment score
for the read to the contig is greater than the alignment of the read to the reference
and is >90% of the length of the match. Reads that have an alignment that is up
to 8 bases to the left or right of a putative variant are considered supporting the
variant.

Remarks

We looked at Delly, Lumpy, and SvABA in the context of germline SV calling.
Although there are some differences in the details of the approaches taken by the
tools’ authors there are consistent similarities as well, which additionally carry over
to other SV callers such as Pindel[172], and Manta[173], that have not been pre-
sented here. These approaches rely heavily on paired-end reads and select those
that are mapped uncommonly far apart or close together. These are clustered or
optionally locally assembled to produce putative breakpoints. Breakpoint locations
are further refined by split-read analysis, using those reads that are unmapped by
regular read mapping software. These reads are broken down into k-mers and each
k-mer is aligned separately to non-adjacent locations in the genome. Alternative
haplotypes may be constructed using these reads and alignments to the reference
and the alternative haplotypes scored for genotyping purposes. A new method for
structural variant calling should thus focus on making the best use of these two data
types (discordant and split reads), while possibly also making use of read depth in-
formation to be competitive with the current generation of best callers.
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2.3 High Performance, High Throughput, and
Cloud Computing

The practice of performing large scale scientific computation on supercomputers or
clusters of commodity hardware can be split into two notions - High Performance
Computing (HPC) and High Throughput Computing (HTC).

The European Grid Infrastructure defines these as follows[174]:

HPC - A computing paradigm that focuses on the efficient execution of
compute intensive, tightly-coupled tasks. Given the high parallel commu-
nication requirements, the tasks are typically executed on low latency in-
terconnects, which makes it possible to share data very rapidly between a
large numbers of processors working on the same problem. HPC systems
are delivered through low latency clusters and supercomputers and are typ-
ically optimised to maximise the number of operations per seconds. The
typical metrics are FLOPS, tasks/s, I/O rates.

HTC - A computing paradigm that focuses on the efficient execution of a
large number of loosely-coupled tasks. Given the minimal parallel commu-
nication requirements, the tasks can be executed on clusters or physically
distributed resources using grid technologies. HTC systems are typically
optimised to maximise the throughput over a long period of time and a
typical metric is jobs per month or year.

Although early High Performance Computing efforts (1960’s - 1980’s) relied on su-
percomputers with a shared memory model[175], where all of the memory was shared
between multiple processors, by the late 1980’s machines with a distributed mem-
ory model[176], where each processor has its own memory, started gaining ground,
forming the basis for the modern HPC cluster.

The software interface that the user has to a HPC/HTC cluster typically takes
the shape of a queueing system such as PBS[177] or LSF[178] where the user writes
a script that submits a series of jobs to the queueing system. The jobs can invoke
software that is installed by the IT department that manages the cluster. The
user is not able to install any software and has limited visibility into the runtime
performance characteristics of the jobs they submit.

Cloud computing has emerged in the early 2000’s enabled by improvements in
hardware virtualisation, which was driven by the adoption of Virtual Private Net-
works, and the desire to commercialise access to compute capacity as a utility[3].

The National Institute of Standards and Technology provides a standard defini-
tion of cloud computing that encompasses several areas of this domain - Essential
Characteristics, Service Models, and Deployment Models[179].

The Essential Characteristics of a cloud are as follows:
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On-demand self-service - End-user can independently manage infrastructure
without involving the service provider.

Broad network access - Cloud resources are available on the network via a set of
standard protocols.

Resource pooling - Service providers dynamically assign virtual infrastructure in
a multi-tenant environment based on consumer demand.

Rapid elasticity - Resources can be elastically provisioned and discarded accord-
ing to customer requirements.

Measured service - Resource usage by end users is measured and transparently
provided back to the user by the service provider.

It is the self-service and broad network access characteristics that set cloud com-
puting apart from traditional HPC computing the most.

Service Models include:

Infrastructure as a Service (IaaS) - This service allows the the user to provi-
sion and control virtualised infrastructure such as VMs and networks.

Platform as a Service (PaaS) - This service allows the user to deploy their ap-
plication onto virtualised hardware but not to control the management of the
infrastructure.

Software as a Service (SaaS) - This service allows the user to make use of ap-
plications that are deployed on virtualised hardware but not to manage the
applications or the infrastructure itself.

The Deployment Models covered by the NIST definition are as follows:

Private Cloud - Operated privately by a single organisation and not accessible on
a public network.

Community Cloud - Established for use by a particular community of users with
a common interest.

Public Cloud - Established for general use by the public.

Hybrid Cloud - A collection of cloud entities that use one of the other deployment
models but allow application portability.

The first publicly available commercial cloud computing platform has been devel-
oped by Amazon.com and launched in August, 2006 in the form of two services -
Elastic Compute Cloud (EC2), and Simple Storage Service (S3). Cloud offerings by
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Microsoft and Google followed in 2010, and 2012. This early lead has allowed Ama-
zon to capture the majority of the public cloud computing market, earning $2.57
billion USD in Q1 2016 revenue.

One of the main drawbacks, however, of using Amazon’s or another proprietary
cloud solution is the issue of ”vendor lock-in” i.e. inability to easily switch infras-
tructure providers should the customer wish to do so, because of the amount of
software relying on the proprietary cloud provider protocols. Another key reason
for avoiding public clouds is the necessity to store sensitive data. This issue applies
both to the commercial enterprise (with industries such as banking, and payments)
and scientific domains (especially genomics and medicine) where handling of sen-
sitive patient data is restricted based on both technical security, as well as ethical
considerations[180].

To help alleviate these concerns an open-source cloud platform called OpenStack
was launched in 2010 jointly by Rackspace Hosting and NASA[181]. OpenStack
provides most of the same features that are provided by Amazon Web Services and
other commercial cloud providers as free open-source tools. These include:

• Infrastructure

• Networking

• Identity Management

• Block Storage

• Object Storage

• Managed Databases

• Queues

• Monitoring

OpenStack deployments for the basis for most academic private and community
clouds such as EBI Embassy Cloud[182], University of Chicago Open Science Data
Cloud[183], Cancer Genome Collaboratory[184], and Helix Nebula[185]. Because
these clouds implement the security measures necessary when handling patient data
they are a system of choice for large scale bioinformatics analyses.

74



2.4. WORKFLOW SYSTEMS

2.4 Workflow Systems

The focus on workflow stems from the work of Frederick Taylor (1856-1915) and
Henry Gantt (1861-1919) on the improvement and automation of industrial pro-
cesses, also known as ”scientific management”[186]. One of the key techniques that
were devised at the time and served as the prototype for future workflows were ”time
and motion studies”[187] where employees were observed as they performed repeti-
tive cycles of work in order to determine standard execution times and sequences of
steps. As this field evolved over the course of the 20th century it gave rise to several
other related fields such as Operations Management, Business Process Management,
and Lean Manufacturing.

In 1993 an international consortium was formed with the purpose of defining the
standards related to workflows and workflow management systems. This consortium
is called the Workflow Management Coalition (WfMC). One of the key specifica-
tions produced by the WMC in 1995 is The Workflow Reference Model[188]. This
document provides two basic definitions that illuminate the scope and purpose of
workflow systems:

Workflow - The computerised facilitation or automation of a business pro-
cess, in whole or part.

Workflow Management System - A system that completely defines, manages
and executes ”workflows” through the execution of software whose order of
execution is driven by a computer representation of the workflow logic.

A number of standards have been produced for workflow definition, many of them
are XML-based[189]. Notable examples include:

XPDL - Was developed by the WfMC, currently at version 2.2, as of 2012. Uses
an XML dialect to express process definitions

BPML - Developed by the Object Management Group (OMG) using XML. Dep-
recated as of 2008 in favour of BPEL.

BPEL/BPEL4WS - Developed by Organisation for the Advancement of Structure
Information Standard (OASIS). Uses XML format. Adopted by Microsoft and
IBM for their workflow products -

Graphically, workflow definitions are typically expressed using a Petri-Net[190] or
Business Process Model and Notation (BPMN), the latter borrowing its structure
from UML activity diagrams. A set of workflow definition design patterns exists
to guide workflow creation[191]. A workflow engine is responsible for ingesting
workflow definitions, generating their graphical representation, and allowing the
user to execute the workflow definitions on suitable hardware.

As initially the focus of workflow systems research and development has been
on process improvement within commercial enterprises there exists a large pool of
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workflow engine implementations targeted at that sector. Some of these are:

jBPM - An open-source workflow engine that is based on the Java platform and is
currently owned by Red Hat.

Activiti - An open-source workflow engine that has been developed by previous
jBPM developers.

Oracle BPEL Process Manager - A commercial workflow engine acquired by
Oracle from Collaxa in 2004, now integrated into the rest of the Oracle port-
folio.

Websphere Process Server - Commercial workflow engine that is part of IBM’s
Business Process Manager suite.

Although these tools have gained wide adoption in the enterprise community
they have had limited success within scientific circles. Instead, several open-source
workflow management systems exist that have been purpose-built for the scientific
domain, and especially bioinformatics. These include:

Kepler[192] - A Java-based WfMS built on top of the Ptolemy II[193] execution
engine.

Taverna[194] - A Java-based WfMS originally built by myGrid, currently under
incubation at Apache Software Foundation.

Galaxy[44] - A Python-based WfMS developed specifically for bioinformatics ap-
plications with a focus on GUI-driven development of workflows.

Curcin et al[195] provide a head-to-head comparison of six scientific workflow
systems including Taverna and Kepler, whereby Taverna is described as primarily
being aimed at researchers who wish to build scientific workflows from web services
utilising a proprietary XML dialect called SCUFL, which implements a DAG model
of workflows. The primary execution environment for a Taverna workflow is on a grid
or an HPC cluster. Kepler implemented a different methodology, whereby workflow
modelling, which is taken on by Actors, is separated from workflow execution, taken
on by Directors. An Actor knows only about its inputs, the computation that it
needs to perform, and the output that it needs to produce, while Directors provide
different models of execution, such as Synchronous Data Flow, Process Network,
Continuous Time, and Discrete Event.

The Galaxy workflow framework has a specific focus on bioinformatics analyses
and comes with a large library of community-developed bioinformatics workflows.
The user creates and executes workflows via a web-based GUI where pre-installed
tools and scripts can be laid out into a pipeline. The primary deployment environ-
ment for Galaxy is on an institutional HPC cluster although a separate component
allows the deployment of a Galaxy instance on Amazon Web Services[196].
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Chapter 3

The Butler Framework -
Requirements and Architecture

In this chapter we specify a set of requirements for a large-scale cloud-based scientific
workflow framework. The chapter is split into two sections - Section 3.1 Functional
Requirements deals with requirements for how to access data, install software, man-
age workflows, and troubleshoot errors, Section 3.2 Non-functional Requirements
deals with issues of Scalability, Availability, Ease-of-use, and Interoperability.

3.1 Functional Requirements

Running scientific analyses requires the following broad set of capabilities:

• Access to data

• Access to compute capacity

• Implementations of one or more scientific algorithms

• A workflow that defines the sequence of steps in the analysis

• A workflow engine that handles job scheduling and execution

• A system of record for what analyses have been performed

• A set of tools for troubleshooting error conditions

Operating such a system on the cloud necessitates an extra set of capabilities
that enable users to take advantage of the scalability and elasticity offered by cloud
computing, while retaining cost effectiveness and security.

77



CHAPTER 3. BUTLER - REQUIREMENTS AND ARCHITECTURE

These capabilities include:

• Provisioning of cloud infrastructure

• Configuration of virtualised hardware

• Service discovery

3.1.1 Access to Data

Scientific analysis typically requires access to data files to run various tools on, thus
an analysis system needs to provide a mechanism for accessing data. Depending on
the architecture of the system in question, several data sources can be identified,
each of which stipulates a particular data access mechanism. These include:

• Data stored in a third party data repository on the internet

• Data stored on a network accessible shared storage folder

• Data stored on cloud specific Block Volumes (such as Amazon’s EBS, or Open-
Stack Cinder)

• Data stored on cloud specific Object Storage Services[197] (such as Amazon
S3, or Google Cloud Storage)

3rd Party Repository Data

Bioinformatics, like many fields of science, has a vast number of data repositories and
reference data sets available over the Internet, in both, free access, and authenticated
modes. The method of access to these services is typically specific to each repository,
although is frequently limited to HTTP and FTP protocols. Thus, a cloud-based
system that allows access to external IP ranges via HTTP and FTP should be able
to meet this requirement to a sufficient degree.

Network Accessible Shared Storage

A large data repository that is hosted within the same data center as the compute
cluster is the data access method of choice within HPC deployments, but is also
used within cloud computing environments, especially private academic clouds. A
distributed network accessible file-system such as Isilon OneFS, Lustre, GlusterFS,
MooseFS, GFS, or HDFS is typically used[198]. In order to take advantage of such
a shared file-system a cloud-based compute cluster simply needs to have mount
privileges on the cluster virtual machines. Once mounted, the file-system can be
accessed as if it was a local file-system. It is typically the case that full root is
available on cloud-based VMs, so this method of access remains both popular and
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well supported, especially for analyses where multiple VMs may need to access the
same file at the same time.

This approach has three key drawbacks:

• Shared access to a file server can run into scalability bottlenecks at the stor-
age and network layers as the number of VMs simultaneously accessing the
resources increases. High performance storage providers such as Netapp and
Isilon can support simultaneous transfer rates of up to 40 GB/s, which allows
a significant number of VMs to simultaneously access the shared resources,
however, as shown in the Experimental Validation section, even 1000 compute
cores can easily consume over 25% of that bandwidth, thus limiting the overall
system scalability to about 4000 cores.

• While academic cloud providers are frequently running a large scale shared
storage server in support of their HPC environments, commercial cloud
providers do not have this service out of the box, thus it is up to the user/op-
erator to set up such a shared file-system based on VMs and block-storage
volumes (and possibly ephemeral disks), which can be a significant cost.

• Implementing data access security is challenging, because once a shared file-
system is mounted, data access is granted based on Unix groups without check-
ing credential validity with the data owner.

Block-level storage

Most clouds provide a block storage service (Amazon, Google, Microsoft, OpenStack,
and others). Block storage is different from typical hard-drives that are available
as a standard together with Virtual Machines, in that the standard hard-drives are
considered ”ephemeral” storage - their contents are available only for the lifetime
of the VM that they are attached to. Due to the short lifetime, such storage is
typically only acceptable for use as scratch-space, and not for the long-term storage
of data under analysis. Block storage volumes offer an alternative, whereby a block
storage device can be attached and detached to any VM within the same data center
without the loss of information. Once attached, the block storage volume can be
mounted as if it was normal local storage.

For the purpose of scientific analysis on the cloud, block-storage offers an attrac-
tive option whereby a data set can be prepared and staged on a block storage volume
outside the scope of a particular analysis, and can then be mounted on a VM that
will perform the analysis, as well as being reusable for other analyses downstream.

Key drawbacks of this approach are:

• The same block volume cannot be mounted by several VMs at once, thus
causing data duplication, or ruling out this data access method, where simul-
taneous access to a file by several VMs is required.
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• Limited size of a single block storage volume (currently 16TB on Amazon for
instance).

• Higher storage cost than object storage.

Block level storage is automatically available in all cloud environments where
such a service is present and it is up to individual analyses to take advantage of this
method of data access.

Object Storage

Most cloud products on the market today provide an object storage service. Exam-
ples of this are Amazon S3, OpenStack Swift, Ceph[199], and Microsoft Blob storage.
Object storage provides a highly scalable alternative to shared filesystems and block
storage volumes, where each object of interest is stored in a ”bucket” and can be
retrieved by its identifier. This method of access is especially attractive because
data access security can be implemented on an individual object basis, something
that is difficult to implement with other data access methods. Thus, scientific anal-
yses that operate on sensitive data, such as those performed for the biomedical field
with human subjects can greatly benefit from adopting this method of access for
cloud-based analysis. Additional benefits of object storage include virtually limitless
scalability of storage space, and low cost, relative to other storage methods.

A drawback of this approach is that object storage based systems do not function
in the manner of POSIX compliant file systems that many are familiar with. Thus,
an analysis framework that wants to support object storage as a method of data
access needs to provide support for managing user credentials, retrieving data of
interest by identifier from the object storage and into a scratch space available to
the VM (such as ephemeral disk or block storage volume), writing intermediate
analysis results back to the scratch disk, and storing the final analysis results back
into object storage based on a predetermined bucket structure.

3.1.2 Access to Compute Capacity

Running analyses requires access to computational resources such as CPU and RAM
and doing so on the cloud is significantly different from the way the same goal is
accomplished in traditional HPC environments.

A traditional HPC environment has a static pool of resources, access to which is
facilitated via a queueing system. All users submit their jobs to a priority queue
and each job is eventually scheduled to run on some server. The server is a long
running machine, which is not dismantled between jobs, and the user has little
control over the server’s configuration in terms of software or hardware. If the HPC
data center operates in a cost-sharing model, costs are apportioned based on either
a fixed allocation between departments or research groups, or based on resources
used during the job execution.
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Because access to cloud-based resources is charged based on time-in-use i.e. by
the hour, or by the minute, running analyses on the cloud requires a different mode
of operation in order to remain cost effective. Virtual Machines need to be created
from scratch and used only for the duration of time strictly required by the analysis,
at which point they need to be destroyed. Furthermore, because the cost of each
Virtual Machine is directly related to the amount and type of resources that it
consumes, and the user has complete control over this configuration, it is in the
user’s interest to optimise the hardware configuration of each VM such that it fits
the type of analysis being performed as some analyses will benefit from higher CPU,
RAM, optimised disk I/O, etc. A successful framework for cloud-based analysis
then needs to provide the following capabilities in the area of Access to Compute
Capacity:

• Ability to authenticate and interact with multiple cloud-provider APIs

• Ability to define hardware configurations of Virtual Machines.

• Ability to easily create and destroy Virtual Machines based on pre-defined
hardware profiles.

• Ability to specify network topology and security rules.

Interact With Multiple Cloud-Provider APIs

Because there are many cloud providers out there, each with certain advantages
and disadvantages when it comes to features and cost it would be beneficial for
a generic analysis framework to be able to interact with as many cloud provider
APIs as possible. This is challenging because different cloud APIs are in-general
incompatible although similar in nature, and it is necessary to provide a translation
layer, so that the users of the framework do not have to learn different API dialects
depending on which environment they wish to deploy to. Authentication methods
typically rely on a known URL, username/password, and a public/private key pair,
and thus are fairly amenable to standardisation.

Define Hardware Configurations for VMs

Because each type of analysis may require several flavours of VMs, each with a
different hardware configuration, it would be beneficial for the user if the analysis
framework provided a mechanism to easily define such configurations in a human
readable file that can be versioned and source controlled. Key fields that need to be
captured by such a configuration file include:

• VM naming template

• Number of VMs
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• Number of CPUs

• Amount of RAM

• Number and type of hard disks

• Security Groups

• SSH Keys for logon

• Initial machine image or snapshot to use (to avoid starting from a completely
empty VM)

• Network configuration (IP address, subnet, floating IP)

• Post-initialisation commands (such as registering with a master node or up-
dating packages)

Create and Destroy Virtual Machines

Due to the dynamic nature of cloud computing clusters where Virtual Machines are
frequently created and destroyed it is necessary to provide a convenient method for
carrying out both of these operations on a large number of VM instances and in a
cloud agnostic manner. The user should be easily able to dispose of any number of
running machine instances by name, as well as being able to create any number of
new machines based on the templates described in the previous section

Define Network Topology and Security Rules

While in an HPC system the network topology and security are completely specified
by the IT group, it is up to the user to adequately specify both in a cloud computing
environment. Thus, a user needs to be able to specify networks, traffic routing
rules, and control access to resources within the network based on port, protocol,
and address of the requester. This requirement is especially important when it
comes to handling and managing human genomic data, which is highly confidential
- a typical network and security configuration that needs to be supported is one
where a central network router controls access to and within the cloud tenant. Only
a limited number of known IP addresses from the internet are allowed inbound
access over a secured protocol. Furthermore, Virtual Machines within the cluster
are completely locked down except for a limited number of ports and protocols, as
necessitated by their role within the cluster.

Because cloud computing clusters are frequently created and torn down it is nec-
essary to be able to express the network and security configuration as a set of rules
that can be easily re-instantiated as needed.
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3.1.3 Implementations of Scientific Algorithms

Running scientific algorithms en-masse is the key requirement for a scientific work-
flow management system, and even though the implementation of the algorithms
themselves is outside of the scope of such a framework, existing algorithm implemen-
tations need to be easily brought into the system and configured for running. In an
HPC environment tool installation is performed by the IT department managing the
HPC cluster, but in a cloud computing environment it falls upon the user to carry
out installation of all software, thus a system of support is required for managing
installations of scientific software on Virtual Machines in the cloud.

Several mechanisms for installing software on VMs exist and need to be supported:

• Installation of a binary file from a known URL

• Compilation of a tool from source code

• Installation of a Virtual Machine image

• Installation of a lightweight container image

Installation of a Binary File

Oftentimes tool authors provide compiled versions of their software on the Internet.
These are typically available for major operating systems. If such a tool does not
have other dependencies, then installing it simply requires access to a particular
URL on the Internet from the VM that the tool needs to be installed on. From a
security perspective this means allowing outgoing traffic from VMs inside the cluster
for protocols such as HTTP, HTTPS, FTP, SFTP, FTPS and their associated ports.
Installation then proceeds by retrieving the required binary resource and possibly
setting up some symlinks for convenient invocation.

Compiling From Source Code

A large proportion of scientific software exists as source code available over the
Internet on sites like Github, Bitbucket, Sourceforge, etc. along with instructions
for compiling the software on a supported platform. This provides a major avenue
for installation of scientific software and requires capabilities for downloading the
source code from the internet via a tool like git, along with possible dependencies,
and then executing a build script provided by the tool author, thus requiring the
same capabilities as specified for installing binary files, as well as possibly elevated
user privileges for installing services or adding users.

83



CHAPTER 3. BUTLER - REQUIREMENTS AND ARCHITECTURE

Installation of a VM Image

Several widely used formats of VM Image exist, such as OVA, OVF, VMDK, AMI,
etc. A tool author may choose to make their algorithm available as a complete VM
image that can be instantiated within a cloud computing cluster. This is especially
true for complex applications that have many dependencies and very specific OS
requirements that are hard to replicate reliably. The process of instantiating VM
images is typically similar between cloud providers although differences exist.

Installation of a Lightweight Container

A more lightweight approach than using entire VM images is shipping software via
a lightweight container such as Docker[200]. This method of software distribution is
gaining in popularity in the last two years. Lightweight container images are typi-
cally smaller than entire VM images as they only concern themselves with providing
an application runtime environment, rather than an entire VM emulation, and they
typically allow the running of multiple such containers simultaneously on a single
VM in a micro-services container-based architecture.

In order to support this method of distribution the cloud computing cluster needs
to be running a container management platform such as Docker Swarm or Google
Kubernetes.

3.1.4 Workflow Definitions

A typical scientific analysis consists of a series of steps where a set of input files
(or samples) are transformed through, possibly multiple, computational stages to
produce a set of output files that may be used as is, or retained for further analysis.

To be able to reliably carry out such analyses it is desirable for a system to have
a number of capabilities that define the ”workflow” of execution steps. These are:

• Define a structure that encodes a sequence of steps and the conditions for
moving from one step to the next.

• Ensure deterministic behaviour where possible i.e. same inputs produce the
same output when run multiple times (whether in the same computational
environment or different environments).

• Ensure that the analysis has a finite run-time where possible.

• Allow fine-grained control over the analysis configuration.
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Figure 3.1: NGS Workflow (taken from [28]).

Workflow Structure Definition

An effective and commonly utilised method of representing a workflow in the scien-
tific analysis and other contexts is as a directed graph. Each vertex in the graph
represents a particular computational step that needs to be carried out, and graph
edges represent, possibly conditional, transitions between the vertices. This rep-
resentational method allows the user to comprehensively express both the steps
involved in an analysis, as well as specifying their sequence and executing control
flow. Furthermore, the graph-based approach allows for a graphical representation
of the workflow structure that is readily comprehensible by humans, thus increas-
ing its utility. In general, the following requirements need to be met in order for
the graph-based workflow representation to be fit-for-use in the scientific analysis
context:

• The workflow should be encoded using a language and format that is easily
readable by humans.

• It should be possible to pass parameters to a workflow – values that can be
used at runtime to affect workflow behaviour.

• A workflow state should be able to invoke any program that is installed on
the machine that is running that workflow state.
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• A workflow state should be able to interrogate the environment that it is
running on i.e. check for presence/absence of certain files, communicate with
a database, access URLs on the Internet.

• Any number of transitions should be able to enter or leave a state.

• It should be possible to render a graphical representation of the workflow as
an image.

• It should be possible for different states in a workflow to exchange information.

Deterministic Behaviour

Scientific reproducibility is a key concern that needs to be maintained in order
for the system to be usable in the context of scientific analysis. Reproducibility,
specifically, refers to the requirement for a user to be able to produce the exact
same result as reported by another user using the same workflow definition, input
files, and computing environment. While certain algorithms that may be executed as
part of a workflow state like Expectation Maximisation[201], or Stochastic Gradient
Descent[202] behave in a non-deterministic manner where exact reproducibility of
results may not be possible, the workflow system itself should not introduce any
stochastic components when encoding workflow structure.

Finite Run-Time

The directed graph structure allows for transitions back to a previously visited
vertex, thus creating graph cycles. Although this improves the expressiveness of the
structure it is generally undesirable in the context of workflows as such a workflow
may end up in a perpetual loop within the cycle requiring human intervention to
diagnose and rectify at run-time. Although it is generally impossible to guarantee a
finite run-time for a workflow due to the possibility of any underlying computational
algorithm itself getting stuck in a perpetual loop or resource deadlock, we would like
to rule out such a possibility at least from the perspective of workflow structure.
Thus, we place an additional constraint on the workflow definition to be a Directed
Acyclic Graph (DAG). Although this complicates somewhat the encoding of use
cases where certain tasks need to repeated a number of times, these use cases are
generally still attainable via programmatic generation of a series of states or using
sub-graphs and gives us the added comfort of ruling out infinite loops where possible.

Analysis Configuration

A scientific analysis typically needs to be configured and parametrised at multiple
levels. When considering different types of parametrisation required, 3 distinct levels
of parametrisation can be identified. These are:
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Workflow level – configuration that applies to a particular workflow regardless of
which analysis it is used on. This may include things like paths to the location
of certain programs used by the workflow, or their general invocation strings,
or certain reference values.

Analysis level – this includes values that may be different from one analysis to the
next but are not different between samples under the same analysis. Examples
of such configurations are: common flags to pass to tool invocations, where to
store analysis results, where to look up reference data sets.

Execution level – these parameters differ even from one invocation of a given
workflow under the same analysis to the next invocation. The most common
instance of such a parameter is the set of names of input files that need to be
processed by the workflow representing one sample.

It is natural to view these configuration levels as a three level hierarchy where
Analysis configurations expand on and override Workflow level configurations, and
Execution level configurations expand on and override Analysis level configurations.

In order to successfully configure the workflow system it is necessary to be able to
specify and permanently store such configurations in a format that is both human-
and machine-readable. Thus, a user who is conceiving a particular analysis should
be able to author a set of configurations that embody the nature and specifics of the
analysis being performed. These configurations should then be easily transferable
to another individual or system instance for reproducibility purposes. Once the
configuration of the system is fully specified the user should be able to launch their
analysis according to this specification.

At run-time, the workflow system should be able reconstruct one effective config-
uration from all levels of the configuration hierarchy and apply it appropriately.

3.1.5 Workflow Engine

A Workflow Engine is necessary for the set of workflow definitions to be executable
on a compute cluster. This workflow engine needs to be able to fulfil the following
broad set of requirements:

• Workflow parsing and translation

• Workflow state management

• Workflow scheduling

• Workflow execution
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Workflow Parsing and Translation

While a workflow itself encodes the structure and sequence of computational steps
that need to be performed, the workflow engine needs to be able to parse such a
workflow definition and translate it into a set of commands that can be runnable on
a real machine. To aid scalability it is desirable for the workflow to be broken down
into a set of tasks at this stage that can be run on different physical machines. The
workflow engine then needs to be responsible for producing this set of uncoupled
commands from a monolithic workflow definition.

Workflow State Management

Workflow state management encompasses concerns of how to keep track of workflow
definitions, including their versioning, as well as the status of various workflow in-
stances. The workflow engine, then, needs to keep a registry of workflow definitions
where, along with the workflow code and an identifier, the user can record useful
metadata related to that workflow, such as - workflow version, author, owner, cre-
ation date, whether the workflow is enabled, etc. This registry is the authoritative
source of information on what workflow capabilities a particular deployment of the
workflow system has, and every new workflow, or update to an existing workflow
must be recorded within this registry.

Furthermore, a particular version of a workflow definition may give rise to any
number of workflow instances i.e. particular invocations of the workflow on a set
of inputs and within the context of an analysis. Each instance may be in one of
a number of different states, such as - Stopped, Running, Queued, Completed, or
Failed. The workflow engine is responsible for keeping track of all of the workflow
instances for a given workflow, and their states, and is responsible for transition-
ing the workflow instances from one state to the next, based on the preconditions
for each such transition. These state transitions are not to be confused with the
state transitions that are encoded within the workflow definition, as the workflow
definition state transitions are custom to each workflow and encode the logic of the
underlying scientific analysis, whereas the workflow instance state transitions and
their conditions are standard for all workflows and workflow instances and describe
the general workflow lifecycle. As with the metadata recorded for workflow defi-
nitions, the workflow engine should also record metadata associated with workflow
instance state transitions, the most important of which is the time-stamping of all
such transitions.

Workflow Scheduling

Once a workflow definition is parsed and translated into a series of runnable tasks,
the workflow engine needs to be able to schedule these tasks for execution as ap-
propriate. A Scheduler component within the engine needs to be able to match up
two sources of information - availability of computational resources, and availability
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of runnable tasks, to produce a schedule i.e. a set of task-to-resource assignments
within an appropriate timeframe. In order to accomplish this the Scheduler needs
to be able to carry out a number of tasks, as detailed below.

To ascertain availability of computational resources the Scheduler needs to be
able to communicate with all machines within the cloud computing cluster that
are designated for running tasks. Furthermore, the scheduler needs to be able to
interrogate the state of these machines to determine what the current level of load
on each machine is, and whether the machine can accept more load in the form of
new tasks. As the load level of each machine is of a dynamic nature, and is based on
the completion of currently running tasks, the Scheduler needs to be in a constant
state of communication with the entire compute cluster, in order to maintain an
up-to-date picture of resource availability.

To establish a list of runnable tasks the Scheduler needs to iterate over all currently
running workflows and determine the state of execution within them. As tasks are
completed within each workflow instance, other tasks that are downstream from
them in the workflow definition may become runnable. The scheduler should then
determine for each workflow instance what its set of currently runnable tasks is,
based on the structure of each workflow definition and the current state of the
workflow instance.

One important concern within the realm of workflow scheduling is the concept
of workflow and task priority. It is natural to think that not all workflows, and
not all workflow tasks have the same priority i.e. some are more important than
others and should, thus, have precedence when it comes to scheduling. It is then
important for the Scheduler to be able to incorporate the concept of priority into
the task scheduling decisions that it is making in order to meet user requirements.

Armed with a prioritised list of runnable tasks and a list of available resources
the Scheduler needs to produce as set of task-to-resource assignments that can be
used for workflow execution.

Workflow Execution

The purpose of a workflow engine, at its core, is to execute workflows, thus, a set of
execution capabilities is required. The sections above describe the requirements for
parsing and translating a workflow into a set of runnable tasks, managing their state,
and scheduling task execution according to its priority and resource requirements.
The Execution component of a workflow engine needs to handle the actual running
of tasks that have been scheduled.

Each machine in the cloud computing cluster that is part of the workflow system
needs to be able to accept from the workflow scheduler a task execution assignment
that encodes the details of the actual task that needs to be run. The task itself
may consist of any number of computational steps. The Execution component is
then responsible for transitioning a task from the Scheduled state to a Completed
or Failed state, and carrying out the computational steps encoded within the task
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definition. This typically involves running other programs, collecting their return
statuses, and execution timestamps and relaying this information to the Workflow
State Management component.

When the Execution component encounters errors during task runtime it should
be able to not only collect comprehensive information about the error condition, but
should also be able to retry running the task without necessarily failing the overall
workflow instance.

3.1.6 System of Record

One of the key requirements for a workflow system to be used in a scientific context
is reproducibility. This concept was referenced earlier when describing the desire for
a workflow to behave deterministically where possible. Another important factor
that affects reproducibility is the method by which the course of a scientific analysis
is encoded. We thus need an accurate system of record that keeps track of the
following information:

• The various analyses that are undertaken

• Workflows that are executed as part of each analysis

• Samples that are part of the analysis

• Overall system configuration

For each of the items above it is important to capture and permanently store a
number of vital fields such as names, and unique identifiers, owner, version, and
timestamp. Then, when the results of such an analysis are used in a scientific
publication it is enough to provide the unique identifier of this analysis to be able
to recover the technical details that will aid in reproducing analysis results by a 3rd
party.

3.1.7 Troubleshooting Errors

One of the inevitabilities of large scale computing is the occurrence of error con-
ditions. The probability of an error being encountered in a unit of time increases
together with the complexity of an analysis being performed and the amount of
computational resources being utilised. In a traditional HPC-based scientific com-
puting centre responsibilities for detecting and handling errors are divided between
the end user who is responsible for errors that occur in their data or algorithms,
as well as their encoding of cluster compute jobs, and the cluster IT personnel who
are responsible for any errors that are caused by the overall software and hardware
infrastructure failures.
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Although, it appears as if this division of responsibilities favours the end user by
relieving them of the need to handle infrastructure issues, it has a notable downside.
The underlying infrastructure and run-time environment are opaque to the end user
who is only free to submit compute jobs and collect their results. On the other hand,
the majority of errors (of any kind) manifest themselves as compute job failures and
it is up to the end user to discern which of these are problems of their algorithm
and which are problems of the infrastructure. Because of the opacity of the runtime
environment, the end user has few tools at their disposal to be able to accomplish
this task effectively and can spend significant effort troubleshooting issues that are
outside of their domain of responsibility before being able to hand the incident
resolution over to IT.

By contrast, in a cloud computing environment the end user has ownership of the
health of the entire virtualised system including the infrastructure and the workloads
that are running on it. This alleviates the issue of environment opacity described
above but places a slew of new requirements on the operator of such a system when
it comes to management of error conditions. Methods for detection and handling of
errors differ depending on the source of the errors and we describe these in further
detail below.

In general the following sources of error are identifiable and require appropriate
handling:

• Errors within underlying scientific algorithms or the data they operate on

• Errors within the workflow definition

• Errors within the workflow engine

• Errors within the virtual infrastructure

• Errors within the bare metal hardware/software infrastructure and virtualisa-
tion layers

Errors Within Algorithms or Data

Most scientific software is experimental by its nature and is developed by relatively
few individuals compared to industry software, thus it is reasonable to expect that
error conditions should occur within such software with a higher frequency than
within mature and stable enterprise software. There are two standard mechanisms
by which a program can return error conditions (whether they arise due to an error
within the program or bad data) – return value, and log files. Both of these should be
collected to have the most accurate representation of the state of running algorithms.

Additionally, multiple algorithms running on the same virtual machine will com-
pete for its limited resources and sometimes, despite best resource planning efforts,
will deplete them, with adverse effects on system performance. For instance, a sys-
tem that runs out of physical memory may start using virtual memory and causing
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excessive memory swapping, thus severely degrading performance. Although some
of the information necessary to diagnose such conditions may be available via sys-
tem logs, it is definitely not comprehensive, and will typically allow the operator to
deal with issues in a reactive rather than proactive manner. It is desirable, instead,
to be able to actively monitor the trends in resource utilisation within the cloud
computing cluster and deal with potential resource bottlenecks before they arise.

The most typical resolution strategy for errors of this type would be to fix the
underlying algorithm and re-run it for all, or only the affected samples under study.

Errors Within the Workflow Definition

When creating workflows it is possible to introduce errors that will only manifest
themselves at runtime. Such errors will typically either cause a workflow task to fail,
thus failing the entire workflow, or will cause a workflow task to stall, preventing
further progress. The workflow engine needs to collect information about all failures
and present it to the end user on a management interface, as well as recording it in
the engine log files. Information about typical task runtimes should also be recorded
to aid identification of tasks that have stalled.

Such errors would typically be addressed by fixing the workflow definition and
issuing a new version of the workflow that will need to be re-run on all samples.

Errors Within Workflow Engine

As the workflow engine consists of a large number of running programs, any number
of these may encounter error conditions during their operation. Each program should
have a log file where such information can be gathered.

These errors would typically be addressed by patching the workflow engine or
possibly restarting services that got into a bad state and the workflows that are
mid-flight need to be resilient to such a situation.

Errors Within Virtualised Infrastructure

A cloud computing cluster may consist of hundreds of Virtual Machines, each ma-
chine in turn running hundreds of programs simultaneously. Given the large size of
the computational fleet it is not uncommon for entire Virtual Machines or significant
components thereof to fail, either by issuing an error signal or simply by becoming
unresponsive or unreachable on the network. A key source of information about
error conditions at the machine level is the operating system log file and it should
provide the necessary diagnostic information when an error signal is present. For the
cases when this signal is not present, however, and a VM simply stops responding a
more active monitoring system is required – one that will periodically communicate
with a Virtual Machine and collect its vital stats.
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Errors within the VM Infrastructure are typically resolved by either patching and
restarting services on the affected VM or by terminating and recreating the VM
from scratch. The workflow system needs to be robust to both of these resolution
strategies requiring only a minimal amount of work to be redone.

Errors Within Bare Metal Hardware/Software

As all cloud computing clusters represent virtualised hardware that is running on
some bare metal server in a particular data center it is sometimes the case that the
underlying hardware or software fails, thus rendering the Virtual Machine unusable.
It usually not possible for a cloud end user to gain visibility into the bare metal
layer, and the responsibility for detecting and handling such issues generally falls
on the cloud operator. From the user perspective the VM simply fails or stalls,
and although the user requires methods for detecting such conditions, the resolution
strategy is typically to recreate the VM again. The size of the data center for a
typical cloud provider is such that if the underlying issue only affects one or a small
number of bare metal servers, the probability of the new VM being scheduled on an
affected server for the second time is quite low and, thus, computation may resume
normally. When large scale network or other hardware issues affect the entire data
center it may be necessary for the user to tear down and recreate the entire cloud
computing cluster.

Depending on the magnitude of the issue in question, the resolution strategy may
involve recreating individual VMs or the teardown and re-creation of the entire work-
flow system. In order to avoid significant data loss in this case effective data backup
and recovery strategies are required on behalf of the workflow system operator.

Based on examining the typical sources of errors at various layers of the system
above, the following error detection and mitigation mechanisms can be identified:

• System Monitoring

• Management Interfaces

• Log Files

• Self-Healing

System Monitoring

As previously noted, error conditions often do not occur spontaneously but instead
are a result of contention for finite resources by various programs, or a byproduct of
events outside the scope of the workflow system itself. Moreover, error conditions do
not always result in program crashes that can be recorded to a log, but can instead
cause a system to stall, become unresponsive, or unreachable on the network. If
the underlying cause of the issue is identified in time before the system reaches a
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critical state it is at times possible to gracefully recover from the situation without
reaching a crash and with minimal loss of work or productivity. To make this
detection possible an active monitoring system is required to be deployed on the
cloud computing cluster. The job of such a monitoring system is to keep track
of all Virtual Machines that are part of the cluster and collect monitoring metrics
indicative of the health of each.

The following set of key metrics need to be supported:

• CPU load

• Memory load

• Free memory

• Page faults

• Swap size

• Free disk

• Disk latency

• Disk throughput

• Disk IOPS

• Open files

• Network latency

• Network throughput

• Number of open sockets

• Number of database clients

• DB Transactions per second

• Transaction rollbacks

• DB number of connections

• DB Error count

• HTTP errors

• Queue size

• Queue spillover

In order to be able to detect minute conditions that adversely affect the health
of the cluster the monitoring system needs to sample all of the above metrics from
each VM with a sub-second frequency. Furthermore, to enable detection of trends
in system health, the monitoring system needs to retain collected data over a period
of time that is as long, or longer, than a typical workflow execution time (which in
the case of scientific workflows can be days or even weeks). Since a Virtual Machine
that is experiencing an error condition may become sluggish or entirely unresponsive
it is instrumental that the metrics data that is being collected for each machine is
quickly shipped off to another machine that can house and aggregate all such data
across the cluster.

In order to allow end users to make use of the collected metrics for decision making
the monitoring system needs to have graphing capabilities so that evolving trends
in system health are made most evident. A set of graphical dashboards should
be available to the user that demonstrate current and past cluster state based on
the metrics above and a configurable time horizon. These dashboards will then be
used during the course of system operation to identify potential issues and guide
preventative or mitigative measures.
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Monitoring Alarms

Because actively monitoring cluster state for potential issues via a set of dashboards
is a time consuming task that may be prone to errors on behalf of the human observer
an additional layer of the monitoring system should provide automatic notifications
to the end user when the system enters a dangerous state such as high memory
usage or CPU thrashing.

The user should be able to define a set of rules that express the conditions that
are indicative of a system issue and require human intervention. Each rule should
specify a metric or set of metrics, a set of thresholds, and an action. The monitoring
system should continuously evaluate the metrics specified in each rule against the
specified threshold, and when the metric value breaches the threshold the system
should raise an alarm with the end user via the specified action.

Because large scale events like network outages may cause many metrics to breach
their stated thresholds at the same time the Alarm System should aggregate all
similar events into a single event, where possible, to avoid overwhelming the end
user with notifications that all have the same root cause.

Management Interfaces

Keeping track of the various moving pieces of a distributed workflow system requires
a set of management interfaces so that the user can get an overview of overall system
state and maintain control of the system. Such interfaces should show all of the
Virtual Machines that are part of the cluster, what capabilities each machine has,
what workflows are currently active, and state of any databases or queues that are
part of the system. When error conditions occur within a particular sub-system,
such as during the execution of a workflow task, these errors should be made visible
on the corresponding management interface for that sub-system, along with any
relevant details related to the error. Thus, a workflow management interface should
show any failed tasks and provide remedial options to the user, directly on that
interface, such as retrying or deleting a particular task or rescheduling the entire
workflow. An interface that displays Virtual Machines should indicate when any
of the VMs become unreachable or unresponsive and allow the user to delete and
recreate the VM.

Log Files

As is evident from previous sections that describe possible sources of errors in the
system, one of the most frequent mechanisms for recording error conditions is writing
to a log file. While every Virtual Machine has a system-wide log file that contains
error messages from many applications it is also customary for most applications to
write their own log files. Since the workflow system consists of many components,
many log files will get generated. Making use of the bulk of log data is typically
produced by a large size cloud computing cluster is a major problem.
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In order to make the log data usable to the system operator it is required to
harvest and aggregate all relevant logs from each VM that is part of the compute
cluster. Since a VM may become unresponsive due to an error condition and the
information on this condition may reside in a log file, it is necessary to run an agent
on all VMs that will periodically ship the logs to another location for aggregation.
The storage location for logs should have substantial capacity, as a large scale cloud
computing cluster can generate many TB of logs per day.

The logs need to be parsed according to their format and information relevant to
any conditions of interest should be extracted, along with necessary metadata, such
as the host IP address and timestamp. The parsed output should then be aggregated
by error condition to produce summary, as well as detailed, reports to present to
the user in the form of dashboards. Parsed log information should be indexed and
retained for further querying when a user decides to investigate a particular issue
they discovered via the dashboard.

Self-Healing

Although comprehensive monitoring capabilities make it easier for humans to iden-
tify when and where error conditions occur, the cost of the human intervention
required to interpret and act upon the monitoring data scales with the number of
VMs employed on a project and can thus constitute a large component of a project’s
operating costs. In order to mitigate these costs and allow the efficient operation of
large virtual clusters with minimal human intervention it is desirable to have a level
of automation within the error detection and remediation systems such that adverse
conditions that affect the cluster can be automatically detected and resolved by the
system only alerting the human operator when automated action is impossible or
fruitless.

The self-healing capabilities of the system should thus include the ability for the
user to define a set of rules that specify normal and exceptional operating conditions
of the system with respect to a predefined set of metrics such that issues can be
identified in an automated fashion. This functionality should exist at multiple levels
of granularity to facilitate the detection of a variety of issues, such as:

Infrastructure issues - Issues that affect the underlying VMs and can be detected
via low level metrics related to high CPU utilisation, memory, network band-
width consumption, etc.

Supporting Services issues - Issues that affect the services of the framework
itself, such as databases, queues, etc., detected via metrics on the individual
services.

Payload issues - Issues that affect actual scientific payloads that are being exe-
cuted and signal defects within the algorithms that are being executed. These
require instrumentation of specific metrics for each type of algorithm that is
being run in order to capture the requisite performance details.
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A mechanism should exist that can perform corrective actions in an automated
fashion when monitoring rule conditions are breached. This mechanism should be
capable of facilitating a variety of repair tasks, such as rebalancing work onto dif-
ferent hosts, restarting failed services, adding hard-drive space, or destroying and
rebuilding entire VMs. When automated remedial action is not possible or does not
succeed the system should be able to notify human operators in a proactive manner.

3.2 Non-functional Requirements

Alongside the functional requirements for the system that have been detailed in the
previous section there are a number of non-functional requirements that need to be
considered. Chief among these are:

• Scalability

• Availability

• Ease-of-use

• Interoperability

3.2.1 Scalability

A major reason for utilising cloud technologies for scientific computing is the need
to compute over large data sets, ones that would otherwise be impractical or ex-
tremely costly to compute over. Thus building a system that can scale with the
demand for computational resources is one of the key non-functional requirements
for a successful scientific workflow framework. It is worth noting, that given cloud
computing’s prevalent cost model of charging for usage by the hour or minute it is
equally important to be able to scale the system in both directions i.e. up when
about to launch a massive compute job, and down when the major computation is
finished, in order to operate the system in a cost-effective manner.

For purposes of scalability the workflow framework can be thought of as consisting
of two types of components, which scale due to different factors:

Worker VMs - These Virtual Machines are the computers that are responsible for
running actual scientific algorithms that are encoded within workflow tasks.
Different configurations of worker VMs may be required depending on what
type of algorithm is invoked - ones with more RAM, CPU, disk, etc. The
number of worker VMs required scales with the resource demands of each
workflow and the number of samples that are under analysis. The majority of
VMs on the cluster will be of this type. When no active workflows are present
all worker VMs can be destroyed. Creating new worker VMs when the need
arises should also be very easy within the workflow system.
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Control VMs - Control VMs are Virtual Machines that are responsible for housing
the various control components of the workflow system such as the Workflow
Scheduler, Metrics Store, Management UIs, etc. Depending on the function
served by each Control VM it can scale based on the number of Worker VMs,
granularity of workflow tasks, or number of users of the system. Although it
should be possible to scale the number of Control VMs up and down depending
on need, a baseline number of Control VMs will be running for the duration
of the cluster lifetime.

Based on the different types of components that compose the workflow framework
the following scaling use case can be identified and need to be handled:

• Bootstrap a new installation into a minimal working configuration

• Scale up worker fleet to meet anticipated resource demand increase

• Scale down worker fleet to match resource demand decline

• Scale up control VMs to meet anticipated resource demand increase

• Scale down control VMs

• Destroy entire compute cluster

Bootstrap New Installation

When installing on new clouds or Availability Zones it should be possible to easily
install a basic working system with all of the necessary control and worker VMs to
be able to handle some minimal amount of computational load.

Of key importance is the distinction between systems that scale horizontally and
systems that scale vertically. For systems that scale horizontally, it is relatively easy
to scale up by adding new machines. Systems that scale vertically, such as database
servers, do not easily allow adding new machines and instead require upgrading
the resources within a single machine in order to scale up. It is generally more
challenging and time consuming to scale vertically than horizontally.

When specifying a minimal installation it is important to set up those machines
that scale vertically to a size that is larger than what is required by minimal system
usage in order to avoid having to perform frequent upgrades. All databases and data
stores fall into this category because of the complexity of upgrading the underlying
storage once that database is in service.

Scale Up Worker Fleet

When the workflow framework is required to be able to perform more computation
per unit time than it currently can, it should be easy to scale up the worker fleet by
any number of VMs without interrupting existing jobs or requiring code changes.
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Scale Down Worker Fleet

When demand for computational resources wanes, it should be easy to destroy any
number of idle worker VMs without interrupting presently running jobs or requiring
code changes in order to minimise operating costs.

Scale Up Control VMs

Based on an increased number of worker VMs or increased number of users of the
system it should be easy to scale up the Control VMs to maintain smooth operation
of the cluster.

As before, it is important to delineate between vertically and horizontally scaling
systems. For horizontally scaling systems, such as web-servers or distributed queues,
scaling up may require bringing up a second or third server and setting up a load
balancer. For vertically scaling systems, scaling up means migrating the existing
system to a larger VM (with more memory, or cores), or migrating an existing data
store to a larger storage device. Thus, as before, when scaling up vertically scalable
systems, it is important to scale up appropriately to be able to handle all foreseeable,
not just immediate, usage.

Scale Down Control VMs

Most Control VMs (for instance those serving data stores) tend to only grow in size,
thus not ever requiring scaling down. It should be possible, however, to scale down
certain components, such as web servers hosting management UIs, when a prolonged
period of low activity is anticipated.

Destroy Cluster

When a long period of downtime is expected it may be required to destroy all of
the active VMs in order to avoid paying for underused resources. A process should
exist for detaching and conserving all of the active data stores, so that they can be
reattached during the next bootstrap. All the appropriate configurations that are
necessary for bootstrap should also be retained. At that point it should be safe to
terminate all active VMs.
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3.2.2 Availability

Availability refers to the definition of the circumstances under which the system as
a whole, or its components, are able to perform their intended duties.

Although a scientific workflow system is an important computational aide it typ-
ically does not constitute a life-critical device that has extremely high availability
requirements, such as those that might be found in a hospital life-support, or aero-
nautical system. Nevertheless, it is reasonable to expect that under normal oper-
ation, the system will be functional on a 24 hour, 7 days a week basis, and this
intended schedule should inform system design.

Additionally, the following concerns regarding Availability should be considered:

• Service Redundancy

• Service Upgrades

• Backup and Disaster Recovery

Service Redundancy

Some components of the workflow system are such that if they crash or go offline,
the system will continue functioning, although, perhaps, in a reduced capacity -
Metrics Monitoring, and Log Aggregation are examples of such components. Other
components, like Workflow Scheduler, Workflow State Management, and others,
were they to go down, would bring down the entire operation. Thus, in order to
maintain service availability during adverse events, it is important to build service
redundancy into the design of the system.

Typically, Service Redundancy takes the shape of having a second standby server
that is able to stand in place of the main server if it was to go offline. Multiple levels
of standby are available, and should be used as appropriate:

Cold Standby - Set up the backup machine when primary machine fails.

Warm Standby - Backup machine is set up and will be powered on when primary
machine fails.

Hot Standby - Backup machine is set up and powered on, traffic will be diverted
to it when primary machine fails.

Both Active - Both primary and backup are actively serving traffic in a load bal-
anced manner.
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Service Upgrades

Upgrading software is the leading cause of planned service outages. From a customer
perspective, although the disruption is planned, and warning can be given, it is still
a disruption and thus should be avoided where possible.

It is not always possible to upgrade software without a service interruption, but
utilising standby servers and appropriate load balancers can increase the number of
deployments that are performed without a disruption to the users. Thus, service
upgrades should be scripted such that a backup server is brought online, to which
active traffic will be diverted by the load balancer while the main service is upgraded.
Once the main server is upgraded, the load balancer should switch traffic back and
allow the backup server to be upgraded, and brought back offline where appropriate.

Backup and Disaster Recovery

In the event of a catastrophic system failure it should be possible to recover as
much of the data as is warranted by the scientific use case the system is being
utilised for, and resume normal operation as soon as possible. Data backup and
recovery procedures should be put in place for all of the main data stores, especially
those housing workflow scheduling and state management facilities as loss of these
may potentially mean not only redoing the in-flight analyses but also past ones, as
otherwise reproducibility would be lost.

3.2.3 Ease-of-use

Cloud computing is a relatively new technology and coupled with the complexity of
a distributed workflow system can create a learning curve that would hinder system
adoption. To help potential users through the learning curve and encourage a wider
adoption of the product the following measures are required:

• Detailed User Guide

• Detailed code comments

• Standardised code style

• Hands-off operation where possible

• Contextual help

• Intuitive Management UI
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3.2.4 Interoperability

Because data needs to be fed into it and results need to be retrieved out of it, a cloud
based distributed workflow system does not exist in isolation from the rest of the
world. Thus, a level of interoperability is required whereby systems upstream and
downstream from the workflow framework need to be able to successfully interact
and exchange information with the framework.

The most common need for interaction is when feeding data into the system.
Since sample management is a complex issue on its own it falls outside of the scope
of requirements for the workflow framework and typically resides within the realm of
Laboratory Information Management Systems or Data Repositories. Yet, samples
needs to be made available to the framework in order to enable computation. Thus,
the framework needs an interface whereby locations of samples under analysis can
be specified.

Another use case for interoperability is the desire to make the framework amenable
to automation via scripting, so that, for instance, new samples that come into the
laboratory can be automatically scheduler for a battery of standardized workflows
to be performed, or a new algorithm version becoming available will automatically
trigger a re-running of all samples under study using the new tool.

In order to enable this level of interoperability a set of APIs must be developed
that provide all of the main framework operations through an interface that another
program can interact with.

User Interfaces developed for the framework should utilise the same set of APIs
where possible for consistency purposes, and to ensure that API code is frequently
executed.

3.3 General Design Principles

To address the need for a large-scale cloud-based distributed workflow system that is
suitable to scientific computing applications we present the design of our framework
called Butler - a software toolkit built to implement the requirements specified in
the Requirements chapter of this document.

Although a detailed description of system Architecture and Design follows, we
begin by describing several guiding principles that have been adopted in the design
of this system:

• Existing Open-Source Software

• Service Orientation

• Cloud Agnostic

• Open-Source License
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3.3.1 Existing Open-Source Software

The scope of the requirements for a workflow system of the nature described in this
work are quite vast and building such a system from scratch would take years of
effort from an entire software team. On the other hand, many of the requirements of
the system can be readily met via existing software products. Although commercial
software products tend to have better technical support, in the interest of cost
savings, and in order to keep the entire solution open source we have opted to use
all Open Source Software components when building Butler.

Since keeping the amount of new code that needed to be written to build Butler to
a minimum was one of the cornerstones of system design, a very substantial portion
of the overall system consists of 3rd party OSS frameworks that are integrated
together to produce Butler. These include:

• Hashicorp Terraform[203] (https://github.com/hashicorp/terraform) - for
Cluster Lifecycle Management

• Hashicorp Consul[204] (https://github.com/hashicorp/consul) - for Service
Discovery and Service Health Checking

• Saltstack[205] (https://github.com/saltstack/salt) - for Cluster Configuration
Management

• Apache Airflow[206] (https://github.com/apache/incubator-airflow) - for
Workflow Management

• RabbitMQ[207] (https://github.com/rabbitmq/rabbitmq-server- for Queuing

• Celery[208] (https://github.com/celery/celery) - for Task Scheduling

• Collectd[209] (https://github.com/collectd/collectd) - for Metrics Collection

• InfluxData InfluxDB[210] (https://github.com/influxdata/influxdb) - for Met-
rics Storage

• Grafana[211] (https://github.com/grafana/grafana/) - for Metrics Dash-
boards

• Logstash[212] (https://github.com/elastic/logstash) - for Log Harvesting

• Elasticsearch[213] (https://github.com/elastic/elasticsearch) - for Log Index-
ing and Aggregation

• Kibana[214] (https://github.com/elastic/kibana) - for Log Event Dashboards

These products were selected based on their ability to fulfil the specified require-
ments as well as their overall viability as Open Source projects. Viability was gen-
erally evaluated based on the following set of criteria:
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Table 3.1: Open Source Framework Viability

Product Number of
Stars

Number of
Contributors

Commits in last
12 months

Terraform 16596 1260 4543
Consul 15711 494 1129
Saltstack 9852 2238 11641
Airflow 12056 780 1394
RabbitMQ 5637 79 1038
Celery 12258 710 854
Collectd 2212 356 1104
InfluxDB 16179 370 2299
Grafana 28414 858 2952
Logstash 10090 397 598
Elasticsearch 40623 1197 6279
Kibana 11654 352 3409

• Number of Github stars

• Number of repository contributors

• Number of commits in the past year

At the time of writing (April 2019), these metrics are evaluated as in Table ??.

3.3.2 Service Orientation

One of the key requirements for Butler is Scalability i.e. the desire to be able to scale
the amount of resources utilised by the framework up and down arbitrarily according
to analysis needs. Applications that are monolithic in nature suffer from scalability
issues due the large number of competing constraints within application components.
To help alleviate this concern we take a Service Oriented approach in the design of
the system. Butler is composed of a number of loosely coupled services each of which
implements a particular function. Because the services are decoupled, each service
can be optimised and scaled individually, according to user requirements. On the
other hand, the complexity of the overall application is increased somewhat because
of the need to deploy and manage separate services that are in communication with
each other.

Another benefit of Service Orientation is the ability to independently upgrade
components of the software without affecting other running components. As an
example, the Collectd metrics collection component can be patched independently
of the rest of the system, thus increasing system Availability.
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3.3.3 Cloud Agnostic

Because of its early entrance on the cloud computing scene, the AWS Cloud by
Amazon.com Inc currently enjoys a significant lead in this market segment, having
over 30% of the entire public cloud-computing market:

Figure 3.2: Cloud market share by vendor (taken from [215])

Each of the top 4 cloud service providers - Amazon, Google, IBM , Microsoft, as
well as smaller cloud providers that use the OpenStack platform, provides not only
the basic IaaS offering, but also an entire ecosystem of cloud based components - a
PaaS, including networking, queues, databases, etc. Thus, it may be tempting to
select one of these providers and build an entire software system that is based on a
single vendor’s offerings. This has the potential benefit of significantly simplifying
system architecture and providing a single point of contact for troubleshooting.

It is, however, our opinion that taking such an approach would limit the appeal
of the system to a wider user base. This opinion is driven by several considerations:

• The cloud computing market segment enjoys a great deal of growth and sig-
nificant shifts in growth year-over-year as evidenced by Figure3.2, thus com-
mitting to a particular platform that is seen as a current market leader today,
may limit the usability of the software when the chosen vendor falls out of the
race in the future.

• Because the market segment is highly competitive, end users can benefit sig-
nificantly from limited time deals offered to them by cloud providers if they
are flexible about what platform to deploy on.
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• Selecting one vendor induces vendor lock-in, possibly forcing adoption of infe-
rior technologies to stay consistent with vendor choice.

• Public and Private clouds typically operate on different software stacks. The
nature of the data that is subject to scientific analysis may dictate where the
analysis is able to proceed.

On the other hand, supporting multiple cloud vendors has its own set of draw-
backs:

• Handling multiple APIs for different vendors increases system complexity.

• A solution that is vendor agnostic may lack certain capabilities that are only
available to a subset of the vendors.

• Some code duplication is inevitable when dealing with multiple platforms.

Based on considerations above we have taken the path of creating a cloud-agnostic
system, i.e. one that will run on any major cloud providers, public, or private.

3.3.4 Overall System Design

Overall, the Butler system can be thought of as being composed of four distinct
sub-systems, each of which fulfils a number of requirements from Section 3.1. These
sub-systems are:

Cluster Lifecycle Management - This sub-system deals with the task of creat-
ing and tearing down clusters on various clouds, including defining Virtual
Machines, storage devices, network topology, and network security rules. It
implements requirements from sections 3.1.1, and 3.1.2.

Cluster Configuration Management - This sub-system deals with configura-
tion and software installation of all VMs in the cluster. It implements require-
ments from section 3.1.3.

Workflow System - The Workflow sub-system is responsible for allowing users to
define and run scientific workflows on the cloud. This sub-system implements
requirements from sections 3.1.4, 3.1.5, and 3.1.6.

Operational Management - This sub-system provides tools for ensuring contin-
uous successful operation of the cluster, as well as for troubleshooting error
conditions. It implements requirements stated in section 3.1.7

Each sub-system is described in full detail below.
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3.4 Cluster Lifecycle Management

Before any computation can happen on the cloud a cluster of Virtual Machines is
needed. The scope of Cluster Lifecycle Management includes:

• Defining hardware configuration for VMs

• Defining initial basic software configuration for VMs

• Defining storage devices

• Defining network topology

• Defining network security

• Creating and Tearing down VMs

Detailed requirements for these capabilities are specified in sections 3.1.1, and
3.1.2.

To fulfil these requirements in a cloud agnostic manner Butler utilises a framework
called Terraform, developed by Hashicorp.

3.4.1 Terraform

Terraform is an Open Source framework for cloud agnostic cluster lifecycle man-
agement, that has been built by Hashicorp Inc., a San Francisco, California based
company, and is distributed via a Mozilla Public License. The source code for Ter-
raform is hosted on Github at https://github.com/hashicorp/terraform, and at the
time of this writing (September, 2016) the latest release of the software is version
v0.7.3

Terraform uses a proprietary human and machine readable file format for specify-
ing cluster configurations that is called HashiCorp Configuration Language (HCL).
Using this language the end user can define a number of constructs for cluster man-
agement, most important among them are - providers, resources, and variables.

Terraform Providers

Terraform providers enable the framework to talk to different cloud provider APIs.
Each provider is responsible for translating HCL configurations into cloud-specific
API calls. At the time of this writing the following Providers are available:

• AWS

• CenturyLinkCloud

• CloudFlare

• CloudStack
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• Cobbler

• Datadog

• DigitalOcean

• DNSimple

• Google Cloud

• Heroku

• Microsoft Azure

• OpenStack

• SoftLayer

• Scaleway

• Triton

• VMware vCloud Director

• VMware vSphere

Typically in order to use a particular provider the user needs to insert a provider
block into their configuration file where they specify details relevant to commu-
nicating with the particular API in question, such as - endpoint URL, username,
password, SSH keyname, API key, etc., as seen in Figure 3.3.

Figure 3.3: Example Terraform provider configuration

Once the user has specified a provider they can declare provider-specific Resources
that define their cluster.

Terraform Resources

Resources represent different objects such as VMs, network routers, security groups,
disks, etc., that the user can create on a given cloud. Each resource has a set of
configuration options that can be specified to customise its behaviour. An optional
count attribute defines how many instances of the resource need to be created in
the cluster.

Figure 3.4: Example Terraform AWS instance configuration

Most Terraform configuration tasks involve configuring resources.
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Terraform Variables

Terraform variables are similar to variables in any other programming context. They
consist of values assigned to labels, that can then be used for lookup elsewhere.
Variables can be of string, list, or map type.

Figure 3.5: Example Terraform variable definition

Users typically specify variables in a separate configuration file and then use them
throughout their cluster definition.

One special case of using variables comes from specifying secret values such as
passwords or secret keys that the use would not want to commit to a source repos-
itory. In this case, a variable can be referred to inside the configuration file, while
being defined as an environment variable on the machine that Terraform will be
executed on. The user prefixes the variable name with a special prefix – TF_VAR_,
which signals Terraform to parse the environment variable as a Terraform variable
and allow appropriate substitution at runtime.

Terraform Provisioners

When a Virtual Machine is created the user may want to place certain files on it or
run certain commands such as starting services or registering with a cluster manager,
in order to bootstrap it. This purpose is served by Terraform Provisioners, which
define code blocks that are executed on the target resource upon creation.

Terraform Installation

Terraform is installed via a binary file downloaded from the Hashicorp website or by
compiling the source code from github. It is a lightweight application that can be
run from either the user’s local machine, or from a special host on the target cloud
environment. The application consists of a terraform CLI that the user can inter-
act with by issuing shell commands. Typically users will combine their Terraform
configuration files (stored in a source code repository) with a set of locally defined
environment variables to set up and manage their clusters via the CLI.
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Figure 3.6: Example Terraform provisioner definition

Terraform Cluster Lifecycle

The key task of Terraform is to perform Create, Read, Update, and Delete on
cluster resources. Create and Update operations are accomplished by issuing a
terraform apply command at the shell, while the shell is pointing to a directory
with Terraform resource definitions. If the resources specified in the configuration
do not yet exist, they are created. If the resource definitions have been changed
since the last time terraform apply was run, they will be brought into a state
consistent with the latest definitions. This may involve updating existing resources
where possible, or recreating them, where an update is not possible.

Terraform determines what changes need to be made in order to perform a suc-
cessful Update via a file that is called a State file. This file specifies in a JSON
format the current state of all infrastructure managed by Terraform. Running
terraform apply causes the tool to inspect current state and compare it to the
target state, issuing any necessary commands to update current state to the target.

The Read operation simply displays the current Terraform state file via the
terraform show command.

The Delete operation is accomplished via the terraform destroy command.

Other commands allow the user to validate the syntax of their configuration files,
perform a dry run of resource creation, manually mark resources for recreation, and
others.
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3.4.2 Terraform Use in Butler

Butler comes with a set of Terraform configuration files that define templates for all
of the VMs that constitute a functional Butler cluster, as well as configurations for
network security. As previously stated a Butler cluster consists of Control VMs and
Worker VMs - templates for both are available. The users are expected to adapt
the templates as needed for their use case, providing their own credentials, cluster
size, and other configurations.

Example Configurations

Listing 14 demonstrates the Butler configuration file used to create 175 identical
worker VMs that differ only by their hostname.

The provider definition shows the procedure for setting up an OpenStack provider
as well as demonstrating usage of variables where user_name, tenant_name and
auth_url are expected to come from a separate variable definition file, and password
is expected to come from an environment variable.

The resource section shows definition of an OpenStack specific VM type
openstack_compute_instance_v2, which has attributes like image_id,
flavor_name, security_groups, network, etc. The connection definition within
the resource specifies how users will be able to connect to the newly created VMs.
In this case it is accomplished via SSH using passwordless key-based authentication
via a pass-through bastion host on the cloud.

Of further interest is the mechanism by which the creation of multiple instances
of the same type is accomplished. The resource definition admits a count at-
tribute, which specifies how many instances need to be created. Furthermore,
a count.index property keeps track of which instance is being created at run-
time and can be used to provide unique hostnames to each instance as follows -
name = "\${concat("worker-", count.index)}".

Lastly, the provisioner section runs a set of commands that provide initial con-
figuration for the new host upon first bootup. These include installing and running
the Saltstack service, which is used for configuration management, setting up ma-
chine roles that determine what capabilities this VM will have in the cluster, and
telling the VM what the IP address of the cluster manager is.

Listing 15 demonstrates the definition of a security group under OpenStack. VMs
that are put into this security group will have two network security rules applied to
them - opening port 22 for SSH communication between hosts, and opening ports
4505-4506 to enable Saltstack communication.
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3.5 Cluster Configuration Management

Although a Cluster Lifecycle Management system like Terraform can create a Virtual
Machine using a machine image, and even run some initial configuration commands,
it is not enough to successfully manage the configuration of an entire large-scale
computational cluster. Machines in the cluster will have hundreds of programs
installed and configured on them, oftentimes with intricate interdependencies, and
inter-machine communication requirements. Moreover, different operating systems
will typically have different commands and mechanisms for installing and configuring
software, and it would be unnecessarily limiting to require the end user to commit
to a particular flavour of operating system. To help accomplish these tasks, as well
as detailed requirements from Section 3.1.3 we need to enlist the help of a Cluster
Configuration Management system.

Several open source Configuration Management systems are available on the mar-
ket today, the main options are:

• Chef

• Puppet

• Ansible

• Saltstack

Each system has benefits and drawbacks and a dedicated user base. Table 3.2
compares the github codebases for these products in terms of number of stars, num-
ber of contributors, and number of commits in the last year.

Table 3.2: Configuration Management Frameworks github summary

Product Number of Stars Number of
Contributors

Commits in last
12 months

Chef 5771 563 1861
Puppet 5272 513 1474
Ansible 36845 4359 7532
Saltstack 9852 2238 11641

As can be seen from the data, all four are fairly active and stable projects. Ansible
is the most popular tool. Both Puppet and, Chef come from the first generation
of configuration management tools having been initially released in 2005 and 2009
respectively, and suffering somewhat from having been trailblazers in the field. The
largest complaint against both systems has been their unnecessary complexity and
steep learning curve. Ansible and Saltstack, on the other hand, can be thought
of as the second generation of configuration management systems, first released in
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2012 and 2011, respectively. Both are based on simple to read and understand
YAML-based configuration files, and have generally enjoyed greater adoption in the
field.

For Butler we selected Saltstack to fulfil configuration management duties. The
chief reason for selecting Saltstack over Ansible was that Saltstack appears to per-
form better when managing large clusters, whereas Ansible is known to suffer from
increased lag in these scenarios. Since we anticipate to operate Butler clusters with
several hundred VMs at a time we settled our choice on Saltstack.

3.5.1 Saltstack

Saltstack is an open source product that has been developed specifically for large
scale configuration management. The key paradigm that Saltstack implements is
declarative configuration management. This means that the user specifies declara-
tively, in a configuration file, what state a particular Virtual Machine should be in
(in terms of installed and running software), and the Saltstack engine automatically
compares the desired state to the actual state and carriers out the necessary actions
to match the two. As an added benefit, it does so in an operating system agnostic
manner. In contrast to scripts that operate in an imperative manner via statements
like yum install apache or service httpd start, Saltstack files describe a de-
sired state with statements like service.running and package.installed. In the
first case, the script would try to install the package a second time, even if it was
present, whereas Saltstack first figures out whether the package is installed and only
installs it if it is missing.

Saltstack Architecture

The Saltstack architecture consists of a cluster of Minions that are managed by one
or many Masters. A Master is a Virtual Machine that acts as the authority on
configuration definitions within the cluster and issues commands that the Minions
run. A Master needs to have configuration definitions stored locally on its disk or
be available through a git repository. It runs a special salt-master daemon, and
requires certain network ports to be open for communication.

Minions need to know how to find the master on the network (by IP address).
Each Minion generates a unique key and presents it to the Master. Once a Master
accepts the Minion’s key there is a handshake and the Minion falls under the Master’s
control. The Minion runs a salt-minion daemon.

Each Minion can have a number of roles assigned to it and the Master main-
tains mappings between roles and configurations. Once the Master has determined
what roles a Minion has it can issue the necessary commands to apply relevant
configurations to the Minion.

113



CHAPTER 3. BUTLER - REQUIREMENTS AND ARCHITECTURE

Saltstack Data Model

The Saltstack Data Model has four main concepts - State, Pillar, Grain, and Mine.
We consider each in turn.

A Salt State is simply the definition for what state some piece of infrastructure
should be in. For instance, if we want some server in our cluster to be in the state
of running a PostgreSQL database we need to do the following:

1. Create a postgres user

2. Create a postgres directory

3. Download the postgres-server package

4. Install the postgres-server package

5. Initialise the database

6. Override default configuration settings

7. Start the server

The corresponding Salt state that accomplishes the same task looks as follows:

Listing 1: Salt state for setting up a PostgreSQL server.

1 install_server:
2 pkg.installed:
3 - name: postgresql95-server.x86_64
4

5 initialise_db:
6 cmd.run:
7 - name: /usr/pgsql-9.5/bin/postgresql95-setup initdb
8 - unless: stat /var/lib/psql/9.5/data/postgresql.conf
9

10 /var/lib/pgsql/9.5/data/postgresql.conf:
11 file.managed:
12 - source: salt://postgres/config/postgresql.conf
13 - user: postgres
14 - group: postgres
15 - mode: 600
16 - makedirs: True
17

18 start_server:
19 service.running:
20 - name: postgresql-9.5
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The code for a Salt state is placed in a special file called an .sls file. All of the
state definitions that the system knows about are arranged into a folder hierarchy
where the name of each folder defines the name of the state. The state definition is
then located inside the folder in a file named init.sls, as demonstrated in Figure 3.7
for the Airflow Workflow engine.

Figure 3.7: Salt state files for Airflow Workflow Engine

Several related states (such as those describing different installations of the same
program) can be grouped together under the same parent state. Then each sub-
state is placed into its own .sls file under the main state’s folder, with the name
of the file giving rise to that state’s name. Figure 3.7 provides an example of this
scenario where in addition to the main airflow state there are sub-states such as
airflow.server, airflow.worker, airflow.load-workflows etc. Note that sub-states are
referenced via name_of_parent_state.name_of_substate.

A Salt Pillar is a set of key-value pairs that are stored encrypted on a Minion and
constitute look-up values that are relevant for that Minion’s configuration. Examples
of Pillar values can be usernames and passwords, locations of certain files, etc.
A State definition can refer to Pillar values when configuring a system, and two
identical VMs that differ only by their Pillar values will be parametrised differently
at configuration time. One example of this is setting up the same server in a QA
environment vs. Production. In QA the server may point to a test data directory
with especially constructed data files, for testing purposes, whereas in Production
the server would point to the actual data directory with real samples.

The Pillar are organised similar to States in a folder hierarchy of .sls files. See
Figure 3.8
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Figure 3.8: A set of Salt Pillar definitions

Listing 16 shows an example Pillar definition where information related to finding
test data is stored.

Salt Grains are bits of information Salt collects about Minion state or character-
istics. They include things like:

• Minion IP address

• Amount of RAM on minions

• Minion hostname

• Minion network interfaces

and others. The Grains can be used to introspect and pass on configuration values
(like IP address) that are not known in advance. One of the most important uses
of Grains is the ability to assign roles to a Minion via the Grains mechanism. Since
roles define what states are eventually applied, adding or removing a role to a VM
via Grains has a very significant side-effect.

The Salt Mine is a centralised repository of information about the state of all
Minions that is stored on the Master. Information is passed into the Mine from
Grains and other sources. It can then be used inside state definitions to further
customise the system.

Listing 17 demonstrates how the Jinja templating engine is used to look up the IP
Address of servers in the cluster that have the consul-server orconsul-bootstrap
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role. Then this IP Address is used inside a State definition to join a cluster of similar
machines. Without the Mine, this particular Minion would not know who to ask for
this IP Address, but because the Mine is centralised on the Salt Master host this
lookup is possible.

The Top File is the mechanism used in Saltstack to specify what VMs will have
what States applied to them. The Top File provides a lot of flexibility in terms of
how to accomplish this mapping. Mappings can be accomplished via hostname or
any Grains values, and it allows regular expressions. The most flexible and, thus
preferred, method of mapping States to VMs is via Roles.

Listing 18 demonstrates how the State mapping to Roles is accomplished in a Top
File. Based on this Top File all VMs will get the consul, dnsmasq, and collectd
states. VMs with the monitoring-server role will get influxdb, and grafana,
and VMs with the job-queue role will get the rabbitmq State.

Controlling Saltstack

Control over the cluster is exercised from the Salt Master. The user establishes a
shell session on the Salt Master and issues commands via the Saltstack CLI. Each
command has the following syntax:

"salt target_expression command_expression" where:

salt is the name of the Salt CLI.

target_expression is an expression that determines what VMs to apply the
command to. It can be a logical expression that combines hostnames, grains, and
regular expressions.

command_expression is an expression that determines what actual command to
run on the targeted VMs. The command_expression can be as simple as running
a shell command on the target VMs, or it can apply a particular named state via
the state.apply command, or it can apply all matching states via the special
state.highstate command.

For example, salt -G 'roles:worker' state.apply airflow.patch-db ap-
plies the airflow.patch-db state to all VMs that have the worker role.

3.5.2 Saltstack Use in Butler

Butler uses Saltstack extensively in order to install software on the cluster. This
includes software that is required to run Butler itself, as well as installing scientific
algorithms required for running actual workflows on Worker VMs (as specified in
Section 3.1.3 of the Requirements chapter). As seen in Figure 3.9 the Saltstack

117



CHAPTER 3. BUTLER - REQUIREMENTS AND ARCHITECTURE

configuration in Butler consists of a set of State and Pillar definitions along with
the Top Files that map these States and Pillar to various VMs in the cluster. These
definitions are enough to configure a completely functional Butler cluster from a
single shell command.

Figure 3.9: Salt States and Pillar used in Butler
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A typical Butler installation that can support a cluster of up to 1500 CPUs consists
of four Control VMs in addition to the Worker VMs, each has a separate Terraform
profile. The Control VMs are:

salt-master - This machine is the configuration master node. Because this work-
load is typically only heavy during cluster setup, the same VM also acts as
the Monitoring Server during regular operation.

db-server - This VM hosts all the databases that Butler uses.

job-queue - This VM hosts a Queue for distributed task processing.

tracker - This VM hosts all of the workflow engine components, as well as Analysis
Tracking.

All of the VMs in the cluster get the following basic configurations mapped in the
Top File:

'*':
- consul
- dnsmasq
- collectd
- elastic.filebeat
- elastic.packetbeat

consul - A framework used for Service Discovery, which will be described in detail
in Section 3.7.5

dnsmasq - A local DNS server, to enable name lookups.

collectd - A Metrics collection agent.

elastic.filebeat - A server log harvester.

elastic.packetbeat - A network event log harvester.

Setting up the Salt Master

The first order of business when setting up a new Butler cluster is to bootstrap the
Salt Master VM, as this VM is responsible for configuring and installing the software
of all the other machines, including itself.

A Butler VM is typically provisioned from a base VM image, which has little
more than the barebones OS, using Terraform. In the case of the Salt Master, the
salt-master daemon is installed via Terraform’s remote-exec provisioner. Salt’s
highstate command is then executed on the master itself in order to fully initialise
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it. At that point the Salt Master is ready to configure other machines that are part
of the cluster.

As previously mentioned, because the load on the Salt Master is typically only
high during initial cluster setup and during short bursts during normal operation,
the Salt Master VM typically has another Saltstack Role mapped to it - that of the
Monitoring Server. This role installs monitoring components that will be described
in detail in Section 3.7

Setting up Other Butler Control VMs

The DB Server VM has a db-server Role mapped to it. Because databases are
resource intensive software that does not scale horizontally, this VM does not have
other roles within the cluster.

'G@roles:db-server':
- postgres
- run-tracking-db
- grafana.createdb
- airflow.airflow-db
- sample-tracking-db

The Top File mapping of States to the db-server role ensures that the Post-
greSQL DB Server is installed as well as a number of databases that are used by
Butler for tracking scientific analyses, workflow statuses, analysis samples, and per-
formance metrics.

The Job Queue VM has a rabbitmq state mapped to it in the Top File, to install
the RabbitMQ queueing system.

The Tracker VM correspondingly has a tracker role and the following state
mappings:

'G@roles:tracker':
- airflow
- airflow.load-workflows
- airflow.server
- jsonmerge
- butler

These states install and configure the Airflow Workflow engine, load available
workflows, and check out and install the Butler codebase from github. The codebase
is needed to run the Butler CLI, which is used to set up and manage Butler analyses.
Thus, most interactions the users have with Butler occur from the Tracker VM via
the Butler CLI.
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Setting up Butler Workers

While Control VMs will be quite similar from one installation of Butler to the
next, the Worker VMs will differ quite a bit, depending on what types of analyses
are anticipated to be performed. The base Worker VM has the worker role that
simply allows such VMs to run workflows in principle by installing the necessary
components of the workflow engine and Butler Analysis Tracker.

'G@roles:worker':
- dnsmasq.gnos
- celery
- airflow
- airflow.load-workflows
- airflow.worker
- butler

The actual scientific algorithms that are required for running particular analyses
are installed onto Workers via additional Roles and States. Because the initial
Butler implementation is focused on bioinformatics workflows there already exist
predefined states for some common bioinformatics tools. An example of such a Role
and States can be seen in the Top File mapping below:

'G@roles:germline':
- biotools.freebayes
- biotools.htslib
- biotools.samtools
- biotools.delly

Customising Butler Configuration

When Butler is used in different environments, configurations need to change, be-
cause of differences in OS, network, and underlying analyses. In order to accomplish
this, the users will typically need to create their own source code repository that
will coexist with the base Butler repository. Inside that repository will be custom
definitions or workflows, analyses, as well as configurations. Where it is possible to
configure the system entirely via Pillar, the user should define these custom Pillar
settings in their repository, but when customisations to the States are required, the
user should copy the State definition from the base Butler repository into their own
and customise as necessary. They should then make sure that the customised states
are available to Saltstack by downloading them to the Salt Master VM.

When it comes to installing new scientific algorithms for the purposes of running
workflows, the users should define any new States and Roles as necessary, and then
assign them to the Worker VMs prior to calling highstate to ensure the software
get installed properly.
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3.6 Workflow System

3.6.1 Workflow System Overview

Running scientific workflows at scale is the reason for Butler’s existence. Thus, the
Workflow Engine lies at the heart of the entire system. To fulfil the requirements
specified in Section 3.1.5 we have selected the Airflow Workflow Engine developed
by Airbnb.

Airflow Architecture

The architecture of Airbnb Airflow lends itself well to large-scale distributed pro-
cessing of tasks, due to the loosely coupled nature of the system. The key component
at the heart of Airflow is the Airflow Scheduler. The airflow-scheduler is a service
that runs perpetually on a VM and examines the state of all running workflows.
All workflow tasks that meet the preconditions for being runnable are immediately
”scheduled” for execution. In the context of Airflow scheduling means depositing the
task into a queue (running on a separate Queue Server VM) from which a Worker
VM can eventually pick it up. The Worker VMs run an airflow-worker service that
periodically polls the task queue for available tasks and when the task is runnable
by a particular Worker, that Worker consumes the task message from the queue
and assumes execution. In order to keep track of the status of Workers and work-
flow execution each Worker periodically sends heartbeat messages to the Scheduler
to communicate state. The state is persisted by the Scheduler to a PostgreSQL
database, which runs on a DB Server VM.

Additional state information related to tracking scientific analyses is written to a
separate PostgreSQL database, which runs on the same DB Server.

The user can communicate with and commandeer Airflow via the Airflow CLI,
as well as a Web UI. The Web UI is provided via the airflow-flower, and airflow-
webserver services which can run on the same VM as the Scheduler or on a separate
VM, depending on system load.

3.6.2 Workflow Definition

Requirements for workflow definitions are specified in Section 3.1.4 of this docu-
ment. Conceptually, an Airflow workflow is a Directed Acyclic Graph whose ver-
tices represent tasks and edges indicate task sequence. In its implementation an
Airflow workflow is a Python program that can use any Python language construct
or library. This allows the users to create workflows of arbitrary complexity and
functionality.
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When authoring workflows the user needs to create an instance of the DAG class

class airflow.models.DAG(dag_id,
schedule_interval=datetime.timedelta(1), start_date=None,
end_date=None, full_filepath=None, template_searchpath=None,
user_defined_macros=None, default_args=None, concurrency=16,
max_active_runs=16, dagrun_timeout=None, sla_miss_callback=None,
params=None)

↪→

↪→

↪→

↪→

↪→

The key parameters to the DAG constructor are:

dag_id - Unique identifier for the workflow.

schedule_interval - How often the workflow is executed.

default_args - A dictionary of arguments that is passed to tasks within this work-
flow.

concurrency - Maximum number of concurrent workflow tasks.

max_active_runs - Maximum number of simultaneously active workflow runs.

Once the DAG is created the user can define workflow tasks. Each task is encoded
as a subclass of Operator. There are three main types of Operator in Airflow:

• Operators that represent actions that need to be taken.

• Transfer operators that represent movement of data.

• Sensor operators that poll the environment for a specified condition.

All Operators are derived from the BaseOperator class.

class airflow.models.BaseOperator(task_id, owner='airflow',
email=None, email_on_retry=True, email_on_failure=True,
retries=0, retry_delay=datetime.timedelta(0, 300),
retry_exponential_backoff=False, max_retry_delay=None,
start_date=None, end_date=None, schedule_interval=None,
depends_on_past=False, wait_for_downstream=False, dag=None,
params=None, default_args=None, adhoc=False, priority_weight=1,
queue='default', pool=None, sla=None, execution_timeout=None,
on_failure_callback=None, on_success_callback=None,
on_retry_callback=None, trigger_rule=u'all_success',
resources=None, *args, **kwargs)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→
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An Operator can take many parameters, the most important ones are:

dag - Reference to the DAG this task belongs to.

task_id - Unique identifier for the task.

retries - Along with several other parameters, this controls retry behaviour in case
of failures.

priority_weight - Relative importance of scheduling this task compared to other
tasks.

trigger_rule - Condition under which this task triggers. One of - all_success |
all_failed | one_success | one_failed. This condition evaluates the state of
tasks that are upstream of this one.

A large number of Operator implementations are available that simplify the cre-
ation of arbitrary workflows. Some of these are:

BashOperator - Execute a shell script.

PythonOperator - Execute a Python callable.

EmailOperator - Send an email.

ExternalTaskSensor - Wait for a task in a different workflow to complete.

HdfsSensor - Wait for a file to appear in HDFS.

HiveOperator - Execute a Hive query.

SimpleHttpOperator - Make a call to an HTTP endpoint.

PostgresOperator - Execute a PostgreSQL query.

DockerOperator - Execute a command inside a Docker container.

SSHExecuteOperator - Execute commands on a remote host.

In practice we find that the PythonOperator is the most versatile as it provides
the ability to call arbitrary Python code, which can, in turn, accomplish any of the
tasks of the other operators if necessary.

Once tasks are defined their dependencies can be established by calling
task_2.set_upstream(task_1) or task_1.set_downstream(task_1). The
set_upstream() and set_downstream() methods also accept lists of tasks for bulk
assignment.

When a workflow is executed each task definition is transformed into a task in-
stance - a task that is running at some point in time. Although the entire workflow
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may be defined in the same source file, Airflow makes no guarantees about where
each task instance will run. Once a task instance is placed into the task queue tech-
nically any worker can pick up and execute that task. On the one hand this provides
a limitation because it makes it difficult for tasks to exchange information between
each other (due to possible remoteness), on the other hand, this model promotes
scalability as it limits dependencies between tasks and simplifies scheduling.

Because no assumptions are made about which worker will run which tasks, each
worker needs to have a copy of all workflow definitions that are active in the system.
Furthermore, any programs that may be invoked inside a task also need to be in-
stalled on the workers. Unfortunately, Airflow does not provide any mechanisms for
declaring and checking whether the programs a workflow depends on are installed
and available prior to task instance runtime. This means that most bugs and issues
related to dependency installation are only discovered when an actual workflow is
running and fails. Thankfully, the job of installing and configuring dependencies is
made relatively easy by the Butler Configuration Management System.

3.6.3 Analysis Tracker

As described in Section 3.1.6 of the requirements, a System of Record is necessary to
track the scientific analyses that are undertaken using the Butler system. To fulfil
these requirements we have built an Analysis Tracker module into Butler. The goal
of this module is to allow the user to define analyses, specify what workflows are part
of these analyses, and track the status and execution of Analysis Runs - instances
of running a particular workflow on a particular data sample within the context
of an Analysis. To accomplish this we have established a Run Tracking Database
on PostgreSQL to persist the data, we have built a tracker Python module that
implements the management of these objects, and finally, we have built a set of
standard workflow tasks that the users can insert into their workflows in order to
report progress to the Analysis Tracker.

tracker Python Module

The layout of the tracker module can be seen in Figure 3.10 below:

At the root of the hierarchy are the README file and the module installation
script setup.py. Inside the bin directory is the Analysis Tracker CLI implemen-
tation - cli.py. Inside the model directory lies the implementation of the main
model objects - Workflow, Analysis, Analysis Run, and Configuration. We describe
the first three of these objects in detail in this section and the last one in Section
3.6.4. Inside the util directory are utility functions - connection.py for connect-
ing to the Run Tracking Database, and workflow_common.py for implementations
of common workflow tasks.

The overall model can be seen in Figure 3.11
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Figure 3.10: File hierarchy of the tracker module

The Workflow object represents a workflow definition. Every workflow managed
by Butler should have a corresponding Workflow object representing it. It has the
following fields:

workflow_id (UUID) - This is the unique identifier of this workflow.

workflow_name (String) - This is a human-friendly name for the workflow.

workflow_version (String) - It is important to record what version of a workflow
is being used, as updates are frequently made during the workflow lifecycle.

last_updated_date (datetime) - Timestamp of last update to this object.

config_id (UUID) - The unique identifier of the corresponding Configuration ob-
ject.

The Workflow object implements the following methods:

create_workflow(workflow_name, workflow_version, config_id) - Create a
new workflow object with given name, version, and configuration.
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Figure 3.11: UML model of the Analysis Tracker.

get_workflow_by_id(workflow_id) - Retrieve the workflow with ID workflow_id
from persistent storage.

set_configuration_for_workflow(workflow_id, config_id) - Update the
workflow configuration to configuration with ID config_id.

The Analysis object represents a scientific analysis. It serves the purpose of
aggregating the running of a set of workflows on a set of data samples together into
a single unit of execution that can be referred to for organisation purposes. The
Analysis has the following fields.

analysis_id (UUID) - This is the unique identifier of this Analysis.

analysis_name (String) - This is a human-friendly name for the Analysis.

start_date (datetime) - Date of when the Analysis is meant to start.

created_date (datetime) - Date of when the Analysis was created.

last_updated_date (datetime) - Timestamp of last update to this object.
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config_id (UUID) - The unique identifier of the corresponding Configuration ob-
ject.

The Analysis object has the following methods:

create_analysis(analysis_name, start_date, config_id) - Create a new
Analysis object with given name, start_date, and configuration.

set_configuration_for_analysis(analysis_id, config_id) - Update the
Analysis configuration to configuration with ID config_id.

The AnalysisRun object represents the invocation of a particular Workflow on
a particular Data Sample, within the scope of a particular Analysis. This object
is central to the Analysis Tracking functionality. The AnalysisRun object has the
following fields:

analysis_run_id (UUID) - This is the unique identifier of this Analysis Run.

analysis_id (UUID) - This is the unique identifier of the Analysis for this Anal-
ysis Run.

workflow_id (UUID) - This is the unique identifier of the Workflow for this
Analysis Run.

run_status (int) - This integer field indicates the status of this Analysis
Run. Status can be one of RUN_STATUS_READY, RUN_STATUS_SCHEDULED,
RUN_STATUS_IN_PROGRESS, RUN_STATUS_COMPLETED, RUN_STATUS_ERROR.

created_date (datetime) - Date of when the Analysis Run was created.

run_start_date (datetime) - Date of when the Analysis Run started.

run_end_date (datetime) - Date of when the Analysis Run ended.

last_updated_date (datetime) - Timestamp of last update to this object.

run_error_code (int) - Integer pointing to an error code of Runs that ended in
error.

config_id (UUID) - The unique identifier of the corresponding Configuration ob-
ject.

The Analysis Run object implements the following methods:

get_run_status_from_string(run_status_string) - Translate string-based
run statuses into int-based ones.
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create_analysis_run(analysis_id, config_id, workflow_id) - Create an
AnalysisRun and store in the database.

set_configuration_for_analysis_run(analysis_run_id, config_id) - Up-
date the AnalysisRun configuration to configuration with ID config_id.

get_analysis_run_by_id(analysis_run_id) - Get the Analysis Run with ID
analysis_run_id.

set_ready(my_run) - Set the status of a given analysis run to RUN_STATUS_READY.
Only possible if the current status is not RUN_STATUS_IN_PROGRESS.

set_scheduled(my_run) - Set the status of a given analysis run to
RUN_STATUS_SCHEDULED. Only possible if the current status is
RUN_STATUS_READY.

set_in_progress(my_run) - Set the status of a given analysis run to
RUN_STATUS_IN_PROGRESS. Only possible if the current status is
RUN_STATUS_SCHEDULED.

set_completed(my_run) - Set the status of a given analysis run to
RUN_STATUS_COMPLETED. Only possible if the current status is
RUN_STATUS_IN_PROGRESS.

set_error(my_run) - Set the status of a given analysis run to RUN_STATUS_ERROR.

get_number_of_runs_with_status(analysis_id, run_status) - Returns the
number of AnalysisRuns of a given status.

As can be seen from the description of the methods of AnalysisRun these objects
follow a particular lifecycle that is represented by their status attribute. The
rules that govern allowable status transitions are encoded within the series of set_*
methods and are summarised in Figure 3.12

When an AnalysisRun is first created it does not have a status. Once the object is
fully initialised it is given a Ready status, indicating that it is ready to be scheduled
for execution. Once the Scheduler has scheduled the Run for execution it is given a
Scheduled status. When workflow execution starts the Run is marked In-Progress.
Once the Run is successfully completed it enters a Completed status. If, at any
point, the Run encounters an error condition it cannot recover from, the Run Status
is set to Error. When the error condition is addressed the Run status should be set
to Ready so that it can start from the beginning.

The workflow_common.py file within the tracker module contains a number of
convenience functions that workflows can use to perform common tasks. Currently
the following functions are supported:

get_config(kwargs) - Get the Configuration supplied to this Workflow.
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Figure 3.12: State Diagram of Analysis Run Status Transitions.

get_sample(kwargs) - Get the sample assigned to this Workflow.

start_analysis_run(**kwargs) - Mark the Analysis Run of this Workflow In-
Progress.

complete_analysis_run(**kwargs) - Mark the Analysis Run of this Workflow
Complete.

set_error_analysis_run(**kwargs) - Mark the Analysis Run of this Workflow
as Error.

validate_sample(**kwargs) - Test whether the sample files are accessible to the
workflow.

call_command(command, command_name, cwd=None) - Wrapper around Python’s
subprocess.call method that captures logging information.

compress_sample(result_filename, config) - Compress the sample with gzip.

uncompress_gzip_sample(result_filename, config) - Uncompress the sam-
ple.
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Every workflow should begin by starting the corresponding Analysis Run, and
finish by completing it to ensure appropriate tracking of information throughout
the system.

The connection.py file is also a key component of the tracker module because it
provides a means to communicate with the Run Tracking Database.

The Run Tracking Database is a PostgreSQL database this is set up to persist all of
the Analysis related information into permanent storage in order to fulfil the System
of Record requirements of Section 3.1.6. Specifically, the Run Tracking Database
contains a relational model that corresponds to the Python objects described above.
These database tables are described in Tables 3.3, 3.4, and 3.5.

Column Name Type Constraint

workflow_id serial PRIMARY KEY
config_id uuid REFERENCES configuration(config_id)
workflow_name varchar(255)
workflow_version varchar(255)
created_date timestamp
last_updated_date timestamp

Table 3.3: Database table workflow

Column Name Type Constraint

analysis_id serial PRIMARY KEY
config_id uuid REFERENCES configuration(config_id)
analysis_name varchar(255)
start_date timestamp
created_date timestamp
last_updated_date timestamp

Table 3.4: Database table analysis

In order to maintain a mapping between the Python objects in the tracker module
and the tables in the Run Tracking Database as well as to avoid getting tied to a
particular SQL dialect we utilise the SQL Alchemy Object Relational Framework.
This framework allows us to avoid an explicit mapping between table columns, and
object fields. Instead, SQL Alchemy is able to introspect the relational schema and
add the object fields as necessary that correspond to the columns. Furthermore,
updates to the Python objects are automatically translated to SQL UPDATE state-
ments and executed as necessary. This framework allows us to change to a different
SQL Engine if necessary, without having to change most of the code.
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Column Name Type Constraint

analysis_run_id serial PRIMARY KEY
analysis_id serial REFERENCES analysis(analysis_id)
workflow_id serial REFERENCES workflow(workflow_id)
config_id uuid REFERENCES configuration(config_id)
run_status integer NOT NULL
created_date timestamp
run_start_date timestamp
run_end_date timestamp
last_updated_date timestamp
run_error_code integer

Table 3.5: Database table analysis_run

3.6.4 Workflow Configuration

In order to fulfil the workflow configuration and parametrisation requirements de-
scribed in the Analysis Configuration sub-section of Section 3.1.4 Butler implements
a tri-level configuration mechanism, allowing the user to specify configurations at
Workflow, Analysis, and Analysis Run levels. At runtime all three configuration
levels are merged into one effective configuration that applies within the execution
context.

Figure 3.13: Tri-level configuration combines into an effective configuration at run-
time.
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The configuration facility is built into the tracker module, and is backed by a
Run Tracking Database configuration table for persistence.

Because it is important for configuration to be both human-readable and machine-
readable Butler uses the JSON format to encode configuration information. Post-
greSQL, in turn, has native support for storage and deep querying of JSON values,
thus making it an ideal choice for configuration persistence.

Configuration Mechanism

The mechanism by which configuration works is as follows:

A workflow author provides, together with their workflow definition, a JSON file
that contains the most coarse-grained configurations related to the workflow. A
system operator may customise some of these values before adding the workflow
to a deployed version of Butler. Once the workflow is added to the system its
accompanying configuration is persisted to the database.

A user who is running an analysis defines an analysis-level JSON file with more
fine-grained configuration values. Algorithm parameters and flags are typical such
values that vary from one analysis to the next. These are also persisted to the
database along with the analysis definition.

As the analysis run corresponds to running a particular workflow in the context
of a particular analysis on a particular sample, the user needs to generate a separate
JSON configuration file for each sample in the analysis. These files will contain
the most fine-grained configurations. Typical values at this level indicate where to
locate the particular sample file for this run, and where to store the run results. An
effective way to generate many JSON files for these runs is via a script.

When a workflow is executed on a particular sample, the JSON files corresponding
to all three levels of configuration are retrieved from the database, merged, and
parsed into a Python dictionary. This dictionary is then made available within the
workflow execution context to guide workflow decision logic.

3.6.5 Workflow Runtime Management

Workflow Runtime Management encompasses the tools that are available to the user
for the purpose of managing workflow execution. In Butler there are three separate
mechanisms that exist for this purpose. These are:

• Butler CLI

• Airflow CLI

• Airflow Web UI
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Butler CLI

The Butler CLI allows the user to create the various analysis management objects
described in Section 3.6.3 via a Command Line Interface. The following commands
are supported:

create-workflow - creates a new workflow and supports the following parameters:

-n, –workflow_name - The name of the workflow.

-v, –workflow_version - The version of the workflow.

-c, –config_file_location - Path to the workflow configuration JSON file.

create-analysis - creates a new analysis and supports the following parameters:

-n, –analysis_name - The name of the analysis.

-d, –analysis_start_date - The starting date of the analysis.

-c, –config_file_location - Path to the analysis configuration JSON file.

launch-workflow - launches workflow execution and supports the following pa-
rameters:

-w, –workflow_id - ID of the workflow to launch.

-a, –analysis_id - ID of the analysis to launch the workflow under.

-c, –config_location - Path to a directory that contains analysis run configuration
JSON files that will be launched.

update-config - Update the configuration for a workflow or analysis.

-w, –workflow_id - ID of the workflow to update.

-a, –analysis_id - ID of the analysis to update.

-c, –config_file_location - Path to the new config file.

get-run-count - Print to stdout the number of analysis runs for a particular
analysis.

-a, –analysis_id - ID of the analysis to look up.

-s, –run_status - Restrict the lookup to runs with a particular status
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Airflow CLI

The Airflow CLI is part of the generic Airflow framework and provides a number of
commands for workflow management. We describe several of the most useful ones
below:

airflow - The main Airflow CLI command, with these supported sub-commands:

webserver - Start an instance of the Airflow Web UI.

scheduler - Start an instance of the Airflow Scheduler.

worker - Start an instance of the Airflow Worker.

flower - Start an instance of the Airflow Flower, which is a monitoring tool.

clear - Clear the state of tasks that have failed or are stuck to allow them to be
scheduled again.

task_state - Print out the state of a task.

initdb - initialise an empty Airflow database.

resetdb - Reset an Airflow database to the empty state.

list_dags - List all of the available workflows.

list_tasks - List all of the tasks for a particular workflow.

Butler provides wrappers for the webserver, scheduler, worker, and flower
commands so that they can be run as system services.

Airflow Web UI

The Airflow Web UI provides an interactive dashboard that allows the user to mon-
itor the progress of workflows and workflow tasks, as well as taking some remedial
actions when tasks run into trouble.

Figure 3.14: The main page of the Airflow Web UI
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The main page of the Web UI features a listing of the available workflows, along
with the breakdown of workflow tasks by status. In Figure 3.14 we see two workflows
- freebayes and delly. The delly workflow has 11374 completed tasks, 865 in-progress
tasks, 1 failed task, and 1 task with a failed ancestor. The user can click on any of
the task statuses to navigate to a task listing page that gives a comprehensive list
of tasks along with their key attributes (see Figure 3.15).

Figure 3.15: Listing of task instances for the freebayes workflow with status of
”success”.

Clicking on one of the task instances will bring up a graphical view of the workflow
the task belongs to and allow the user to further investigate that workflow’s execu-
tion (see Figure 3.16). This view shows the status of all tasks in the corresponding
workflow instance as well as providing links to various reports.

Figure 3.16: Details of the execution of a delly workflow with ID 3b298cba-4eac-
4eec-a314-6defee280b0f.

When the user clicks on a particular task instance within the workflow execution
a popup window allows them to take a number of actions, such as forcing the task
to be run immediately, clearing the task state (for failed tasks) so that it can be run
again, or marking the task as successfully completed (possibly with all upstream
and downstream tasks). These options are depicted in Figure 3.17.
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Figure 3.17: A list of actions that can be taken on a workflow task via the Web UI.

3.7 Operational Management

Managing large fleets of Virtual Machines as they perform data analysis at scale
across multiple cloud computing environments is a major challenge due to the sheer
number of possible scenarios that could lead to the system crashing, stalling, or
otherwise falling out of control, with the negative impact on the end user in terms
of project costs and timeline increasing with the scale of the computation being
undertaken. The tools available to the user to detect and deal with these issues thus
form a key component of a comprehensive analysis framework and set Butler apart
from other frameworks in this space.

In general, the Operational Management tools fall into three categories, those that
collect observations about the state of each component in the system at runtime,
those that aggregate this data and present it to the user in the form of queryable
databases and management reports, and those that take automated remedial steps
to resolve identified issues. Furthermore, as specified in the requirements of Section
3.1.7 we delineate two major sources of data that is indicative of system state -
System Metrics, and Server Logs. While metrics provide more of a coarse-grained
view of the overall health of a particular Virtual Machine, server logs can give much
more of a fine-grained view of the underlying system at an application level, and
down to individual lines of code that are running at any given time. Butler has
dedicated components for the collection and management of these data sets and we
describe these next.

3.7.1 Monitoring Metric Collection

The overall health of any VM in a cloud computing cluster can be evaluated and
ascertained with respect to a set of key metrics that are observable at runtime. Some
metrics are general enough that they apply to all Virtual Machines, these include
measurements of CPU utilisation, RAM, Disk, and Network usage. Other metrics
are more specific to the role that the VM is playing within the cluster. A Database
Server will benefit from having the number of open DB connections, transaction
rate, rollback rate, and average query runtime monitored. Other entities such as
Web Servers and Queues have their own unique metrics of interest.
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Figure 3.18: Metric monitoring system components

Each VM runs a metric collection daemon called telegraf[216], which is an Open
Source package that is able to make periodic measurements of a large number of
system metrics and ship them off to a centralised Metrics Store. The definition for
which metrics are collected is specified in a special configuration file. An example
of such configuration is demonstrated in Listing 19. This listing provides examples
of the setup for generic metrics like CPU, and memory, as well as for more special
metrics, like those collected for PostgreSQL databases.

Because we are interested in observing not only the metrics as they are measured
in the present, but also the dynamics of how metric values change over time, we
need a mechanism for persisting the metrics values. For this purpose the Moni-
toring Server component of Butler ships with an instance of a database product
called InfluxDB[210], which is an Open Source database system that is optimised
for recording time series data. The configuration for the influxdb output plugin in
Listing 19 demonstrates how InfluxDB server URL is provided to Telegraf to enable
metrics persistence in this centralised data store.

InfluxDB is a scalable database system that can operate in a distributed manner as
a Raft[217] cluster. Data is written into shards based on a data retention policy. The
underlying engine stores the data as a Time-Structured Merge Tree (TSM), which is
a customisation of the Log-Structured Merge-Tree[218] data structure. To the end
user the data is organised as a collection of points. Each point has a timestamp,
belongs to a measurement, and records a set of tag_values that correspond to a
set of tag_keys. A particular measurement coupled with a retention policy then
forms a series.

As an example, when tracking RAM, our measurement is called memory_value.
The set of tag_keys is:

• host

• type

• type_instance
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An example set of tag_values might be:

• worker-145

• memory

• free

The actual points corresponding to this combination of tag_values and collected
over the period of 1 minute might look as follows:

Figure 3.19: InfluxDB query results showing free memory on host worker-145 col-
lected in a 1 minute time window.

As can be seen in Figure 3.19, data is queried via an SQL-like dialect, which is
accessible via a Web UI or via a REST[219, Chapter 5] API.

3.7.2 Monitoring visualisation

The metrics collection system is collecting 50 different metrics per host on average,
sampled at intervals of 10 seconds. Given a cluster of 200 Virtual Machines the
monitoring system collects and stores 86,400,000 data points in a 24 hour time
period. This volume of data is quite difficult for the user to comprehend and make
use of, and Butler provides visualisation tools to enable the display of aggregate
statistics based on the monitoring data using a Graphical User Interface. The main
goal of the visualisations is to give the user an overview of the trends observed within
the compute cluster with respect to a set of representative performance metrics, and
to alert the user to any conditions that threaten the health of Virtual Machines and
the scientific analyses they run.

visualisation of performance metrics data is accomplished in Butler using an Open
Source framework called Grafana[211]. This framework provides a Web Interface
that is able to connect to an instance of an InfluxDB database, issue queries and
render the query results as dashboard of various graph styles, including line graphs,
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bar graphs, pie charts, and others. Reports generated by Grafana support parametri-
sation of values as well as drill-through.

Butler ships with a number of pre-built reports and supports the addition of
custom reports if necessary.

In general, Grafana is a website that the user logs onto to either author or view
reports. When authoring reports the user needs to define a Data Source to connect
the reports with data. In the case of Butler, the Data Source is connecting to the
InfluxDB metrics database using the InfluxDB REST API.

Figure 3.20: InfluxDB Data Source creation for Grafana.

Once a connection to the Data Source is established the user can begin building
dashboards. Dashboards are generally laid out in a grid-like fashion as a series of
panels that are arranged into rows and columns. Each panel contains a graph. Data
is fed into the graph by means of an InfluxDB Query Language query, possibly with
additional parameters specified by the report. In addition to the query itself, the
user can customise the axes, legend, and other attributes of each graph. Once the
report is ready it can be exported into a JSON format and checked into a source
code repository so that it can persist if the VM hosting the Grafana instance needs
to be recreated.
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Figure 3.21: Editing a Grafana dashboard panel.

Butler comes with a set of basic dashboards defined out-of-the-box that will aid
the user in monitoring of overall system health. The most important dashboards
are:

Cluster Overview - Gives a high level overview of the health of the entire clus-
ter, tracking metrics such as load (blended health metric), CPU utilisation,
Memory, Disk IOPS, Network Packet Rate, Disk Read/Write Rates, and Disk
Space

Salt Master - Detailed monitoring of the Salt Master VM, including CPU, Mem-
ory, Network Packet Rate, Disk Read/Write Rates, Disk IOPS, and Disk
Space.

Database Server - Detailed monitoring of the Database Server VM, including DB-
specific metrics such as - DB Connections, Number of Transactions, Number
of Queries, Number of Query Plans, Number of Rows, DB Size on Disk, as
well as the general VM health metrics.

In practice the Cluster Overview dashboard is the most consistently useful report
because it provides an at-a-glance view of the health of the entire cluster. Figure
3.22 demonstrates a typical scenario of cluster usage during normal operation. It
is evident that the cluster starts off without any appreciable load, once a set of
workflows is scheduled system load increases across the entire cluster and remain
stable until, towards the end of the execution, machines start running out of work,
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Figure 3.22: Cluster Overview dashboard during normal operation.

and load of the system gradually decreases. Throughout the execution the memory
profile is relatively stable and consistent across the machines in the cluster. Although
the CPU profile appears spiky, this is the natural CPU utilisation profile for the
particular set of workflows that were executing at the time the image was captured.

Figure 3.23: Cluster Overview dashboard demonstrating a cluster-wide issue.

Figure 3.23, on the other hand, demonstrates an example of how a cluster-wide
issue can be identified via the Cluster Overview dashboard. Here we see a similar
profile at the beginning of workflow execution, where the jobs get kicked off and load
is stable, but at around 00:30 we start seeing uncharacteristic spikes in system load,
with sporadic doubling of load metric values. Furthermore, the CPU utilisation
appears to drop to 0 at the same time, and the memory profile is highly irregular.
This pattern signifies to the user that an issue is affecting the cluster during this
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particular time, and further investigation is needed. With that knowledge, the user
can use other reports to try to pinpoint the source of the issue, or it may be necessary
to directly log on to the affected VM hosts to investigate further.

Because collectd allows collecting metrics from a particular named process, and
because Grafana allows the creation of new dashboards on the fly, it is common
and convenient for the user to develop a set of custom dashboards that are targeted
towards the specific workflows that they are running, thus providing much more fine-
grained visibility into the runtime behaviour of the system. Together with the built
in reports these custom dashboards provide a powerful and flexible set of capabilities
for successful operational management of the Butler system.

3.7.3 Server Log Collection and visualisation

Almost every application that runs on a computer is generating some sort of log file.
On Unix-based environments most system-level applications will write to a common
log known as syslog. But many other applications will write their own custom logs
to their own specific locations. Messages written to a log file typically run the
gamut from INFO statements that mark the normal operation of an application,
all the way to ERROR that signify error conditions. Thus, a log file, potentially
provides a wealth of information about both normal operation and system issues
as they occur, and is typically one of the most reliable sources for information
on application crashes. On the other hand, when operating a complex distributed
system, such as a large scale workflow execution framework, which runs on hundreds
of Virtual Machines, the number and size of logs can become overwhelming to the
point of ceasing to remain useful.

Because of the potentially extremely high value of the information contained in
server logs, we deploy a system of log harvesting and centralised storage that en-
ables the Virtual Machines that are part of Butler to parse the logs that are being
generated locally for interesting events, and send those events to a centralised search
index, which is amenable to efficient querying and visualisation. Although the three
tools that we use to solve the centralised logging problem have been developed
independently, they have since been acquired by a single company Elasticsearch
BV. These three tools form what is known as the ELK stack - Elasticsearch[213],
Logstash[212], and Kibana[214].

Each Virtual Machine in the cluster runs a log shipper - Filebeat. It is responsible
for finding, harvesting, and locally aggregating logs.

As shown in Figure 3.24, Filebeat consists of a set of Prospectors (see Listing 20),
which monitor and search log directories specified in the Filebeat configuration file.
Corresponding to each log file that is found by Prospectors a separate Harvester is
started, which is responsible for ingesting the log file and sending the information to
a Spooler. The Spooler aggregates information sent from Harvesters and forwards
it onto Logstash for further parsing.

143



CHAPTER 3. BUTLER - REQUIREMENTS AND ARCHITECTURE

Figure 3.24: Filebeat Architecture (taken from https://www.elastic.co).

Logstash runs on a separate centralised server and is responsible for parsing the
logs forwarded from Filebeat and sending the parsed information on to the Elas-
ticsearch index. The parsing is accomplished via 3 plugins - Input Plugin, Filter
Plugin, and Output Plugin (see Figure 3.25). All three plugins are configured via
the logstash configuration file.

Figure 3.25: A Logstash processing pipeline (taken from https://www.elastic.co).

The Input Plugin specifies where to listen to input data from. In the case of
Butler we are expecting data to arrive in Filebeat format on port 5044.

The Filter plugin specifies how to parse the log file, i.e., which messages from each
type of log file we are interested in. The interesting messages are identified using a
series of regular expressions known as grok patterns.

The output plugin then specifies how to pass the filtered messages on to the
Elasticsearch engine for indexing.

Elasticsearch is a general purpose scalable text indexing and search engine that
supports clustering and sharding of data. Given its long term use as a storage engine
for log data and its scalability it is a great fit for Butler’s log storage needs. Elas-
ticsearch works by storing JSON formatted documents (in this case log messages)
into an searchable index.
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Just as it is difficult to grasp and analyse performance metrics due to the number
of data-points generated, it is as difficult to grasp log messages from a large cluster.
We utilise a similar set of visualisation tools to the ones we used for metrics, to solve
this problem for server logs within Butler. The Kibana dashboarding framework
allows us to create graphical dashboards that visualise log events of interest, as well
as providing a web-based query interface to the Elasticsearch log messages index.
Figure 3.26 shows a dashboard used in Butler for monitoring the Database Server.

Figure 3.26: Kibana dashboard for PostgreSQL monitoring.

3.7.4 Self-Healing

The self-healing system within Butler builds on top of the metrics collection system
to deliver features specified in Section 3.1.7 of the requirements. Specifically, it aims
to provide a comprehensive set of tools for detecting operational anomalies at multi-
ple levels of the system and taking automated remedial steps to fix these anomalies
in order to minimise their effects. Figure 3.27 demonstrates the components of this
system.

Capturing Metrics

The input to the self-healing system is the set of metrics that is collected from all
hosts into InfluxDB via telegraf. In order to facilitate the detection of anomalies at
infrastructure, service, and payload levels it is necessary to collect several types of
metrics.

Infrastructure-level issues are a wide class off issues that can represent the fail-
ure or entering into a bad state of individual components of the VM or the entire
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Figure 3.27: The Butler self-healing system.

VM. Detecting these relies on capturing of a variety of basic metrics such as CPU,
memory, disk, network, and others. Failure of the entire VM can be detected by the
complete absence of a metrics signal from the affected machine. In practice, Butler
uses the lack of updates to the uptime metrics as a signal that the machine has gone
offline.

Tracking of individual services is facilitated by monitoring their respective pro-
cesses. There are several possibilities for doing this offered by telegraf with its
procstat input plugin and these are used to capture the necessary processes in
Butler. See listing 2 for the variety of ways to capture a process employed within
Butler. Here, a process can be targeted by capturing the name of its executable,
its PID file, a grep pattern on the process name, or the user that owns the process.
Capturing the process in this way will generate a set of process-specific metrics that
record the process’s CPU usage, memory, context switches, and others that can be
used in detecting and diagnosing issues.

Listing 2: Butler Analysis configuration for VCF filtering.

1 [inputs.procstat]]
2 exe = "grafana-server"
3

4 [[inputs.procstat]]
5 pid_file = "/var/run/salt-api.pid"
6

7 [[inputs.procstat]]
8 pattern = ".*airflow scheduler.*"
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Tracking detailed metrics at the payload level beyond what is offered by procstat
is, by definition, not possible to do in a completely generic fashion because every
user of the framework will potentially run their own custom payloads that need to
be individually instrumented with metrics. In usage scenarios where the payload
is of a particularly experimental nature (such as scientific algorithms that are in
early stages of development), or the analysis is performed at a large scale where the
runtime is expected to be in months, and there is access to the underlying tools’
source code, it may be desirable to add metrics emitting code within the individual
tools that are run by the Butler framework. This is supported in Butler via the
popular statsd[220] package, which has client libraries in every major programming
language and allows any software to capture and emit several kinds of custom metrics
in a format that is understood by a wider variety of metrics collection back-ends,
including InfluxDB. The metric types that can be captured are:

Counter - A simple counter that allows arbitrarily incrementing and decrementing
a value.

Timer - A metric that measures passage of time.

Gauge - A metric that emits a measurement of an arbitrary value.

Set - A metric that counts unique occurrences of an event.

Using the basic metric types above one can construct metrics capturing schemes
of arbitrary complexity that subsequently feed into the self-healing capabilities of
the framework.

Defining Anomalous Operating Conditions

In order to perform self-healing the Butler framework needs to be able to detect
when anomalous conditions occur. This is most easily accomplished via a rules-
based system over the universe of metrics where each rule is a predicate of the form:

f( ~Mn) op C (3.1)

given:

M = {Mt; t ∈ T} - a metric time series
~Mn = [Mt−n+1 Mt−n+2 ... Mt] - a vector of n most recent observations of M
f : Rn 7→ R - a function of ~Mn that typically computes a summary statistic over
a moving window of the most recent n data points, such as mean, min, max, etc.
op ∈ {>,<,>=, <=,==, ! =} - is a comparison operator
C ∈ R - is an arbitrary constant
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Thus, each rule continuously (discretised by metric sampling frequency) computes
a summary statistic over a sample of n most recent observations of metric of interest
M , and compares it to a threshold value C, firing off an event when the compar-
ison specified in op succeeds. The full collection of rules then constitutes a full
specification of the set of anomalous conditions for which automated action can be
taken.

We implement this rule-based system in Butler by leveraging an open-source prod-
uct called Kapacitor[221], which provides a rule definition and execution environ-
ment that integrates well with our metrics data store InfluxDB and provides a wide
range of options for event handling, including completely custom event handlers,
which we make use of to implement the automated healing functionality in Butler.
Kapacitor rule definitions make use of a Domain Specific Language (DSL) called
TICKscript to implement the specification of rule predicates described in 3.1.

TICKscript makes use of the concept of nodes and pipelines to organise rules
as Directed Acyclic Graphs (DAGs) where processing flows forwards in a single
direction, and never backwards. Each node describes a particular data processing
stage, and the pipeline is a chain of nodes. Each invocation of a rule represents a
particular path through the graph.

In listing 21 we see an example of a TICKscript used in Butler to keep track of
the CPU allocation on each host and send results to a log file. Key threshold levels
are specified at the top of the script as well as the look-back period and evaluation
frequency. A query for fetching appropriate data is specified and stored in the data
variable as a stream. Here we access the metrics database (of our centralised In-
fluxDB data store), and we are interested in the cpu_value measurement, expressed
as a percentage. The actual metric measures the idle CPU percentage, and we are
interested in the used CPU percentage, so we subtract the metric value from 100,
and compute the mean value over our selection window giving it an alias name of
stat that we can refer to later.

With the data appropriately selected we can turn our attention to specifying
appropriate comparisons to the thresholds that had earlier been established, and
defining event triggers and handling logic. In addition to the already existing mean
value we use the built-in sigma function to calculate the distance, in standard de-
viations, from the mean of the current stat value, giving it an alias sigma as we
are interested in capturing and alerting not only on high absolute CPU utilisation
levels but also high variance within the metric of interest. Each rule can trigger at
three levels of severity - info, warning, and critical and we specify a separate thresh-
old for each level. Thus, the CPU rule is triggered at a critical level when average
CPU utilisation over the last 10 seconds is greater than 90%, or when the observed
CPU utilisation is greater than 3.5 standard deviations away from the mean CPU
utilisation. Other thresholds are set similarly. In this particular example we are
interested in collecting the instances when rules are triggered into a simple log file,
thus we specify a path to such a log file as part of the alert definition.

A key mode of failure for the system is when a critical service fails or an entire
virtual machine becomes unresponsive and unreachable. In order to capture these
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conditions we make use of a special type of rule within kapacitor called a deadman.
This type of rule is triggered when no signal is received for a specific metric for a
predefined period of time. In Listing 22 we provide an example of a TICKscript
that detects the deadman condition for an entire VM. This script uses a higher level
of parametrisation than the CPU utilisation script of Listing 21 where most of the
parameters are specified as variables at the top of the script and the script structure
is encoded below. The metric measurement that we base the rule on is called system
and it tracks low-level stats such as uptime for a VM. The data selection section of
the script selects values from the system measurement grouped by individual host
that they originate from.

Figure 3.28: Self-healing alerts sent to a Slack channel.

The rule is triggered when no data is received for the given metric via the
deadman(threshold, period) node. In this case, when the rule is triggered there
are several handlers that are registered to handle the resulting event. The first
handler uses Slack API[222] to post a notification message to the #embassyalerts
Slack channel using a predefined message template with key information about the
outage, such as in Figure 3.28. The type of message changes depending on whether
the rule condition has triggered or returned back to normal.

Figure 3.29: List of rule definitions within chronograf.
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The second handler invokes the actual Butler Self-Healing Agent to destroy the
host that has become defunct and to launch a new VM to replace it. The details of
the agent are provided in the next section. The third handler for this event actually
generates a new metric that keeps track of rules that have been triggered and stores
the metric in a separate measurement in InfluxDB. Since we want to have compre-
hensive information about when error conditions occur the alerts measurement
gives us a system of record for these events.

Butler defines a variety of rules using TICKscript that capture anomalies that are
actionable out of the box, such as those that detect when a variety of services go
offline, including - PostgreSQL service, Airflow Scheduler, Airflow Webserver, Air-
flow Worker, RabbitMQ, Nginx, Grafana, as well as when an entire worker VM goes
offline. Each rule needs to be registered with kapacitor and Butler uses the standard
Saltstack configuration mechanism to register these rules within the deploy_ticks
Salt state. There exists an open source Graphical User Interface called chrono-
graf[223] that allows for visualisation and manual inspection and editing of kapac-
itor rules and the underlying InfluxDB metrics, and Butler makes use of this GUI,
see Figures 3.29, 3.30.

Figure 3.30: Butler alert history.

Executing Self-Healing

Metrics are comprehensively collected within Butler and anomaly detection signals
are generated via a set of rules as previously described, but the actual automated
self-healing capabilities require a separate component and no generic open source
components exist that accomplish this. We thus implement a custom Self-Healing
Agent within Butler. The functionality is exposed as a Python package with a CLI
interface that is able to accomplish a number of healing tasks on various machines
in the Butler cluster.

The self-healing agent relies on the configuration management capabilities avail-
able in Butler via Saltstack in order to communicate healing instructions to other
hosts. Specifically, Saltstack provides a programmatic interface through which a
salt-master can be controlled. This interface is called salt-api. In addition, there ex-
ists a module called pepper that allows for the salt-api to be communicated with by
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a remote program via openSSL. Butler uses this mechanism to communicate with,
and restart various failed services in an automated fashion. For instance, in the
case of a failed Airflow Scheduler service (see Listing 23), the local telegraf metrics
collector monitors the airflow-scheduler service, and sends updated metrics to
the monitoring-server every 10 seconds, where the data is stored in InfluxDB. A ka-
pacitor rule runs on the monitoring-server every 10 seconds and evaluates whether
the airflow-scheduler is still sending data. If there is no data for longer than
3 minutes, the rule is triggered. As a result the Self-Healing Agent is requested
to restart the airflow-scheduler service. The agent itself does not know how to
communicate with other machines in the cluster, but knows how to communicate
with the salt-master. It establishes a salt-api connection to the salt-master and
asks for the VM that has the tracker role to restart its airflow-scheduler service.
The salt-master knows about all of the VMs in the Butler cluster and issues the
restart service command, placing the service back in a functioning state. A Slack
notification is sent to alert a human operator that an outage has occurred and has
been resolved. The total time of the outage is slightly longer than 3 minutes.

Figure 3.31: Butler timeline of alerts for high CPU utilisation.

Although, as described above, there are quite a few steps involved between the
initial stoppage of a running service and a successful automated restart, the process
is relatively straightforward. Restarting a failed VM, on the other hand, requires
quite a bit more effort and careful management. Detecting when an entire VM
fails is not really possible in a centralised uniform manner, since a failed VM is
completely unresponsive by definition, yet other conditions such as network outages
and failures of the metrics collection system may appear in an identical manner to
an outside observer. Thus, VM failure detection is prone to false positive signals,
and because re-creating VMs from scratch is a costly and time consuming process
it is important to use this feature sparingly.

For every VM a set of basic metrics is collected via telegraf, and the particular
metric that is used to detect failed VMs is uptime. This metric simply measures
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how long a particular VM has been alive for. When uptime ceases to be updated
for a period of time (current default is 30 minutes) the VM is declared dead and
is slotted for destruction. Since within Butler all concerns related to creation and
destruction of VMs are handled by terraform it is necessary to ensure that terraform
can be executed by the self-healing agent and is kept up to date of the infrastructure
state that may be updated elsewhere. Details of the terraform cluster lifecycle man-
agement system are described in Section 3.4.1. To support automated relaunching
of VMs several changes to how terraform is used are required.

Typically, Butler clusters are launched from a machine that is external to the
cloud that is being deployed to. Oftentimes this happens from an individual
user’s computer. By default terraform creates, and keeps up to date, a file called
terraform.tfstate, which contains a tree representation of the entire Butler
infrastructure. This file typically does not contain sensitive information, thus, it
can most frequently be simply checked into source control and checked out on
the host that will run the self-healing agent. When it is desired to keep the state
information private the data can be encrypted and shared in the manner described
below for other private data. Not all of the terraform configuration information
is non-private. In order to successfully communicate with cloud API endpoints
sensitive configuration settings such as endpoint URLs, paths, and user credentials
are required. Relaying this information over to the host running the self-healing
agent in a secure manner is handled via passing of a GPG encrypted variable
through saltstack.

Under this scheme a public/private GPG keypair is created and the public key
is imported on the machine that is holding the secret data and will perform the
encryption. The private key is imported on the salt-master machine of the Butler
cluster. Secret data is encrypted and stored as a string literal in a salt pillar variable
that can be checked into source control, see Listing 3.

Listing 3: Storing GPG encrypted data in a salt pillar variable.

1 #!yaml|gpg
2 tf_vars: |
3 -----BEGIN PGP MESSAGE-----
4

5 hQEMA0LYc5MkOCPHAQf8CeN7ykRp518Fm3co0DF5q8pwk9O92ctmDnAhhAascZ2c
6 3QESmEIswLVWhKjbZ9tqmmOJeBR+i5gadJjeMStGLHjJm4hNeWLvduk9y63VvhO7
7 sjm1N+zzEeYINoj5dkFn9ursggwVP/yk7tlKovvhCO6vwOdIh3UI1S+BzfYb79Sd
8 aQGMID1n2LoYCy2y1xXjpTlsYU9uVPhQds2WeFL3Kfhc9B8Q/5i58XdiISVg8ueo
9 pg98uOOtIe9BruB6m6tRG6f1W3ZDhjpoBE+DrcBm5k8LZ1khZV70+SjTuoMNOfDl

10 K84meNBDoATi5x0FpfNLnQWXLjJkxaxWaZdGaBplhdLAJAF/PvyvMG0BX7XJdCcW
11 XGs3BoM+NUJqDgjI5gytmLbPRHA2YWUVNTBmUUw6r9abJyBta1w2RwOFMxEGnszL
12 kT0kBPZCAoWiCkgug2G5mnwwP9Wh/CERDCuqObPKHdnES0EMkZ6Bpo7cwX2HMUNj
13 5NAYt0gJ6uD1n3zGstQ8Crchj7rkDqottQ/b1JkgFoXKGCYLnv9EuZxaRXz1ad0n
14 V7We5/GI+4PmemBLKOHqSdaE/z9sveF1xwY1iUb9hHrHZL2s68nJ4T4VU6VSfVZa
15 9W1p4QHic5VDacisq/gWYbSL/ERqKA==
16 =B+ao
17 -----END PGP MESSAGE-----
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18

19 terraform_files: /opt/eosc_pilot/deployment/embassy/
20 terraform_state: /opt/eosc_pilot/deployment/embassy/terraform.tfstate
21 terraform_vars: /opt/eosc_pilot/deployment/embassy/ebi_credentials.tfvars
22 terraform_provider: openstack

When the pillar variable is targeted to the VM that runs the self-healing agent
and needs to be able to execute terraform commands, the salt-master uses its copy
of the private key to decrypt the file contents and deliver them to the appropriate
VM as a file (see Listing 4) that is ready to be consumed by terraform.

Listing 4: Retrieving contents of a GPG encrypted pillar variable and storing them
in a file.

1 {{ pillar['terraform_vars'] }}:
2 file.managed:
3 - contents_pillar: tf_vars
4 - user: root
5 - group: root
6 - mode: 600
7 - makedirs: True

Because of the ephemeral nature of cloud-based VMs it is not advisable to simply
store terraform state in a file as may be sufficient on a user’s computer. Section
3.7.5 describes Consul, which is a software package that handles Service Discovery
concerns in Butler, but also provides a distributed key-value store. In order to
support a more robust storage back-end for terraform state we ingest this state
data into a Consul key-value store, which terraform can subsequently interact with
directly. This requires setting some terraform initialisation parameters to indicate
a Consul back-end and a location of the terraform state file to ingest. Because the
key-value store is replicated across several Consul nodes it is robust to individual
VM outages and supports the deployment of several self-healing agents against one
back-end as may be necessary for scalability.

Listing 24 shows self-healing agent code excerpts that demonstrate the general
flow of terminating and relaunching of a worker VM. Each machine managed by
saltstack exchanges SSH keys with the salt-master. To ensure that there are no
collisions between keys when reusing worker machine names the defunct worker’s
SSH key needs to be removed from the salt-master. Subsequently, terraform’s taint
command is used to mark the VM for destruction. Once that succeeds the terraform
apply command is used to actually carry out the destruction and re-provisioning
of the VM using an appropriate cloud-provider-specific set of instructions. Since
the configuration of the newly launched VM cannot continue until the machine
is registered with the salt-master the agent periodically polls salt-master until it is
able to successfully retrieve the new key. Once the new key is available configuration
proceeds according to the same recipe as when manually launching the Butler cluster.
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First, DNS is configured via dnsmasq, then service lookup is configured via consul,
and lastly the full salt highstate is executed to install the rest of the necessary
software. Upon the completion of this process the newly launched VM is placed in
service and can tak on new tasks from the scheduler.

Self-Healing Caveats

Self-healing is a powerful concept and can play a huge role in facilitating the smooth
operation of large computational clusters with minimal human intervention. It is
possible though, to over-automate, ending up in a situation where rules are fre-
quently triggered under false conditions, causing needless restarts and wasted sys-
tem resources. This is due to the sheer number of different things that can go wrong
in a large-scale distributed system and the relative difficulty of expressing the resul-
tant conditions and resolution steps in a manner that is not prone to false positive
signals and low robustness. Thus, it is imperative for the Butler user to approach
self-healing as a component of the system that requires tuning, project-to-project
and environment-to-environment.

When deciding which aspects of the system operational behaviour to automate,
the user should keep in mind the level of regularity with which particular classes
of issues occur, the reliability of the metrics signal in detecting these issues, and
the potential benefits of automated action versus the potential costs of acting on
false-positive signals. This can require getting detailed knowledge of the operational
profile of the individual algorithms that are being executed as part of a particular
project in order to understand what normal and unnormal operating conditions
look like so that these may be encoded as anomaly detection rules. This is most
easily accomplished by careful observation and analysis of monitoring dashboards to
identify important patterns. With the self-healing system it is advised to start with
a small number of robust signals, and build up the rule complexity as the users’ level
of understanding and sophistication with the Butler framework increases in order
to reap the most benefits.

3.7.5 Service Discovery

The Butler framework consists of many different services that reside on a number
of different servers and need to be able to communicate with each other. To accom-
plish this in a flexible manner we need to establish a Service Registry so that IP
addresses of servers that host particular services can be looked up by service name.
To accomplish this Butler uses an Open Source service discovery framework called
Consul[204].

Consul provides a cross-data-center distributed Service Name Registry that is
available via HTTP and DNS protocols (see Figure 3.32). In addition to registry
capabilities Consul provides basic health checks for the underlying services, testing
whether the IP and port the service is supposed to be listening on are actually
reachable.
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Figure 3.32: Consul high level architecture (from https://www.consul.io/docs/
internals/architecture.html).

Each VM in the cluster runs a Consul Agent, which can be run in Server and
Client modes. The set of Consul Servers form a Raft cluster and provide consensus-
based responses to service lookup requests from clients. When new VMs are started
they need to join the Consul cluster in order to be able to perform lookups, doing so
requires knowing the IP address of at least one server. In Butler we use Saltstack’s
configuration capabilities to convey a Consul Server’s IP address to any new VM
that is brought up.

Registering a service with Consul is a matter of creating a JSON formatted
configuration file that declares the service (see Listing 25). A Consul agent running
on that VM will ingest the service definition and relay it to a Consul Server,
which will then circulate it amongst the other servers. The service will then
be available for DNS lookups. The service from Listing 25 will have the name
postgresql.service.consul, for example.
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Chapter 4

The Butler Framework -
Implementation and Validation

The Butler framework has been built to enable large-scale scientific analyses in the
cloud and the largest set of analyses that have been performed using this framework
to date have been the Germline analyses for the Pan-Cancer Analysis of Whole
Genomes Project on the EBI Embassy Cloud. We describe the nature of these
analyses as well as the details of the Butler deployment on the Embassy Cloud next.

4.1 Deployment on EMBL/EBI Embassy Cloud

The EMBL/EBI Embassy Cloud[182] is an academic cloud computing center, which
runs an OpenStack-based environment. The Embassy Cloud plays a key role in the
PCAWG project by donating substantial storage and cloud computing capacity over
the course of 3 years. The total amount of resources dedicated to the project by the
Embassy Cloud is:

• 1 PB Isilon storage shared over NFS

• 1500 compute cores

• 6 TB RAM

• 40 TB local SSD storage

• 10 Gb network

These resources have been used to host one of the seven PCAWG GNOS repos-
itories that exist worldwide, as well as performing a number of scientific analyses
for the project. We have used Butler extensively on the Embassy Cloud in order to
carry out the germline analyses for PCAWG-8 Working Group.
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Figure 4.1: Embassy Cloud Architecture

Embassy Cloud Architecture

Figure 4.1 shows the general high-level architecture of the Germline Working Group’s
tenant within the EMBL/EBI’s Embassy Cloud. Because of the sensitive nature of
the genetic data that is stored at Embassy there are several security mechanisms in
place. The Virtual Machines are hidden behind a secure gateway and are not visible
to the external network. The secure gateway maintains a hand-curated list of IP
addresses that are allowed to connect to it from the Internet. Currently this list
contains several IP addresses of research institutions that are part of the PCAWG
project. Beyond the gateway is a bastion host - a Virtual Machine that serves as the
entry-point into the cloud environment. Individual users can establish SSH sessions
to the bastion host using their SSH key. From the bastion host the user can establish
key-based SSH access to other Virtual Machines within the tenancy.

Authenticated Web-based access to the OpenStack dashboard (Figure 4.2) pro-
vides a conventional method for the users to create and manage Virtual Machines.

Access to PCAWG Data

The raw data for PCAWG is hosted in a distributed manner in GNOS repositories.
A data synchronisation mechanism copies data between repositories when necessary.
The EMBL/EBI GNOS repository is one of the most complete sources of PCAWG
data, hosting close to 1PB of data for the project. Although typically access to the
GNOS repository is only available via a GNOS client the Embassy Cloud IT team
has made a special provision for the Germline Working Group to allow access to
the underlying data via an NFS share. This allows Butler-based workflows to have
more efficient access to the data.
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Figure 4.2: Embassy Cloud Dashboard

The PCAWG project periodically publishes an official list of all samples that
are part of the project. In order to facilitate accurate sample tracking for anal-
ysis purposes we have built a Sample Tracking Database on top of PostgreSQL
and SQLAlchemy. There are two tables pcawg_samples and sample_locations.
pcawg_samples maintains a list of official samples along with their accompanying
metadata while sample_locations contains a set of file paths that indicate where
to find each sample on the Embassy Cloud file server. This table is populated by
a script that crawls the directory structure looking for samples that are part of the
official list.

Butler deployment

Butler has been deployed on the Embassy Cloud since March, 2016 and has been
used extensively to carry out analyses for the Germline Working Group.

To deploy Butler on the 1500 core cluster we set up five different profiles of VMs,
each playing a number of different roles (Table 4.1).

Each profile is defined separately via Terraform and uses Saltstack roles for config-
uration. The user can check out the Butler github repository to their local machine
and once they install Terraform locally, and provided that they are able to connect
to the EBI Secure Gateway (Figure 4.1) they can fully commandeer the provisioning
process from the local machine via Terraform.

Figure 4.3 provides a diagrammatic view of the deployment of various Butler
components on the Embassy Cloud.

The cluster is bootstrapped via the salt-master VM. This VM is started first
whenever the cluster needs to be recreated from scratch. The salt-master is started
with a minimal OS image for speed and all of the other configurations are delivered
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Machine CPU RAM
(GB)

Disk (GB) Roles Count

salt-master 4 6 50 ephemeral
1000 block for
metrics storage

salt-master
consul-bootstrap
monitoring-server

1

tracker 4 4 40 ephemeral
1000 block for
elasticsearch

tracker
consul-server
elasticsearch

1

job-queue 4 4 40 ephemeral job-queue
consul-client

1

db-server 8 16 80 ephemeral
1000 block for db

db-server
consul-client

1

worker 8 32 100 ephemeral worker
germline
consul-client

175

Table 4.1: Butler deployment on Embassy Cloud

via Saltstack itself. The IP of the salt-master machine is retained so that it can
be passed on to the other VMs upon creation so that they know how to connect to
the master when they boot up. The salt-master VM plays two other roles (Table
4.1) in this deployment in order to maximise resource utilisation (since Saltstack is
a light resource consumer) - consul-bootstrap, and monitoring-server. The consul-
bootstrap role conveys the responsibility for starting up the Consul Service Discovery
mechanism to the salt-master. When set up in bootstrap mode, consul waits for one
more consul server to join the cluster, before quorum is reached and the cluster
becomes fully operational. The monitoring-server role is responsible for installing
and configuring InfluxDB and other monitoring components as well as registering
them with Consul so that metrics can start being recorded. We also attach a 1TB
block storage volume for the metrics database so that it can survive cluster crashes
and tear-downs. If the monitoring server needs to be recreated, the block storage
volume simply needs to be reattached to the new Monitoring Server VM.

The tracker VM is responsible for running various Airflow components such as
the - Scheduler, Webserver, and Flower (Section 3.6). Additionally we deploy the
Butler tracker module (Section 3.6.3)to this VM, thus the tracker VM acts as the
main control point of the system from which analyses are launched and monitored.
This VM additionally has the elasticsearch role, which designates it as the location
of the Logstash and Elasticsearch components (Section 3.7.3). To persist the search
index we attach an additional 1TB block storage volume. The consul-server role
allows the cluster, once the tracker VM is brought up, to reach quorum necessary
for full Consul functionality.

The job-queue VM is responsible for hosting the RabbitMQ server, which holds
all of the in-flight workflow tasks. Because the resources of the job-queue are heavily
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Figure 4.3: Butler Deployment Architecture

taxed by communication with all of the worker VMs in the cluster we do not assign
any additional roles to this host.

The db-server is responsible for hosting most of the databases used by Butler.
This VM runs an instance of PostgreSQL Server and hosts the Run Tracking DB,
Airflow DB, and Sample Tracking DB. The 1TB block storage volume serves as the
backing storage mechanism.

The worker VMs are the workhorses of the Butler cluster. In its current de-
ployment (October 2016) there are 175 8-core worker machines that are dedicated
to running Butler workflows. The worker role ensures that Airflow client modules
are installed and loaded on each worker. The germline role additionally loads the
workflows and analyses that are relevant to the PCAWG Germline Working Group.
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4.2 PCAWG Germline Analyses

The PCAWG project is divided into a set of working groups. Each group has a
different set of research interests and technical activities that it is contributing to
the overall project effort. The goal of the Germline Working Group, also known as
PCAWG-8, is to study the distribution of germline (mutations that are inherited
from one’s parents) polymorphisms within the PCAWG cohort of 2834 cancer pa-
tients and gain a better understanding of how these germline polymorphisms affect
various aspects of the patients’ disease, for instance whether they affect disease pro-
gression, likelihood of survival, or any number of molecular-level traits such as DNA
repair, propensity towards certain types of mutations, or gene dysregulation.

To enable these analyses the goal of the Germline Working Group is to produce a
full set of high quality genotyped germline variants. Doing so requires carrying out
a significant number of computational steps that use the entire 725 TB raw data
set. These steps are as follows:

Variant Discovery - Use a set of algorithms that look at each location in the
genome and try to determine where the genome differs from the known refer-
ence sequence.

Variant Genotyping - Using a set of variant sites produced by Variant Discovery
and determine an accurate genotype at the variant position for all donors in
the cohort.

Variant Filtration - Filter out false positive calls introduced by the previous steps.

Genotype Phasing - Use an algorithm to determine which chromosome (of the
pair) each variant belongs to.

Data Submission - Prepare metadata and submit the resulting call-set to a cen-
tralised data repository.

4.2.1 Variant Discovery

There exist multiple algorithms for variant discovery and each algorithm has a
unique set of features. As a result, they typically produce call-sets that only
overlap on a subset of the values[164]. In order to improve the sensitivity of the
call-set the Germline Working Group is producing three independent discovery call
sets via three different algorithms - Freebayes[61], GATK HaplotypeCaller[28], and
RTG[224]. These call-sets are then merged via a two-out-of-three criterion i.e. a
variant is retained if it is called by at least 2 of the three pipelines. This approach
produces a more sensitive call-set than via any of the tools individually.

The GATK HaplotypeCaller data set has been produced by the Broad Institute,
the RTG set has been produced by Stanford University, and the Freebayes data set
has been produced using a Butler workflow on the EBI Embassy Cloud.
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The freebayes Butler workflow

The freebayes workflow parallelises its work by splitting each sample by chromosome
to reduce the amount of time it takes to process a single sample. Although the
chromosomes have vastly different sizes (see Table 4.2), and thus individual jobs
have different runtimes, when many samples are processed, there is little practical
impact on when the entire batch of samples is completed.

Chromosome Size(base pairs)

1 249,250,621
2 243,199,373
3 198,022,430
4 191,154,276
5 180,915,260
6 171,115,067
7 159,138,663
8 146,364,022
9 141,213,431
10 135,534,747
11 135,006,516
12 133,851,895
13 115,169,878
14 107,349,540
15 102,531,392
16 90,354,753
17 81,195,210
18 78,077,248
19 59,128,983
20 63,025,520
21 48,129,895
22 51,304,566
X 155,270,560
Y 59,373,566

Table 4.2: Human chromosome size distribution

Overall, most Butler workflows that carry out an analysis follow a similar structure
- an Analysis Run is started, access to the sample is validated, the analysis steps
are carried out (possibly with branching), and the Analysis Run is completed (see
Figure 4.4).
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Figure 4.4: Structure of the Butler freebayes workflow

Because of the largely common structure between workflows a large degree of code
reuse is possible, thus most of the methods reside in the workflow_common sub-
module of the tracker module (see Section 3.6.3) and are invoked for each workflow.

A full listing of the source code for the freebayes workflow is provided in Listing
26 and is discussed next.

Lines 81-127 of the source code define the workflow structure, first by declaring
an instance of type DAG, and then by defining a sequence of workflow tasks. In this
case each task is a Python callable. The loop on line 117 defines one workflow task
for each chromosome in the predefined list. The order of task execution is defined
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by calling a task’s set_upstream() method, such as on lines 109 and 127 of the
listing. Default parallelism behaviour is specified on line 92 where the maximum
number of active workflow runs is defined to be 2000, and the maximum number of
active workflow tasks is defined to be 10,000. If more workflows than the maximum
get scheduled, they will be queued until some workflow instances complete.

The bulk of the body of the workflow definition (lines 14-78) is dedicated to the
implementation of a single function - run_freebayes(**kwargs), which manages
the invocation of the freebayes tool on a single chromosome of a sample. Line 16
gets the effective configuration dictionary (see Section 3.6.4), which contains the
merged configuration parameters from Workflow (Listing 5), Analysis (Listing 6),
and Analysis Run (Listing 7) levels.

Listing 5: Workflow-level configuration for freebayes workflow.

1 {
2 "contig_names": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10",
3 "11", "12", "13", "14", "15", "16", "17", "18", "19",
4 "20", "21", "22", "X", "Y"],
5 "reference_location": "/reference/genome.fa",
6 "bgzip": {
7 "path": "/usr/local/bin/bgzip",
8 "flags": ""
9 },

10 "tabix": {
11 "path": "/usr/local/bin/tabix",
12 "flags": "-f -p vcf"
13 },
14 "rsync": {
15 "flags": "-a -v --remove-source-files"
16 },
17 "freebayes": {
18 "path": "/bin/freebayes"
19 }
20 }

The workflow-level configurations contain values that should generally be applica-
ble to any invocation of the workflow. In exceptional cases these can be overridden
at Analysis and Analysis Run levels. For the freebayes workflow these settings in-
clude a list of chromosomes to call, the path to the human reference genome, and
paths to various tools used within the workflow.
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Listing 6: Analysis-level configuration for freebayes variant discovery analysis.

1 {
2 "results_base_path": "/shared/data/results/discovery/",
3 "results_local_path": "/tmp/discovery/",
4 "freebayes": {
5 "mode": "discovery",
6 "flags": "--min-repeat-entropy 1

--report-genotype-likelihood-max"↪→

7 }
8 }

Since our analysis focuses on variant discovery, the Analysis-level JSON configu-
ration file contains freebayes flags to set up discovery mode, as well as setting up a
location for where to store the analysis results and which directory to use as local
scratch space.

Listing 7: AnalysisRun-level configuration for a single sample in freebayes variant
discovery analysis.

1 {
2 "sample": {
3 "sample_location": "/gnosdata/tcga/PCAWG.67455c36-aa47-4cc4-8b6d-

9a9012b616ed.bam",↪→

4 "donor_index": 0,
5 "sample_id": "f22a72c5-73c8-478d-b03e-04599b9d5321"
6 }
7 }

Listing 7 provides an example of what an AnalysisRun-level configuration looks
like. This configuration is concerned with supplying sample level configuration val-
ues, such as the sample_id and sample_location.

After all of the necessary parameters are extracted from the configuration and
command invocation is set up lines 71-75 of Listing 26 actually invoke a series of
commands that perform the bulk of the analysis - calling freebayes to generate
the discovery call-set, followed by converting the call-set into a binary compressed
format (with bgzip), followed by generating an index file for record-based random
access into the binary file (with tabix), and followed by an rsync to the shared
results storage indicated in the configuration.

The workflow is distributed to all worker nodes in the cluster via a Saltstack state
as shown in Listing 27.
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AnalysisRun configurations for freebayes workflow

While each workflow only has one workflow-level configuration and possibly a few
dozen analysis-level configurations, there needs to be one analysis run-level config-
uration generated for each sample under analysis, thus resulting in thousands of
these configurations being generated for each analysis. The most effective method
for accomplishing this is via a script. We utilise two databases - the Run Track-
ing Database (Section 3.6.3), and the Sample Tracking Database (Section 4.1) in
order to generate a list of samples for which there are no Analysis Runs present
for a given Analysis yet. To generate our result-set we utilise the SQLAlchemy
Object-Relational Mapping framework (see 8).

Listing 8: SQLAlchemy query to generate available samples.

1 current_runs = run_session.query(Configuration.config[("sample","
sample_id")].astext).\↪→

2 join(AnalysisRun, AnalysisRun.config_id == Configuration.config_id).\
3 join(Analysis, Analysis.analysis_id == AnalysisRun.analysis_id).\
4 filter(and_(Analysis.analysis_id == analysis_id, AnalysisRun.run_status

!= tracker.model.analysis_run.RUN_STATUS_ERROR)).all()↪→

5

6 available_samples = sample_session.query(PCAWGSample.index.label("index"),
sample_id.label("sample_id"), sample_location.label("sample_location")).\↪→

7 join(SampleLocation, PCAWGSample.index == SampleLocation.donor_index).\
8 filter(and_(sample_location != None, sample_id.notin_(current_runs))).\
9 limit(num_runs).all()

The final script is wrapped in a Command Line Interface to improve the user
experience. It supports the following parameters:

analysis_id - The id of the Analysis for which to generate Analysis Run configs.

num_runs - The number of runs to generate. The actual number of runs will be
min(num_runs, available_runs)

tissue_type - Whether to generate the Analysis Runs for tumour or normal tissue
samples.

config_location - File path where to store the resulting Analysis Run configs.

Thus, a full invocation would look like:

python prepare_freebayes_genotyping_config.py create-configs -a 3 -n
150 -t normal -c /config_file_location/↪→

This would generate at most 150 JSON files with configurations for Analysis ID 3
and normal tissue samples, storing them in /config_file_location/, which could be
used to start workflow instances for this analysis.
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4.2.2 Variant Genotyping

Genotyping refers to accurately determining for each sample and at each variant
position what are the two nucleotide bases (one for each sister chromosome) at that
position[225]. This analysis involves looking at the DNA reads that overlap each
position and evaluating a model for the likelihood of each possible genotype given
the data observed in the reads. The genotype with the highest likelihood given
the data is selected[86]. To accomplish this task we use a Butler workflow that
utilises freebayes as the computational algorithm underneath the covers. Because
the freebayes workflow from Section 4.2.1 has been built in a generic fashion the only
changes that are necessary between discovery and genotyping analyses lie within the
analysis configuration.

We see in Listing 28 that we need to provide a list of variant locations that need
to be genotyped, split by chromosome, and stored in VCF format[21]. Additionally,
we provide a set of flags to freebayes that indicate that the tool should be used in
genotyping mode.

4.2.3 Variant Filtration

Although utilising multiple variant callers for variant discovery improves the overall
sensitivity it also increases the number of false positives in the call-set. In order
to remove the false positive calls the Germline Working Group has undertaken a
number of filtration steps. Some of these steps involve machine learning methods
that are carried out outside the scope of Butler, but some are based on a set of
well-known filtering criteria. These are implemented as a separate Butler workflow.

Figure 4.5: Structure of the Butler Variant Filtration workflow

The Filter Variants workflow has a rather simple structure. Bookended by the
standard run-start and run-completion tasks is the actual filtration task. This task is
implemented as an Airflow PythonOperator and invokes two commands - vcftools[21]
and vt[226]. vcftools is used for actual variant filtering, while vt is used for variant
normalisation.
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Listing 9: Butler Analysis configuration for VCF filtering.

1 {
2 "results_base_path": "/shared/data/results/discovery_filtered/",
3 "results_local_path": "/tmp/discovery_filtered/",
4 "vcffilter": {
5 "flags": "QUAL > 20 & DP > 3 & QUAL / AO > 2 & SAF > 1 & SAR > 1

& RPR > 1 & RPL > 1"↪→

6 },
7 "vt": {
8 "command": "normalize"
9 }

10 }

Listing 9 demonstrates the usage of vcftools’ flags to achieve variant filtering for
PCAWG.

4.2.4 Genotype Phasing

Because each individual inherits one copy of each chromosome (except for sex chro-
mosomes X and Y) from the mother and one from the father, a variant may lie
on one chromosome or the other, or both. It is, thus, important to understand
which chromosome each variant lies on in order to inform downstream analyses.
This methodology is called statistical phasing and was carried out by a tool called
Shapeit[227] outside of Butler.

4.2.5 Data Submission

Once a call-set for each sample is produced and vetted it needs to be submitted to
a centralised data repository so that it can be shared with other researchers on the
project. There are seven such data repositories throughout the world, each running
a software tool called GNOS[228] from Annai Systems. A submission to GNOS
consists of the call-set data accompanied by an XML-formatted metadata file, that
describes the submission. GNOS then uses a proprietary torrent-like protocol for
secure file uploads. A Butler workflow implements automated sample submissions
to GNOS.

Figure 4.6: Structure of the Butler Data Submission workflow
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The Data Submission workflow (Figure 4.6) follows a linear sequence of events im-
plemented as Airflow PythonOperators. The data submission is a three step process
where the first action is to prepare a sample’s accompanying metadata submission,
the second is to submit this metadata to a GNOS repository of choice, which gen-
erates a manifest in return, and the third step is to upload the actual data to the
same repository using the manifest. See Listing 29

In order to be able to successfully submit a sample, the sample, along with its
accompanying metadata must be placed in a separate directory whose name is a
Universally Unique Identifier (UUID) - this UUID will become an identifier for the
submission on the GNOS server. Furthermore, the metadata file - an XML docu-
ment, must be populated with descriptions of the analysis steps taken to produce
the sample. We generate this file in Butler’s workflow with the aid of an XML
template (see Listing 30 template declaration) and using Python’s etree module.

Once the submission is ready, the actual process of submission is carried out
using the cgsubmit tool by Annai Systems. It is important which GNOS repository
a sample ends up in as not all repositories have permissions to host all samples. The
destination_repo_mapping dictionary in Listing 30 maintains a mapping between
a sample’s project and a corresponding GNOS repository name. Listing 29 provides
a further mapping between repository names and repository URLs thus allowing
cgsubmit to submit each sample to its corresponding GNOS repository. The output
of the metadata_submit task is a manifest.xml file, which is placed in the sample’s
directory and contains all of the necessary information to enable the upload of the
actual data.

The upload_data task is responsible for moving the actual data into a desig-
nated GNOS repository. This is accomplished using a tool called gtupload, which
implements a torrent-like data upload protocol.

4.2.6 Structural Variant Calling

While the previously described methods are geared towards the detection and
genotyping of Single Nucleotide Polymorphisms (SNPs), there are other classes of
germline variants within a person’s genome. Structural Variants form a broad class
of larger polymorphisms that are typically 50 basepairs or larger in size[165]. There
are various types of structural variants, including:

• Deletions

• Inversions

• Duplications

• Translocations
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The Germline Working Group is using a tool called Delly[167] to accurately detect
and genotype these variants. To enable Delly analyses on the EBI Embassy Cloud
we have built a Delly workflow in Butler (Figure 4.7).

Figure 4.7: Structure of the Butler Delly workflow

This workflow has a familiar linear structure with the bulk of the work being done
inside the delly_genotype task. Because Delly knows how to work with and output
compressed VCF files there is no need to compress and generate indexes like with
freebayes. This makes the task code simpler (Listing 31).

After extracting the necessary configuration parameters and setting up the delly
execution command, once delly execution finishes, the resulting call-set is copied
over to its final location. Control over program behaviour is mostly exercised at the
analysis level, where program flags are typically indicated (Listing 32)

4.3 Experimental Runs

Between January and October 2016 Butler has been used extensively to facilitate a
number of large scale cancer genomics analyses on behalf of the Germline Working
Group of the Pan Cancer Analysis of Whole Genomes Project. The input to these
analyses has been a 725 TB data-set of 2834 cancer patients’ sequenced DNA sam-
ples, and the outputs have been a number of call-sets identifying and genotyping
various classes of germline variants in the form of VCF files. All of the computa-
tions have been performed on the EMBL/EBI Embassy Cloud - a 1500 core, 6TB
of RAM, 1PB of storage, academic cloud running OpenStack.

In this section we describe the technical details and characteristics of these exper-
imental runs to establish a measure of Butler’s effectiveness in real-life scenarios.

4.3.1 Freebayes Common Variant Genotyping

The Common Variant Genotyping analysis refers to the genotyping within the
PCAWG cohort the genomic variants that occur with at least 1% Minor Allele
Frequency (MAF) within the 1000 Genomes Project’s[229] cohort. This site list
consists of 12 million variants that need to be genotyped for each patient - thus
requiring genotyping at 34 billion sites.

To accomplish this task we utilise the Butler freebayes workflow in genotyping
mode, supplying the following configurations:
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Listing 10: Butler Freebayes Workflow analysis configuration for common variants
genotyping.

1 {
2 "variants_location": {
3 "1": "/1000GP_maf_0.01/ALL.chr1.vcf.gz",
4 "2": "/1000GP_maf_0.01/ALL.chr2.vcf.gz",
5 "3": "/1000GP_maf_0.01/ALL.chr3.vcf.gz",
6 "4": "/1000GP_maf_0.01/ALL.chr4.vcf.gz",
7 "5": "/1000GP_maf_0.01/ALL.chr5.vcf.gz",
8 "6": "/1000GP_maf_0.01/ALL.chr6.vcf.gz",
9 "7": "/1000GP_maf_0.01/ALL.chr7.vcf.gz",

10 "8": "/1000GP_maf_0.01/ALL.chr8.vcf.gz",
11 "9": "/1000GP_maf_0.01/ALL.chr9.vcf.gz",
12 "10": "/1000GP_maf_0.01/ALL.chr10.vcf.gz",
13 "11": "/1000GP_maf_0.01/ALL.chr11.vcf.gz",
14 "12": "/1000GP_maf_0.01/ALL.chr12.vcf.gz",
15 "13": "/1000GP_maf_0.01/ALL.chr13.vcf.gz",
16 "14": "/1000GP_maf_0.01/ALL.chr14.vcf.gz",
17 "15": "/1000GP_maf_0.01/ALL.chr15.vcf.gz",
18 "16": "/1000GP_maf_0.01/ALL.chr16.vcf.gz",
19 "17": "/1000GP_maf_0.01/ALL.chr17.vcf.gz",
20 "18": "/1000GP_maf_0.01/ALL.chr18.vcf.gz",
21 "19": "/1000GP_maf_0.01/ALL.chr19.vcf.gz",
22 "20": "/1000GP_maf_0.01/ALL.chr20.vcf.gz",
23 "21": "/1000GP_maf_0.01/ALL.chr21.vcf.gz",
24 "22": "/1000GP_maf_0.01/ALL.chr22.vcf.gz"
25 },
26 "results_base_path": "/shared/data/results/regenotype_1_percent_maf/",
27 "results_local_path": "/tmp/regenotype_1_percent_maf/",
28 "freebayes": {
29 "mode": "regenotyping",
30 "flags": "-l"
31 }
32 }

Figure 4.8 shows a distribution of job runtimes (in minutes) separated by chro-
mosome. The mean runtime is highly correlated with chromosome length (and
consequently number of variants), with a Pearson correlation of 0.92.

Overall 130,152 compute hours were used to complete 70,850 workflow tasks for
this analysis with an additional 2688 CPU hours used for cluster management over-
head. Thus, management overhead accounted for 2% of the overall computational
resource costs for this analysis. Utilising 1000 cores this analysis took less than 6
days to complete.
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Figure 4.8: Runtimes of freebayes genotyping on the 1% MAF site-list.

4.3.2 Freebayes Variant Genotyping

Using the site-list of 60 million variants obtained from the Freebayes Variant Discov-
ery analysis we used the Butler Freebayes Workflow in genotyping mode to calculate
genotypes at 170 billion genomic positions. 76,518 tasks workflow tasks were com-
pleted utilising 302,071 CPU hours over the course of the analysis ( 10 days wall
time), of which 5,040 CPU hours were cluster management overhead, accounting for
1.6% of total resource utilisation. Figure 4.9 demonstrates the distribution of task
durations by chromosome.

Figure 4.10 provides a density-based view of task durations split by chromosome.
We observe that durations in each case tend to fall about some mean, dependent
on chromosome length (Pearson’s r = 0.925), with variance also decreasing with
chromosome length (r = 0.94). In each case there is a considerable right tail of
duration outcomes, with the maximum duration for each chromosome occurring on
average 11.7 standard deviations from the mean.
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Figure 4.9: Runtimes of freebayes regenotyping on the freebayes discovery call-set.

Figure 4.11 shows a view of the cluster load during the analysis execution. Here
we see that overall the load has been stable, with a few sporadic spikes (5/25, 5/28,
5/29). On the other hand we see that the load is not uniform across the cluster
with some machines not fully utilised. This is clear from the CPU utilisation panel,
where the majority of the VMs are at 100% CPU utilisation throughout the analysis
execution, but several machines appear to be stable at utilisation levels between 50%
and 90%.

4.3.3 Delly Full Variant Genotyping

The analysis of Delly Structural Variant Calling has been split into two parts - geno-
typing of germline deletions, and genotyping of germline duplications. We consider
each in turn.

Deletions Genotyping

The deletions analysis used the analysis configuration from Listing 11.
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Figure 4.10: Task duration distributions by chromosome.

Listing 11: Butler Delly Workflow analysis configuration for deletions genotyping.

1 {"variants_location":
"/shared/data/samples/vcf/delly_deletion_sites/del.sites.bcf",↪→

2 "results_base_path":
"/shared/data/results/delly_germline_deletions_14_07_2016/",↪→

3 "results_local_path": "/tmp/delly_germline_deletions/",
4 "variants_type": "DEL"}
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Figure 4.11: Cluster resource utilisation during the regenotyping analysis.

244,889 deletions were evaluated across 5668 samples (tumour and normal) for
a total of 1,388,030,852 genomic sites genotyped. Overall wall-time was 13 days,
utilising 265,200 CPU hours with 6240 CPU hours used for cluster management
overhead - an overhead of 2.2%.
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Figure 4.12 shows a histogram of genotyping (sample level) jobs.

Figure 4.12: Durations of deletion genotyping tasks by sample.

Table 4.3 shows the summary statistics of job durations.

Table 4.3: Summary statistics of delly deletion genotyping job durations

task_id mean median sd min max
delly_genotype 21.48 19.70 8.89 3.35 59.30

Figure 4.13 shows the overall cluster load during the deletion genotyping analysis.
During this analysis there were several periods during which the Workflow Scheduler
failed and the job queue ran out of tasks. These periods can be seen as dips on the
Load, CPU, and Memory metrics’ graphs.

Duplications Genotyping

The duplications analysis used the following configuration:

Listing 12: Butler Delly Workflow analysis configuration for duplications genotyping.

1 {"variants_location":
"/shared/data/samples/vcf/delly_deletion_sites/dup.sites.bcf",↪→

2 "results_base_path":
"/shared/data/results/delly_germline_dups_05_09_2016/",↪→

3 "results_local_path": "/tmp/delly_germline_dups/",
4 "variants_type": "DUP"}
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Figure 4.13: Cluster performance during the deletion genotyping analysis.

Overall 217,433 duplications were genotyped for each sample, across 5668 sam-
ples for a total of 1,232,410,244 genomic variants genotyped. The wall-time for this
analysis was only 4.5 days, utilising 151,200 CPU hours during this time, with a
management overhead of 2160 hours, for a total overhead of 1.4%. The compara-
tively lower cluster management overhead has been accomplished by scaling up the
cluster to 1400 cores without the need for more management resources.
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Figure 4.14 shows a histogram of genotyping job durations.

Figure 4.14: Durations of duplication genotyping tasks by sample.

Table 4.4 provides summary statistics of the same data.

Table 4.4: Summary statistics of delly duplication genotyping job durations

task_id mean median sd min max
1 delly_genotype 14.27 12.32 8.80 2.15 52.19

Figure 4.15 shows a measurement of cluster performance during the duplication
genotyping analysis. This analysis appears to have run very smoothly, with two
tranches of data - the normal genomes, and the tumour genomes closely following
each other and exhibiting stable Load and Memory performance, and a CPU load
profile that is, although spiky, is normal for Delly execution.

4.4 Performance Evaluation and Comparison

We evaluate the relative effectiveness of Butler-based pipelines compared to a set
of pipelines operating under similar conditions, and over the same data-set, namely
the “core” PCAWG somatic pipelines that have been used to accomplish genome
alignment and somatic variant calling for the PCAWG Technical Working Group1.
The core PCAWG pipeline set consists of five pipelines – BWA, Sanger, Broad,
DKFZ/EMBL, and “OxoG detection” run over the course of 18 months over all sam-
ples in PCAWG. The Butler-based pipeline set consists of two pipelines – Freebayes,
and Delly, used to accomplish four analyses – germline SNV discovery, germline SNV
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Figure 4.15: Cluster performance during the duplication genotyping analysis.

genotyping, germline SV deletion genotyping, and germline SV duplication genotyp-
ing, also running over all samples in PCAWG (725 TB in total). We assessed and
compared pipeline performance with respect to an estimated optimal performance
(based on available hardware), as well as with respect to analysis progress uniformity
in time.

For core PCAWG pipelines, we used the date of data upload to the official data
repository as the most reliable sample completion date. However, approximately
25% of the DKFZ/EMBL pipeline results were uploaded in two batches on two sep-
arate days, and thus do not accurately represent the real analysis progress rate. For
this reason, we excluded this pipeline from the optimal performance analysis. But-
ler sample completion dates are based on timestamps collected in Butler’s analysis
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tracking database.

Our assessment of pipeline performance is based on establishing an “optimal”
progress rate for a pipeline given a hardware allocation. We divided the sample
set into 20 bins and defined the optimal progress rate for each pipeline to be the
smallest proportion of overall analysis time required to process 5% of all samples
(scaled to a 1% rate).

ropt = min
b∈bins

{durationb/durationtotal/5} (4.1)

We observed that the mean ropt was significantly higher for Butler-based pipelines
at 0.46 than for the core PCAWG pipelines at 0.13 (See Table 4.5).

Core PCAWG

BWA 0.16
Broad 0.14
Sanger 0.07
OxoG 0.14

Butler

SNV Discovery 0.27
SNV Genotyping 0.90
SV Duplications 0.39
SV Deletions 0.28

Table 4.5: Optimal rates for PCAWG and Butler pipelines.

For each pipeline and each 1% of the samples under analysis, we then computed
a metric e (for effectiveness) defined as the proportion of ropt actually achieved.

e =
ract
ropt

(4.2)

Comparing the core PCAWG and Butler pipelines with respect to e (Figure
4.16) we observed that effectiveness was on average lower for PCAWG pipelines
(µePCWAG

= 0.49) than for Butler pipelines (µeButler
= 0.70).
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Figure 4.16: Effectiveness for ”core PCAWG” and Butler-based pipelines. a - core
PCAWG individual, b - Butler individual, c - mean ”core” vs Butler.
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Assessing the expected analysis duration for the two sets of pipelines we observed:

dPCAWG =
100

µePCAWG

= 2.04dopt (4.3)

dButler =
100

µeButler

= 1.43dopt (4.4)

dPCAWG = 1.43dButler (4.5)

Thus, the estimated duration for PCAWG pipelines was 43% longer than that for
Butler-based pipelines.

We further compared core PCAWG pipelines with Butler pipelines on the basis
of uniformity of rate of progress through an analysis. Given a constant resource
allocation an ideal analysis execution processes 1% of all samples in 1% of the
analysis runtime. We divided the sample set into 100 equal size bins and measured
the percentage of overall analysis time spent on processing each bin (Figure 4.17).
Deviations from the diagonal indicate inefficiencies in data processing. Measuring
this deviation we observed that PCAWG pipelines deviated 23.1% from the diagonal
on average (min 0.0%, max 57.8%, sd 15.0%) while Butler pipelines only deviate
4.0% (min 0.0%, max 15.6%, sd 3.7%) from the diagonal on average, over the same
sample set. This indicates that Butler pipelines are considerably less impacted by
various causes that slow down an analysis (such as job and infrastructure failures).

Figure 4.17: Butler vs ”core PCAWG” analysis progress uniformity. a) - ”core
PCAWG”, b) - Butler.

Carrying out large-scale scientific analyses in the cloud has its own distinct set
of challenges from other types of scientific analyses. Throughout this work we have
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established four key areas of concerns that need to be met in order to facilitate
the performance of such analyses by the end user - Provisioning, Configuration
Management, Workflow, and Operations Management. We have built the Butler
framework to utilise existing robust open-source components where possible to fulfil
the detailed requirements in the four areas thus described.

4.5 Butler Framework Recap

Butler uses the Terraform provisioning tool in order to be able to create arbitrar-
ily complex clusters in a cloud-agnostic manner, including artefacts such as Virtual
Machines, networks, and security rules. We have used this capability to create test
clusters on Amazon Web Services as well as rapidly creating and destroying produc-
tion clusters on the EMBL/EBI’s Embassy Cloud of over 180 VMs and associated
network and security infrastructure, as necessary.

Butler uses the Saltstack framework to enable scalable and platform-agnostic
capabilities including the installation and run-time configuration of software and
servers. We have used these capabilities to develop configuration profiles for over
30 different software packages that are used within Butler, both to configure Butler
itself as well as configuring the scientific software required by particular workflows.
The packages configured and installed by Butler are as varied as - PostgreSQL
Server, RabbitMQ, GlusterFS, Influxdb, Elasticsearch, dnsmasq, Collectd, Free-
bayes, Delly, Samtools, and others. The role-based configuration model that have
been put in place allows the user to simply create a new Virtual Machine and give
it appropriate roles, when the machine communicates with the Salt Master it will
be configured fully to the state prescribed by its roles and able to carry out useful
work within minutes.

Butler utilises a scalable and robust Airflow framework for its workflows. Because
Airflow workflows are Python programs the users have all the power and flexibility
of Python and its extended libraries at their disposal. The fact that each workflow
task is a separate entity that can run on any worker machine in the cluster allows
Airflow to be extremely scalable.

To enable provenance tracking of scientific analyses we implemented a tracker
module in Python that models the relationship between Workflows, Analyses, and
Analysis Runs, the latter being the main execution unit of a workflow associated
with a particular analysis and data sample. Using a PostgreSQL database we keep
track of Analysis Run state transitions and execution history.

To further facilitate workflow configurability we implemented a hierarchical con-
figuration mechanism using JSON-formatted configuration files that are specified
at three levels of granularity and resolved into an effective configuration at run-
time. The JSON configurations form part of the provenance trail for an analysis
and are stored in a PostgreSQL database, which has native support for this data
type, including query language extensions[230].
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Butler’s Operations Management framework relies on two complementary systems
- metrics, and logs. The metrics collection system is an agglomeration of tools that
work together to harvest over 50 health metrics from each host and into a time-series
database wherefrom a dashboarding engine presents the information in a series of
dashboards. The log collection system similarly harvests application and server logs,
filtering them down to extract useful information and storing it in an Elasticsearch
index. Log information is then visualised in a set of separate dashboards. The two
data collection and visualisation systems provide the user with information at two
granularity levels - the metrics system is more coarse-grained and gives a VM-level
view of the health of the system, while the log system provides an application level
view with a finer grained resolution of the events that are occurring at any given
time. Together, these two systems allow the user to have very clear visibility into
the overall system health and detect any issues, whether they be individual ma-
chine or application crashes, or wider systemic events like network bottlenecks or
outages. The self-healing mechanism further improves Butler’s operational manage-
ment capabilities by providing an ability to detect anomalous conditions and take
automated actions to resolve them.

We deployed and tested the Butler framework on a real large-scale data set of
cancer whole genome DNA samples in the context of the ICGC PCAWG project
and found it to be 43% more effective than current state-of-the-art pipelines. Our
manuscript is currently in press at Nature Biotechnology[45].
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Chapter 5

The Rheos Framework

In this chapter we describe a new software framework that we developed, called
Rheos, which demonstrates an approach for reasoning about large genomic datasets
utilising concepts of service-orientation and data streaming in contrast with tra-
ditional genomic data analysis frameworks[28] that take a procedural batch-based
approach. Our approach allows the users to make active tradeoff decisions between
analysis time, cost, and quality as well as setting up precise operational Service Level
Agreements (SLAs), both between Rheos components, and between Rheos and ex-
ternal systems, as we describe below. We begin by describing a general framework
of stream-based services and identify broad classes of such services based on their
roles and capabilities. We use the general Rheos framework to implement several
genomic data analysis use cases, namely germline SNP and Deletion variant calling.
We scalably deploy Rheos onto an academic cloud computing environment running
OpenStack and set up detailed monitoring to be able ensure operational control of
the software at runtime. We conclude by testing Rheos on a real data set, prepared
by NIST’s Genome In a Bottle Consortium, and comparing the results with the
results generated by several leading tools. We find that the initial Rheos implemen-
tation is quite comparable to other methods in accuracy (~98% sensitivity, ~99%
specificity in SNP calling, ~85% sensitivity and specificity in deletion calling), while
allowing the user to actively control the tradeoff between time, cost, and quality,
which is not readily available to other tools. This establishes Rheos as an attractive
and promising approach for large scale genomic analysis for the future.

5.1 General Framework Design

As already discussed in Chapters 1 and 2, the general problem consists of collecting
DNA samples from a population of individuals under study, sequencing these sam-
ples using Next Generation Sequencing techniques, identifying the mutations that
are present, annotating their functional impact and utilising the obtained data in
a downstream data analysis with research or clinical decision-making goals. While
there is a great variety of possible downstream analyses that may be performed
depending on the individual goals of the analyst, there is a fairly well established
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set of steps for processing of the raw NGS data into a set of annotated variants,
and it is these steps that we target with this work. The typical approach that is in
widespread use today is to collect a batch of samples and then process each sample
individually with a sequence of separate tools that may be described via a higher-
level workflow construct (such as in Figure 2.26, or using a framework like Butler,
as described in Chapters 3 and 4). There are, however, a number of factors that
leave room for improvement in this model.

Data arrives from the sequencer as a random ordered collection of reads. These
reads are mapped to a coordinate system of the reference genome. Reads are
then sorted by coordinate and individual variant callers traverse the data set in
a coordinate-wise fashion to perform the analysis. See Sections 2.2.2, 2.2.4, and
2.2.5 for more details on this process. This approach implies that data needs to be
mapped before it is sorted, and sorted before it is variant called, which means that
a single sample (which can be anywhere between 150-300 GB in size currently) is
traversed completely at least 4-5 times before any meaningful results are obtained.
Additionally this implies that decisions need to be made upfront about how much
data to sequence, and analyse, which virtually fixes the cost, time, and quality of
the analysis before any data is seen. If we are able to abandon this approach in
favour of a dynamic online integration of new data as it becomes available we open
up the opportunity to achieve greater efficiency (because we are not waiting for the
entire data set to be processed in one stage before going on to the next), and en-
able the active tradeoff between cost, time, and quality based on the data that is
being observed. Since we progressively elaborate our data set as new data becomes
available, we can choose to cut off our observations early if we achieved a desired
quality level, or observed an event of interest (thus reducing time and cost), or we
can choose to end an analysis by a certain time point and accept the results that
have been achieved up to that point.

Figure 5.1: High level architecture of the Rheos framework.

This approach requires a new framework for genomic data processing as a continu-
ous stream of data, because the current batch-based toolset is focused on processing
entire files and does not allow real-time dynamic decision making about cost and
accuracy. Additionally, a suite of new algorithms for online analysis is required,
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because core assumptions of currently existing algorithms are broken when data is
not all available at the same time, and when it arrives in random order, rather than
being coordinate-sorted. The general high level architecture of the Rheos framework
the we have created to answer these challenges is depicted in Figure 5.1. Each blue
bubble is a service - an encapsulated collection of data processing capabilities that
operates on a stream of data and has well understood runtime characteristics that
can be dynamically controlled. Each orange pipe is a distributed queue that stores
stream-based data in-flight and facilitates routing of information through the sys-
tem. There are data stores established for data persistence where necessary, and a
data portal to facilitate interaction with users.

The interface between existing file-based systems and the new stream-based Rheos
system occurs at the Read Streaming service. This is where data is read from a
traditional data source like a BAM file, and is transformed into a stream of reads.
Useful metrics about the reads are collected by the Read Metrics Service. The reads
are mapped to a reference genome using the Read Mapping Service and flow over
to variant calling at the Small Variant and Structural Variant Detection services.
Variants are persisted to a data store and are accessible to the user via the Data
Portal both in pull model where the user can query specific variants, and in a push
model where the user is notified about the identification of variants of interest. Each
variant calling service maintains a set of models about the sample under analysis
that are progressively elaborated as new data arrives. We measure the capacity of
each service to perform its operations and increase and decrease resource allocation
based on required throughput.

Since in this framework we are able to continuously integrate new data, measure
outcome accuracy, and dynamically allocate resources based on desired operating
characteristics, this establishes the overall set of capabilities that we set out to
achieve. We dedicate the rest of this chapter to a detailed discussion of the Rheos
framework architecture, design of individual services, their implementation, deploy-
ment, and experimental validation on a real data set.

5.2 Data Streaming Architecture

The overall technical architecture of the Rheos system is set up as a Service Oriented
Architecture (SOA)[231], which is an information system architecture paradigm
where the overall problem that the system is trying to solve is broken down into
a collection of loosely-coupled components called services. Each service has a well
defined interface of inputs that it accepts and outputs that it produces. Services
can be combined and orchestrated together to produce the overall desired output for
the system. A key distinguishing feature of this architectural approach is that each
service can be individually optimised to fulfil its contract most efficiently helping
break down some of the performance limitations brought about by the necessity to
simultaneously tackle competing constraints in more monolithic information system
designs. Additionally, within a services framework, the dependencies between sep-
arate services can be negotiated not only in terms of service interfaces, but also
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in terms SLAs, which constitute Quality of Service (QoS) promises made by one
service to its dependents[232]. Because it is unlikely that a service designer will
be able to accurately foresee all of the demands that will be placed on a service
during its lifetime the SLAs provide a valuable feedback framework through which
the service can be evaluated as it operates in production, as well as serving as a
basis for negotiating evolving requirements between dependent services.

While general web services can support any data processing paradigm, in the
Rheos framework we adopt a data streaming approach[60]. In this approach we
assume that the input to any service is a randomly ordered sequence of messages
M = m1,m2, .... where each message represents a fact about the underlying domain
that the service reasons over, as well as some metadata, including an identifier, and
a variety of timestamps of interest. The content of each message may provide a
datum, such as the measurement of a quantity of interest, or signal that a particular
event has taken place. It is in general assumed that the data stream is infinite in
size, that messages may arrive out of order, and that any message that is placed in
the stream is observed at most once, and may, in fact, never be observed. Messages
are typically not sent directly from one service to another, instead the transfer of
messages is mediated by a queuing system using a publish-subscribe[233] model.
Under this model each queue acts as a topic. Message producers can publish data to
the topic, and message consumers subscribe to receive messages from the topic. A
message is consumed from the queue only after all of the subscribed consumers have
seen it. End users retrieve information from the system via a set of User Interfaces
that support both push (notifications) and pull (querying) models of data retrieval.
A more detailed description of the architectural aspects of the system follows below.

5.2.1 Service-Oriented Data Streaming Model

A data stream Ms,d = m1,m2, .... is a sequence of datagrams transmitted over the
network with the following properties:

• The stream has a source s and a destination d.

• A message m in the stream is a tuple of the form (header, payload), where:

– header is a tuple of the form (id, . . . ) that holds at minimum a unique
identifier id for messages, and may hold additional metadata.

– payload is an arbitrary data structure that holds the informational con-
tent of the message.

• |M | =∞ by assumption.

• Messages may not arrive at destination d in the same order that they were
sent from source s.

• If ti,s is the time message mi leaves the source s and ti,d is the time of arrival
at destination d, then supi{ti,d − ti,s} = ∞, i.e. a given sent message may
never arrive at its destination.

190



5.2. DATA STREAMING ARCHITECTURE

A service S = {oi} is a collection of operations oi that act on one or more input
data streams {Mi} to produce one or more transformed output data streams {Mj}.
Specifically:

An operation O is a tuple of the form:

O = (i, o, p, f) (5.1)

where:

• i = {Mj, j ∈ [0, K]} is a set of K ≥ 0 input data streams.

• o = {M ′
j, j ∈ [0, L]} is a set of L ≥ 0 output data streams.

• f : MK 7→M ′L is a transformation function that produces messages m′ in the
output streams based on messages m observed in the input streams.

• p = {pi} is a set of potentially optional query parameters.

There are several distinct categories of operations that a service can perform on
a set of input streams. Babcock et al. describe window queries and synopses in
[60], and Cugola et al. describe integration of a data store in [234]. However, the
typical model describes a single query processing engine reasoning over a set of
streams (as in Figure 2 of [234]). In contrast, our service-based approach allows us
to specify categories of operations and then map them onto distinct services that
are optimised for each type of operation (as distinct operation types have varying
and often competing requirements). We describe these operation categories here:

Windowing Function - Service S observes a sliding window, which is a sample
of size n of messages from stream Mi and computes a summary statistic (see Figure
5.2) over the sample, which is meant to be an approximation of the corresponding
population parameter.

Figure 5.2: Service S computes a summary statistic over a window of messages from
stream M
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Decorator Function - Service S observes messages mi and applies a function
that augments (decorates) each message with additional attributes (see Figure 5.3)
producing augmented messages mo as output.

Figure 5.3: Service S augments messages fromM with an additional set of attributes.

Filter Function - Service S observes messagesmi and applies a function f : M 7→
{True, False} that evaluates to a boolean value (see Figure 5.4). Only messages
that map to True are emitted as output.

Figure 5.4: Service S filters messages from input stream M and only allows through
those that pass the filtering condition.

Aggregator Function - Service S observes messages from N different streams
{Mj : j ∈ [1, N ]} and applies a function f : MN

i 7→ Mo that aggregates messages
from these streams to produce its output (see Figure 5.5). Because aggregation
happens over groups of messages that may not all arrive at the same time the service
S requires a mechanism for keeping local state so that it can accumulate messages
that have already arrived while waiting for those that are necessary to compute f yet
have not been observed. The statefulness requirement of this type of service places
an extra level of complexity (related to state-management and request routing) as
well as inherent scalability limitations compared to stateless services[235].

Figure 5.5: Service S integrates messages from multiple input streams Mi to produce
an aggregated output stream Mo via f .
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Local State Aggregator Function - Service S observes an input stream Mi,
which it integrates with a local (non-stream) queryable data store (see Figure 5.6).
Messages mi are integrated with query results qi to produce an output stream Mi.
This type of service also requires management of state and scalability concerns simi-
lar to the Aggregator service, especially when the local data store is itself distributed.

Figure 5.6: Service S aggregates mi with query results qi obtained from a local data
store.

Persistence Function - Service S observes messages mi and is responsible for
persisting them to a data store where their contents can later be queried (see Figure
5.7). Although persistence of data to, and subsequent querying of data from, a store,
such as a database, are comparatively more expensive operations than immediate
reasoning over a live data stream, such mechanisms are necessary for situations
where data may need to be accessed multiple times, or where data may need to be
retained for audit purposes.

Figure 5.7: Service S processes messages mi into persistent storage. The output
stream Mo contains persistence confirmation and error events.
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Query Function - Service S observes a stream of queries Qi. The queries are
fulfilled against a data store D and the results emitted via the output stream Mo.

Figure 5.8: Service S filters messages from input stream M and only allows through
those that pass the filtering condition.

The basic operations above can be combined to produce arbitrarily complex logic
on data streams.

One of the key advantages of a service-oriented approach is that, because services
are typically constantly executing, it naturally lends itself to an examination of the
system’s runtime characteristics. This applies to both service-internal characteristics
that are related to each operation a service performs, as well as to external charac-
teristics that relate to the contracts a service establishes with its dependencies. We
consider both of these.

For each given operation oi ∈ S it is instrumental to understand the resource
requirements of the operation on typical inputs and limiting factors that affect the
efficiency with which the operation can be performed by S. Of particular interest
are the per-operation profiles of:

• CPU utilisation

• RAM

• Secondary storage

• Network utilisation

If oi is a long-running operation that takes multiple seconds to complete on av-
erage, a detailed distribution in time of each metric above may be necessary. If
the operation can be completed at a sub-second rate then summary statistics (min,
max, mean, median, inter-quartile range, 90th, and 99th percentiles) may be suf-
ficient. This level of understanding is necessary in order to make sure that the
service can adequately deal with the incoming message stream while the messages
are first loaded into memory, since subsequent retrieval from secondary storage is
several orders of magnitude slower and may cause further delays in processing. If oi
is stateless, i.e. it does not require the storage and retrieval of any local state that
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depends on the content of each arriving message mj ∈Mi, then the service S can be
scaled ”horizontally”[236] with respect to oi. Given that the performance-limiting
condition of oi is known (CPU, memory, etc.), the ability of S to efficiently deal with
fluctuations in the rate of incoming messages Mi can be successfully achieved simply
by adding and removing servers that execute S (see Figure 5.9), which can be done
automatically[237]. If oi is stateful and requires access to databases, or predictable
request routing via sessions, then horizontal scalability may not be possible and thus,
detailed understanding of the performance profile and performance-limiting condi-
tions of oi is even more important as vertical scaling of services is more expensive
and challenging to accomplish, and may increase system complexity by necessitating
data partitioning[236].

Figure 5.9: a) In horizontal scaling new servers are added and removed (dashed
arrow) behind a load balancer as the rate of data stream Mi fluctuates. b) In
vertical scaling more powerful servers need to be launched (dashed arrow) to replace
smaller servers (with potential service outage) when the rate of Mi increases beyond
capacity.

Assume service S implements operation o supported by n physical servers V =
{vj : j ∈ [1, n]} by consuming a stream of incoming messages Mi. For a suitable
time increment t, let rMi

= |Mi|/t be the incoming message arrival rate, and rMo,j
=

|Mo,j|/t be the processing rate for server vj. If rMi
>
∑n

j=1 rMo,j
, then S will not be

able to adequately process all of the incoming messages from Mi and messages will
either be lost or need to be backlogged while more servers are added to S to deal
with the incoming message rate. Since commissioning new servers takes considerable
time and the timing and magnitude of increases in rMi

may be unpredictable, serious
information loss may result if measures are not put in place to mitigate the message
rate fluctuations.

A queue is the mechanism that we put in place to address this concern (see Figure
5.10). A queue Q is a message buffering system, which consists of a set of n ”topics”
P = {pi : i ∈ [1, n]}, where each topic is a tuple of the form pi = (Dp, Bp, Cp). Here
Dp = {di : i ∈ [1, k]} is a set of k data producers that put messages into Q, Bp

is a message buffer of max capacity Nmax dictated by underlying server hardware
characteristics, containing a sequence of messages {mt,mt−1,mt−2, ....,m1} that are
accessible in a Fist-In-First-Out (FIFO) manner, and Cp = {ci : i ∈ [1, l]} is a set
of l consumers that are interested in observing messages from pi.
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Figure 5.10: A
queue Q establishes a message buffer Bp between a set of message producers Dp and
consumers Cp, for a given topic p.

Messages arrive into a particular topic of Q from all producers Dp, and are marked
safe for deletion only when all of the subscribed consumers Cp have observed a par-

ticular message. Thus, for topic pi, the incoming message rate is Ri =
k∑

j=1

rMo,j

i.e. the sum of the message processing rates for all of the producers for this topic.
The queue message processing rate Ro = min

i∈[1,l]
{rMo,i

} is the slowest message process-

ing rate among all consumers. Assuming Ri > Ro and that there are N messages
presently in Bp, there remains t = Nmax−N

Ri−Ro
time before queue overflow occurs. The

situation should then be remedied by allocating additional hardware to Q or those
services Si whose consumers are slowest, until the condition Ro ≥ Ri can be reliably
maintained. If the queue does reach its maximum capacity overflow measures need
to be put in place. Depending on the data stream in question data loss may or may
not be acceptable. If data loss is acceptable then overflow messages can be simply
discarded. If data loss is not acceptable then producers must block waiting for ad-
ditional queue capacity to become available. This not only degrades performance
locally, but can have a drastic effect on the entire system if the effects are allowed to
percolate trough the complex distributed system. As message rates evolve through
time with system load, the scheme above sets up a framework for flow control and
hardware allocation within the architecture.

When designing a service-oriented system the interfaces of operations provided
by the service are of utmost importance as they define the capabilities that the
service offers to its clients. Of secondary, but also significant, importance is the set
of Service-Level Agreements (SLAs)[238] that a service advertises. These SLAs are
a set of commitments that a service makes to its clients that describe the operational
characteristics of the service, such as:

Availability - Guarantees related to the service uptime, maintenance outages, dis-
aster recovery, etc.

Throughput - The number of requests serviced per unit time.

Latency - The delay between a request being sent and a response being received.
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Abandonment Rate - Proportion of requests that are never answered.

Error Rate - Proportion of well-formed requests that result in an error.

Based on the SLAs that are advertised by a given service, the services that de-
pend on it can make assumptions about expected runtime behaviour, and take action
when expectations are not met. Furthermore, when requirements evolve and fea-
tures are added to or removed from a service, the impact on the advertised SLAs
helps communicate the full effect of the changes. Lastly, the costs of operating a
service are more clearly understood through the SLA framework, where improve-
ments to a particular SLA metric, such as Transactions-Per-Minute (TPM) can be
transparently traced to a corresponding increase in operational costs.

The set of services {S} that communicate over data streams {Ms,d}, mediated by
a set of queues {Q} with a set of established SLAs {Ls} together form the overall
framework of Rheos that is used to tackle the challenges of large-scale genomic
data processing in a manner the enables active tradeoffs between the competing
constraints of cost, time, and accuracy.

5.3 Domain-specific Problems

Having laid out the general data-streaming service-oriented architecture of Rheos
in the previous section we now turn to a discussion of the set of actual domain-
specific problems that need to be solved within the data-streaming paradigm in order
to enable the comprehensive genomic characterisation of large cohorts of samples
within Rheos, as we have set out to do. We make use of the flow of data types from
the most raw to the most refined (see Figure 5.11) to illustrate the challenges that
need to be solved during transformation of the input data between each successive
stage, first in summary form, and then in full detail, below.

The most raw data type that is produced from a sequencing experiment is the set
of raw image files generated by the sequencer. Although, conceptually, processing
of the raw images could also be accomplished within Rheos, it is presently outside
of the scope of this work. Instead, we assume the most basic data type to be raw
sequencing reads (see Figure 5.12), as found in a FASTQ[114] file.

Each read is a tuple of the form:

r = (s_id, r_id, b, q, fp) (5.2)

where:

• s_id - is the sample ID, which is unique among all samples.

• r_id - is the read ID, which is unique among all reads for that sample.
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Figure 5.11: The conceptual flow of data types within Rheos from the most raw -
Sequencer Images, to the most refined - a set of Functionally Annotated Variants.

• b = {b1, b2, ....., bn} - is the sequence of DNA bases, where bi ∈ {A,C,G, T,N}.

• q = {q1, q2, ...., qn} - is the set of PHRED-scaled base quality scores corre-
sponding to the probability that the base has been called incorrectly. See
discussion on FASTQ format in Section 2.2.1 for details.

• fp ∈ {True, False} - is a boolean flag indicating whether this read is the first
read in a pair.

5.3.1 Read QC Metrics

Section 2.2.3 discusses various metrics of interest that are based on observations of
read data and the tools that are used to collect them. Here we describe how to collect
the most typical metrics in the streaming paradigm of Rheos. As before, there are
per-read metrics such as Base Quality Distribution, and Adapter Sequence Presence,
as well as per-sample metrics such as Average GC Content, Insert Distribution, Read
Length Distribution, and others. The utility of these metrics is to be able to set up
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Figure 5.12: A read-pair that is aligned to the reference.

filters for low quality data as well as input for downstream variant-calling models
(see Section 2.2.5, for example).

Assume that we are observing a stream Mraw = {mi : mi = (header, payload)} of
read messages where the payload is a read r as defined above. Under the assumptions
of Section 5.2 we know that the number of elements in the stream is unbounded.
We are able to straightforwardly calculate incremental estimates for metrics such as
mean, variance, max, and min, but require more sophisticated structures for com-
puting estimates of rank statistics such as median and other quantiles to maintain
operations in bounded space. We use the following update rules for min, max, mean,
and variance[239] calculations:

mink(M) =

{
mk, if mk < mink−1(M)

mink−1(M), otherwise
(5.3)

maxk(M) =

{
mk, if mk > maxk−1(M)

maxk−1(M), otherwise
(5.4)

µk(M) = µk−1(M) +
mk − µk−1

k
(5.5)

σ2
k(M) =

σ2
k−1(M) + (mk − µk−1(M))(mk − µk(M))

k − 1
(5.6)

In order to set up the mechanisms to answer quantile queries the following defi-
nitions are used[240]:
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• Given a set S of size n, and a quantile φ ∈ [0, 1], return v ∈ S whose rank in
sorted S is φn.

• An ε-approximate φ-quantile is a value v whose rank r∗(v) ∈ [n(φ−ε), n(φ+ε)].

• A quantile summary is Q = q1, q2, ...., ql : q1 ≤ q2 ≤ · · · ≤ ql, qi ∈ S, i ∈ [1, l]
where each qi has rank at least rminQ(qi) and at most rmaxQ(qi) in S, and
rmaxQ(q1) ≤ ε|S|, and rminQ(ql) ≥ (1− ε)|S|.

• A quantile summary Q(ε) is ε-approximate if it can be used to answer any
quantile query with ε-accuracy.

We use two approaches for computing quantile summaries, one due to Green-
wald and Khanna[241] is able to compute the quantile summary using O(log(εn)/ε)
space, and the other by Shrivastava et al.[242] computes the quantile summary in
O(log(M)/ε) when the values are integers in range [1,M ]. Both algorithms work
for a scenario where one node sees all of the data in a stream, but can also be
generalized to topologies where the stream is observed by multiple nodes in parallel.

We provide several examples of QC queries of interest that are specified on a data
stream:

Average Base Quality - As an assessment of the individual quality of each read
we are interested in the average base quality so that we can filter out reads that
are of low quality as a whole. We use a Decorator Function construct from Section
5.2.1.

Table 5.1: Definition of qav, which computes average base quality for a read

Inputs Mraw = {mi : mi = (header, payload)} where m.payload = r =
(s_id, r_id, b, q, fp) as in 5.2.

Operation qav =
∑

i∈[1,|r|] r.qi

|r|

Outputs Mout = {mi : mi = (header, payload)} where m.payload = r =
(s_id, r_id, b, q, fp, qav)

Base Quality Distribution - The distribution of base quality scores per base
position of a read and per sample are of interest to investigate the presence of
systemic biases in base quality scores as a function of the position within the read.
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Figure 5.13: Distribution of base qualities per read position, taken from [243]. Large
quality drop-off can be seen towards the end of the read.

Because PHRED-scaled quality scores are integers that fall in a fixed range q ∈
[0, 96] building quantile summaries using the q-gram[242] approach is the most space-
efficient. Because base quality scores need to be aggregated over many reads and
tracked for many samples, a service that implements this functionality needs to keep
local state, and the operation to update the quantile summaries based on incoming
reads follows the Local State Aggregator pattern from Section 5.2.1.

Table 5.2: Definition of updateQuantileSummaries()

Inputs Mraw = {mi : mi = (header, payload)} where m.payload = r =
(s_id, r_id, b, q, fp) as in 5.2.

Operation updateQuantileSummaries(r)

Outputs Mout = {mi : mi = (header, payload)} where m.payload =
(s_id,Qbqd).

Since the local state required for storing the quantile summaries may not fit in
memory and may need to be persisted to disk, updating the summaries may be too
expensive to do for every single read that is observed in a read input stream. Instead,
reads may be buffered into a set of reservoirs, triggering an update of the quantile
summaries when the reservoir is full. The contents of the reservoir would then be
purged and an updated set of quantile summaries Qs,bqd = {qi : i ∈ [1,max_bases]},
where each qi is a quantile summary corresponding to the Base Quality Distribution
at a particular read position, issued to the output stream (see Algorithm 4).
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Algorithm 4: Updating quantile summaries for Base Quality Distribution.
Function updateBQDQuantileSummaries(r) begin

reservoir ←getReservoir(r.s_id)
reservoir.addNewRead(r)
if reservoir.isFull then

summaries←getQuantileSummaries(r.s_id)
for read in reservoir do

for index, read.q in read do
updateQGram(summaries[index], read.q) // per [242]

purgeReservoir(reservoir)
outputQuantileSummary(r.s_id, summaries)

Insert Size Distribution - The insert size distribution is an important metric
because it is not only indicative of the overall quality of a sample’s data, but it is
also used by structural variant calling to find read-pairs that map abnormally far
apart (indicating a deletion), or abnormally close together (indicating an insertion).

Figure 5.14: Distribution of insert sizes from two ICGC pancreatic cancer patients
DO35138 and DO22154 (taken from [244]).

Calculating this metric requires a stream of read-pairs, where both reads have
been successfully mapped to the reference genome. Given a mapped read-pair (r1, r2)
where each read has a beginning coordinate r.pos and an end coordinate r.end, the
insert size is l = r2.end − r1.pos. We are interested in the mean, variance and
quantiles of the insert size distribution. Because the insert length can be any size
the quantile summary method of Greenwald and Khanna[241] is most appropriate
for the quantiles. Read pairs are observed on the input stream and buffered in
per-sample reservoirs. When a reservoir is full the read pairs are used to update
and output an appropriate insert size distribution mean, variance, and quantile
summary.

Other QC metrics, such as those measuring GC Content Distribution, Read
Length Distribution, etc. can be collected analogously.
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Table 5.3: Definition of updateInsertSizeDistribution()

Inputs Mpair = {mi : mi = (header, payload)} where m.payload = (r1, r2),
and r = (s_id, r_id, b, q, fp) as in 5.2.

Operation updateInsertSizeDistribution(s_id, r1, r2)

Outputs Mout = {mi : mi = (header, payload)} where m.payload =
(s_id, µisd, σ

2
isd, Qisd).

Algorithm 5: Updating metrics for Insert Size Distribution.
Function updateInsertSizeDistribution(s_id, r1, r2) begin

pairReservoir ←getReservoir(s_id)
pairReservoir.addNewReadPair(r1, r2)
if pairReservoir.isFull then

summary ←getQuantileSummary(s_id)
mu←getMu(s_id)
sigmaSq ←getSigmaSq(s_id)
for (r1, r2) in pairReservoir do

insertSize ←r2.end− r1.pos
updateQuantileSummary(summary, insertSize) /* per [241] */

newMu ←updateMu(mu, insertSize) /* using Eq. 5.5 */

newSigmaSq ←updateSigmaSQ(sigmaSq,mu, newMu, insertSize)
/* using Eq. 5.6 */

purgeReservoir(pairReservoir)
outputInsertSizeDistribution(s_id, newMu, newSigmaSq, summary)

5.3.2 Alignment

Section 2.2.2 provides an overview of the existing approaches in the extremely impor-
tant and computationally intensive genome alignment stage of the full NGS process-
ing pipeline. In the overall data flow diagram (Figure 5.11), alignment is primarily
responsible for transforming Raw Reads into Mapped Reads, but is also used in QC
(insert size distribution, sample contamination) as well as in the construction and
evaluation of local haplotypes for variant calling. In this section we describe the
adaptation of already established read mapping best practices to the stream and
services based domain of Rheos. Because of the generally independent nature of
individual read observations (except for read pairs), this read mapping problem is
highly amenable to a stream-based approach. We begin by enumerating and de-
scribing the types of alignment tasks that the Rheos framework needs to be able to
accomplish and follow up by describing how these tasks will be performed within
Rheos.
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Single read alignment to reference - Given a representation of the human ref-
erence genome we are interested in finding a coordinate relative to this ref-
erence where the given read best matches. If we are not able to find a high
quality mapping the read should be flagged as unmapped.

Read pair alignment to reference - Given a pair of reads and an estimate of
fragment size, attempt to find a high quality consistent mapping for both
reads in a window around the expected fragment size.

Single read alignment to multiple references - Given a read and a database
of several genome references from multiple species determine if the read has a
high quality mapping in any of the references. This can be used for assessing
sample contamination.

Candidate haplotype alignment to reference - Given a candidate haplotype
i.e. a contiguous (potentially long) sequence locally assembled from a set
of reads, align the sequence to the reference genome to identify locations of
potential variation.

Single read split-alignment to reference - Given a read that does not align
well to a contiguous region of the reference, search for an alignment where
individual pieces of the read might align to separate and possibly distant
locations on the reference, suggesting that the read spans a region of structural
variation.

Single read alignment to reference Assume we are observing a data stream of
raw unmapped short (<500 bp) reads Mraw = {mi : mi = (header, payload)} where
m.payload = r = (s_id, r_id, b, q, fp) as in 5.2. Using an existing human reference
genome, such as GRCh38, we would like to align each read in m.payload to produce
two new output streamsMaln andMunaln, depending on alignment results. Maln, will
contain messages from Mraw with additional attributes related to the alignment, as
described in Section 2.2.1, replicating the information contained in a SAM alignment
record (see Table 2.3). Munaln shall contain reads from Mraw that failed to align to
a reference sequence, with an additional flag unmapped = true.

For Maln the following values are computed:

rname - name of the reference contig read is aligned to.

pos - 1-based position offset of the left end of the read alignment to the contig
specified in qname.

mapq - Phred-scaled mapping quality representing probability that the read is
misaligned.

cigar - CIGAR string (as in SAM specification, see Section 2.2.1).

flags - a tuple of flags as specified in the FLAG field of a SAM record.
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Given that BWT and FM-index based algorithms[38],[58] have currently shown
the best balanced performance characteristics on both simulated and real data (see
Figures 2.16, 2.15) and the fact that these algorithms are amenable to straightfor-
ward parallelisation, as in [130] for example, we adopt this approach as well in Rheos.
Using this approach we will be able to locate k locations for potential matches of a
seed di of read sequence r.q in O(|r.q.di|+ k) time using a data structure that takes
O(|R|) space for a reference genome R. The seeds will then be extended using a
version of Smith-Waterman[119] dynamic programming based alignment with affine
gap penalties that can be performed in O(|R||r.q|) time and O(|r.q|) space based on
[245] and [131]. The overall processing pipeline closely follows Figure 2.14 i.e. given
a read r:

• Using Algorithm 3, find a set E of SMEMs of r.q[58] using the FMD index
formulation described in Section 2.2.2 in relation to BWA.

• Organise SMEMs ei in E into co-linear chains of the form Ci = {(ej, ej+1, p)},
where ej and ej+1 are neighbouring SMEMs in the chain and p is the mapping
coordinate of ej. Here co-linearity means that the SMEMs are in the same
order and orientation on the query read and the reference genome, and a
chain of maximal length is selected at each genomic location for the following
processing step.

• For each chain, complete the read alignment between chain seeds using a
vectorized SIMD-enabled implementation of Smith-Waterman local alignment,
as in [131].

• Output alignment with the highest alignment score (based on number of mis-
matched bases and number of secondary alignments) if it is above a minimum
quality threshold.

Because of the FMD index formulation used in finding seeds, both the read and
its complement are considered at the same time. rname and pos values are straight-
forwardly obtained from the coordinate and name of the leftmost position of the
winning alignment. The cigar string (see Figure 5.15) is produced directly as a con-
catenation of the winning dynamic programming paths, and the SMEM seeds, which
are exact matches. mapq converts alignment score to Phred-scale, and flags encode
a set of boolean values as per the SAM spec. This provides all of the information
necessary for the output mapping.

Figure 5.15: Example of an alignment CIGAR string.
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If a co-linear set of seeds is not available, or the alignment score fails to reach the
predetermined minimal score threshold then the read is emitted into the unmapped
read stream with an appropriate flag set.

Table 5.4: Definition of mapToReference()

Inputs Mraw = {mi : mi = (header, payload)} where m.payload = r =
(s_id, r_id, b, q, fp) as in 5.2.

Operation mapToReference(r, ref_id)

Outputs
Maln = {mi : mi = (header, r)} where r =

(s_id, ref_id, r_id, b, q, fp, rname, pos,mapq, cigar, flags)

Munaln = {mi : mi = (header, r)} where r =
(s_id, r_id, b, q, fp, unmapped = true)

The reference pointed to by refid when mapToReference() is invoked consists
of the typical data structures required by the FM Index i.e. the reference BWT,
suffix array, occurrence array, as in [121], but encoding both the forward and reverse
complement of the reference sequence as in [58] to produce the FMD index. Because
the reference sequence is static, updated less frequently than once a year, the requi-
site data structures can be computed once offline and stored in secondary storage.
During service initialisation they are loaded in RAM and kept memory-resident for
the duration of the operation of the service. Because, once computed, the reference
index is read-only it can be accessed in a thread-safe manner by multiple concur-
rent threads without the need for explicit concurrency management. Because of the
embarrassingly-parallel nature of read alignment this operation can be scaled up
as necessary simply by adding servers, provided additional computational resources
exist, and network capacity is not exhausted.

Read pair alignment to reference Since paired-end sequencing produces two
reads that represent the opposite ends of a single molecule of approximately known
size (known as insert size) it is possible to use knowledge about the insert size dis-
tribution along with corresponding pairs of reads to improve the quality of mapping
for these reads, and even rescue mappings for reads that do not have a high quality
unique mapping themselves but are anchored by a high quality mate. The mapping
operation in this context proceeds similarly to the already described single read
mapping but requires an input stream of read pairs along with a stream of sample
QC metrics, including the empirical insert size distribution (as described in Section
5.3.1).

Depending on the result of the mapping operation for each read in a pair the
output stream will contain pairs of reads of type
raln = (s_id, r_id, b, q, fp, rname, pos,mapq, cigar, flags)
or
runaln = (s_id, r_id, b, q, fp, unmapped = true).
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Table 5.5: Definition of mapPairToReference()

Inputs
Mpair = {mi : mi = (header, payload)} where m.payload = (r1, r2),

and ri = (s_id, r_id, b, q, fp) as in 5.2.

Mqc = {mi : mi = (header, payload)} where m.payload =
(s_id, µisd, σ

2
isd, Qisd)

Operations
mapPairToReference(r1, r2, ref_id)

updateInsertSizeDistribution(s_id, µisd, σ
2
isd)

Outputs
Maln = {mi : mi = (header, payload)} where m.payload = (r1, r2)

and each read is of type raln

Munaln = {mi : mi = (header, payload)} where m.payload =
(r1, r2) and each read is of type raln or runaln depending on the
outcome of mapping.

In order to perform the mapPairToReference() operation the service needs to
have information about the insert size distribution for the sample the read pairs
are originating from. It is notified with updated information about the insert size
distribution by the updateInsertSizeDistribution() operation, which is subscribed
to the appropriate message stream from the Read QC Service. This information is
stored locally for each sample and may be cached. Assuming that the insert size
distribution is approximately gaussian with mean µisd and variance σ2

isd, which is
the case for well-behaved samples, a scoring metric can be constructed that favours
paired alignments that fall close to the expected insert size. This metric helps select
among non-uniquely mapping reads. For instance, BWA-MEM uses the following
metric:

Sij = Si + Sj −min−a log4 P (dij), U (5.7)

Here Si and Sj are the alignment scores for the individual reads in the pair
obtained by single-end mapping via mapToReference(r, ref_id). dij is the insert
size implied by the mapping, P (dij) is the probability of observing an insert size
larger than d under the assumption D ∼ N (µisd, σ

2
isd), a is a matching score, and U

is a thresholding constant. Thus, given a set of possible mapping locations for each
read in a pair, the joint mapping that maximises the pairing metric is chosen.

mapPairToReference() outputs read pairs to two output streams. If both reads
are mapped successfully then they are output to the Maln stream. If at least one
of two reads in a pair does not have a high quality mapping assigned through the
paired mapping process, the pair is emitted through the Munaln stream.

Pairing information is vital to downstream variant calling because it can both help
with fragment assembly, when reads are properly paired and mapped, and signal
the location of potential structural variants when reads are not properly paired and
mapped within expected distances.

207



CHAPTER 5. THE RHEOS FRAMEWORK

Single read alignment to multiple references When high average base quality
reads fail to map to the reference genome this can be the result of sequencing
errors, genomic rearrangements or sample contamination. It is important to be
able to detect contamination both at the individual read level, to discard such reads
from the analysis, lest they lead to spurious variant calls, as well as at the sample
level, where samples with an overabundance of contaminated reads may need to be
discarded completely due to low confidence in the resulting call set. Contamination
may occur in a variety of ways including sample-swap between tumour and normal
DNA samples, between individuals, or accidental introduction of DNA from other
species including other mammals, plants, bacteria, and viruses.

Because a relatively large collection of species’ reference genomes has already been
built up, one relatively simple way of detecting cross-species contamination is to
classify reads by how well they align to a database of known references, if they fail to
align to the human reference with a high enough quality. This can be accomplished
with a general-purpose aligner like Bowtie or BWA, as well as with some purpose
built approaches like Kraken[246] or Centrifuge[247]. While general purpose aligners
appear to offer similar specificity and sensitivity to the purpose built tools, they are
an order of magnitude slower and require approximately five times more RAM for
storing the reference database[247]. Kraken breaks down the references into k-mers
and uses k-mer counting to build a database of k-mer abundances and a taxonomic
tree of species that can be searched for classification purposes, while Centrifuge uses
the same FM index approach taken by Bowtie and BWA, but merges genomes from
similar species into a graph structure and applies exact k-mer search when classifying
reads from a sample (which is why it is faster than general purpose aligners since it
avoids the expensive dynamic programming step).

Since the FM index implementation is necessitated by other alignment use cases
it makes sense to adopt this approach for contamination analysis as well.

Table 5.6: Definition of mapReadToReferenceDB()

Inputs Munaln = {mi : mi = (header, r)} where r =
(s_id, r_id, b, q, fp, unmapped = true)

Operations mapReadToReferenceDB(r)

Outputs
Maln = {mi : mi = (header, r)} where r =

(s_id, ref_id, r_id, b, q, fp, rname, pos,mapq, cigar, flags,
contamination = true)

Munaln = {mi : mi = (header, r)} where r =
(s_id, r_id, b, q, fp, unmapped = true, contamination = false)

The key to performing the mapReadToReferenceDB() is the construction of the
reference DB itself. Assuming there are N genome references G = {gi : i ∈ [1, N ]},
create a joined reference T = g1$1g2$2...$N−1gN by concatenating all of the references
interspersed with a set of sentinel characters {$i : i ∈ [1, N−1]} that do not occur in
G, are lexicographically smaller than any character inG, and having $i < $j iff i < j.
Record the index d of the occurrence of each $i in T , such that T [di] = $i. Then
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construct and search the FM Index of T as usual. Given that a read r maps to some
location l in T , |{di : di < l}| identifies the rank of reference genome gj in T that r
belongs to, thus identifying the reference of origin. The alignment process itself may
be tuned to only perform exact matching as in Centrifuge, or carry out dynamic
programming alignment as well, depending on cost and performance requirements.
Reads in the output stream that are successfully aligned to a reference that is part
of the database of contaminants are emitted with the corresponding reference ID
and the contamination flag set.

Candidate haplotype alignment to reference Many of the modern leading
variant callers[28, 61, 63] rely on local assembly of alternative haplotypes to detect
variants with high accuracy. The haplotypes that are produced may be up to hun-
dreds of kilobases long. These are aligned to the reference genome to reveal the
location of potential variants that are implied by each alternative haplotype. The
variants are subsequently evaluated in the context of read evidence to select the vari-
ants that are best supported by the data. This brings about the problem of aligning
long sequences, potentially with many mismatches, to a reference genome. Addi-
tionally, long read technologies such as PacBio SMRT[134] and Oxford Nanopore
Technologies[135] routinely generate reads that are many kilobases long and may
enjoy increased use in sequencing projects due to their ability to resolve structural
variation.

BWT and FM Index seed-and-extend approaches[38, 58] that have been successful
for shorter read lengths have proven to be exceedingly slow or crash altogether for
long reads, because of the extra backtracking required by the dynamic programming
step in the presence of read sequence divergence from the reference, whereas a k-
mer hash table chaining approach based on minimizers[137] was shown to be highly
accurate and performant[123]. To take advantage of the improved alignment per-
formance on long reads (30-70 times faster than BWA-MEM) we adopt Minimap’s
approach when aligning locally assembled alternative haplotypes to the reference
sequence.

Table 5.7: Definition of mapLongReadToReference()

Inputs Masm = {mi : mi = (header, payload)} where m.payload = r =
(s_id, r_id, b, q, fp).

Operation mapLongReadToReference(r, ref_id)

Outputs Maln = {mi : mi = (header, r)} where r =
(s_id, ref_id, r_id, b, q, fp, rname, pos,mapq, cigar, flags)

As described in Section 2.2.2 and [123] the reference index in this case consists of
a hashmap of minimizers (see Figure 2.17) of the reference genome where the key
is the minimizer sequence and the value is a list of locations of that sequence. As
with BWT based indexes, the structure is static over time, can be pre-generated,
stored on disk, and loaded into memory during operation. When a read arrives on
the input stream Masm the mapLongReadToReference() operation breaks the read
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into a set of minimizers and searches these against the reference hash table. Sets of
co-linear exact matches are formed into chains. Sequences that are between matches
in a chain are locally aligned with dynamic programming.

Single read split-alignment to reference When a high average base quality
read fails to align to the reference with high mapping quality one of the reasons
may be that the read covers a DNA double-strand breakpoint in the sample, at the
site of a structural variant that is longer than the size of the read. Such a read, if
it were to be aligned to the sequence of the sample would map normally, but when
mapped to the reference sequence, one part of the read maps to one location in
te genome, and another part maps to a different location (see Figure 5.16). Such
reads are called split-reads and they form an important source of signal for precise
detection of structural variant breakpoints[167, 168].

Figure 5.16: Split-reads at the site of a deletion breakpoint.

Although the techniques used for single read mapping, described above, can be
used for split-read alignment there are several issues to consider that make the
creation of a separate mapSplitReadToReference() operation desirable.

Since a split-read consists essentially of two or more separate pieces of varying
lengths that may map to distant locations in the genome and have different orien-
tations, determining where to ”split” the read affects the quality of the subsequent
mapping, as improper splits will generate many mismatches. mapToReference()
is intended to be optimised for speed on well-behaved reads, which constitute most
of the data that is seen for a given sample, but as a result make a number of as-
sumptions, such as a single k-mer size and co-linearity of matches, that are invalid
or sub-optimal for split-read alignment. Furthermore, the data representation for
an aligned read in mapToReference() of a single sequence b of bases, q of base
qualities, and cigar string representing the alignment is not well suited to represent-
ing an alignment consisting of multiple, possibly distant, pieces of possibly different
orientations, as this is not readily representable in CIGAR.

In current software that relies on writing SAM files as a medium for alignments,
split-reads are represented as multiple records with the same ID, where one record
is arbitrarily chosen to be primary (or representative) and others are marked sup-
plementary (via an 0x800 FLAG value). Each record represents a separate piece of
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the split read where the unmatched portion is masked out via soft-clipping in the
CIGAR string or is hard-clipped (see Section 2.2.1 for details on the SAM format).
The details of the split-read alignment are captured in each read’s optional SA tag
in the form of a semi-colon separated list of strings that describe the supplementary
alignments. In Figure 5.17, for example, there is a split read pictured that was
obtained from a sample on chromosome 20 of the NA12878 individual in the 1000
Genomes Project, aligned by BWA-MEM, where one portion of the read aligns on
the positive(+) strand, while another portion of the read aligns on the negative(-)
strand some distance away. The yellow area in the figure describes the first part of
the read, which is labelled primary. The read is 250 basepairs long and the CIGAR
string is 68S81M101S, indicating 68 soft-clipped bases, followed by an 81 basepair
match to the reference, and followed by another 101 soft-clipped bases. The 101
basepair segment has low base quality, so it likely consists primarily of sequencing
errors, but the 81 basepair segment has base qualities around 30, which is relatively
high. The SA tag reads - SA:Z:20,42589216,-,179S71M,60,0;, indicating that there is
a secondary alignment mapped to chromosome 20, starting at position 42589216, on
the negative strand, with CIGAR string 179S71M (179 soft-clipped bases followed by
a 71 basepair match to the reference). This is indeed the case and the corresponding
read is pictured in Figure 5.17 shaded purple. Investigating the SAM record for this
mapping reveals that the actual record has CIGAR string 179H71M, i.e. the bases
at the beginning are actually hard-clipped, not soft-clipped (soft-clipped bases are
excluded from the alignment but the sequence is still preserved in the file record,
whereas hard-clipped bases are excluded from alignment and the sequence is not
recorded in the file). Such a split-read might imply the presence of deletion proxi-
mal to an inversion in the sample with respect to the reference sequence, although
the evidence from the read should be investigated in light of the evidence from all
of the other reads that overlap this locus to make an accurate determination of the
presence of a potential variant in that location.

Figure 5.17: IGV viewer rendering of a split-read on chromosome 20 from NA12878
sample.
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There are several issues with this scheme in addition to the apparent disagreement
between duplicated information in the two records. The duplication is wasteful of
space, and prone to errors as demonstrated above. There is no apparent ordering of
the segments of the read that map to different locations because the next or previous
segment are not specified for a given record, instead all secondary records point back
to the primary. There is no well defined schema for the optional SA tag other than
specifying a record separator. Thus, formats and contents of the encoding may
vary between tools and even from record to record, without the ability to validate
correctness of the encoding. Additionally, because the records in the SAM file are
typically either in random order or coordinate-sorted order, the records for a split-
read are not easily locatable and in the worst-case the entire file may need to be
scanned in order to get the full split-read alignment for a single read.

As Rheos does not rely on traditional genomics file formats for encoding, we chose
a split-read representation that alleviates the issues above and encodes the entirety
of a split-read alignment in a single record. Define:

rsplit = (s_id, ref_id, r_id, b, q, fp, aln) (5.8)

Here s_id, ref_id, r_id, b, q, fp are as in Equation 5.2 defining a raw read. aln =
(a1, a2, ..., an) - an ordered list of alignment segments, where each
ai = (i, rname, pos, offset, len,mapq, cigar, strand, flags), and:

i - ordinal number of ai in aln.

rname - name of reference contig to which ai maps.

pos - position on rname where ai maps.

offset - offset on rsplit where ai begins.

len - length of ai.

mapq - mapping quality.

cigar - CIGAR of the alignment.

strand - alignment strand, 0 for positive, 1 for negative. Strand disagreement
between rsplit and ai indicates sequence inversion.

flags - various flags as in SAM format.

The split-read alignment operates on reads that emerge unmapped from the reg-
ular alignment stage via mapToReference(). Alignment proceeds using the same
general FM Index based framework as mapToReference() but here each read is
broken down into a series of progressively smaller k-mers. Each k-mer is aligned
individually, and the alignment that maximises aggregate alignment score across all
k-mer sizes and candidate alignments is chosen.
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Table 5.8: Definition of mapSplitReadToReference()

Inputs Munaln = {mi : mi = (header, r)} where r =
(s_id, r_id, b, q, fp, unmapped = true).

Operation mapSplitReadToReference(r, ref_id)

Outputs
Msplit = {mi : mi = (header, r)} where r is as defined in Equation

5.8.

Munaln = {mi : mi = (header, r)} where r =
(s_id, r_id, b, q, fp, unmapped = true, split_align = false)

The alignment operations that have been considered in this section present a set
of distinct challenges on the basis of the gamut of query sequence and reference
database size combinations. Each scenario presented admits optimisation with re-
spect to its specific parameters. Existing aligners typically attempt to solve all or
most of these problems with a single approach, and thus suffer from inability to
fully optimise each specific use case. Our treatment, that separates the different
alignment scenarios into distinct operations, with well delineated optimisation cri-
teria, and even into potentially separate services that may run on separate physical
machines, allows us to fully optimise each operation without negatively impacting
others.

5.3.3 Simple Germline SNP Calling

SNPs are the most abundant and widely studied type of genetic variant[88]. Sec-
tion 2.2.4 provides an overview of existing methods for germline SNP calling. For a
human diploid sample when calling variants on one of the autosomes (chromosomes
1-22), germline SNP calling comes down to selecting between three alternative mod-
els for each genomic locus based on the set of reads that are observed - homozygous
reference, heterozygous, or homozygous variant (see Figure 5.18).

Figure 5.18: Examples of genomic loci that match the reference sequence, have a
heterozygous SNP, and a homozygous SNP.
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Although the most accurate currently available variant callers model the region
around a SNP via local assembly of haplotypes[28, 61, 63], a simpler approach
assumes that every locus is independent and can still achieve high accuracy. For
instance, samtools[145], which makes the independence assumption, has recently
been compared to several local assembly based methods in [138] and was shown to
have a slightly higher false-negative rate than platypus, freebayes, and Haplotype
Caller, but also a slightly lower false-positive (FPPM = false positives per million
bases) rate (see Figure 2.25). Additionally, in [63] Table 1, samtools has the highest
sensitivity, but also the highest false discovery rate (FDR) on SNPs. Thus, the
simpler independent locus model should be sufficient for calling germline SNPs and
is of interest in the context of the data streaming approach of Rheos.

The random order in which reads appear in a Rheos data stream means that a new
approach is required to successfully implement germline SNP calling on this data.
Specifically, all of the existing tools for variant calling assume that all of the reads
for a given sample have been observed, mapped to the reference, sorted by increasing
reference coordinate, and stored in a SAM or BAM file. Variant calling (see Section
2.2.4) proceeds by traversing the data in a coordinate-ordered fashion, loading all
of the reads that overlap a given locus into memory, into a structure called a read
pileup (see Figure 5.19), and evaluating a set of alternative models for each locus,
typically in a Bayesian framework, selecting either the maximum-likelihood estimate
(MLE) or the maximum a posteriori (MAP) estimate as the called genotype.

Figure 5.19: A read pileup over a locus with a heterozygous SNP.
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The Bayesian framework that is typically adopted follows this form (see also
Section 2.2.4):

P (G|D) =
P (G)P (D|G)∑
i P (Gi)P (D|Gi)

(5.9)

Here some prior distribution P (G) of genotypes at a locus is assumed. This can be
an uninformative prior (for instance one that assigns equal probability to all possible
genotypes), or it can be a prior based on a population genetics model, or empirically
obtained distribution of genotypes in a given population. The genotype likelihood
P (D|G) under assumptions of independent observations (reads) and independent
errors, factors into a product of individual observation likelihoods i.e. P (D|G) =∏

j P (Dj|G). Each observation P (Dj|G) is further subject to a sequencing error
probability εj, derived from the recorded base quality for the read over the locus
being considered. Thus, P (Dj|G) = 1 − εj when Dj = G and P (Dj|G) = εj,
otherwise. Genotype likelihoods are then computed as in Equations 2.7 for samtools,
and similarly Equations 2.13, 2.18, 2.15 for freebayes, Equation 2.20 for GATK, and
Equation 2.21 for platypus. A site is called variant if the probability of having at least
one non-reference allele at the locus exceeds the probability of having 0 non-reference
alleles. A genotype is assigned if the ratio of the genotype with the highest likelihood
to the genotype with the second highest likelihood exceeds some pre-determined
constant, i.e., assuming genotype g ∈ [0, 1, 2] denotes the number of reference alleles
at the locus, and, for example, given genotype likelihoods L(g2) > L(g1) > L(g0),
assign the genotype g = 2 if L(g2)

L(g1) > c, where c > 1 is some user-set threshold.
The calling proceeds locus-by-locus in coordinate-ordered fashion, and the results
are written to a file in VCF format (see Section 2.2.1) where each row represents a
variant.

The process above is efficient in that each locus is looked at only once in order
to be able to make a call, but it is inefficient in that all of the data needs to have
been observed, mapped, and sorted in order to even begin calling. The streaming
approach that we adopt in Rheos allows us to begin calling immediately as we
start seeing data, in return for needing to re-evaluate a locus multiple times as new
data arrives. Because each read is immediately integrated into the model once it is
observed, the state of our model of the genome is at all times consistent with all of
the read evidence that has been observed to date. Each locus then simply provides
an estimate of the underlying genotype based on the data that is available at that
time. Initially, these estimates may be inaccurate, but accuracy improves as more
and more data arrives and the estimates are refined in an iterative fashion.

We are thus interested in an iterative update rule that, given a current set of
genotype likelihood estimates at a locus, that incorporate evidence from n reads
that have already been observed, when the read n + 1 arrives, is able to produce
an updated set of genotype likelihoods that is consistent with evidence from all
n + 1 reads, as well as any other auxiliary structures necessary for producing a
variant call record. To do this we adopt a sequential Bayesian framework, where
the posterior distribution of genotype likelihoods at step n becomes the prior (albeit
unnormalized) for step n+ 1.
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Table 5.9: Common notation for SNP calling.

Symbol Description

R The reference sequence.
S The sample sequence.
D = {di : i ∈ [1, n]} The set of n observations seen to date.
di i’th read observation.
gi Genotype of sample S at locus i. g ∈ [0, 1, 2] counts

the number of reference alleles at locus i
Pn(Gi) Probability of genotype G = g at locus i, after seeing

n observations d that overlap locus i.
L(dn|Gi) Genotype likelihood function at locus i for the n’th

observation.

Assume the definitions in Table 5.9. Now, we take P0(Gi) to be the prior prob-
ability of G at i. After observing the first data point d1, which has base quality
(probability of error) ε1, we calculate:

L(d1|G = 0) = 1− ε1

L(d1|G = 1) =
1

2
L(d1|G = 2) = ε1

if d1 is different from reference, and:

L(d1|G = 0) = ε1

L(d1|G = 1) =
1

2
L(d1|G = 2) = 1− ε1

if d1 matches the reference. Consequently, by Bayes’ Rule:

L(G = 0|d1) ∝ L(d1|G = 0) ∗ P0(G = 0)

L(G = 1|d1) ∝ L(d1|G = 1) ∗ P0(G = 1)

L(G = 2|d1) ∝ L(d1|G = 2) ∗ P0(G = 2)

Now, assuming that we have observed n data points and calculated L(G|Dn)
(likelihood of genotype given n data points Dn). We obtain a new data point dn+1

and calculate:
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L(dn+1|G = 0) = 1− ε1

L(dn+1|G = 1) =
1

2
L(dn+1|G = 2) = ε1

if dn+1 is different from reference, and:

L(dn+1|G = 0) = ε1

L(dn+1|G = 1) =
1

2
L(dn+1|G = 2) = 1− ε1

if dn+1 matches the reference. Using this likelihood and the posterior from step
n+ as the prior for step n+ 1, again by Bayes’ Rule, we obtain:

L(G = 0|Dn+1) ∝ L(dn+1|G = 0) ∗ L(G = 0|Dn)

L(G = 1|Dn+1) ∝ L(dn+1|G = 1) ∗ L(G = 1|Dn)

L(G = 2|Dn+1) ∝ L(dn+1|G = 2) ∗ L(G = 2|Dn) (5.10)

Equation 5.10 provides the general update rule for incorporating new evidence
about a given locus i having already made and recorded n observations, upon making
observation n + 1. This iterative approach is mathematically equivalent to the
batch update approaches such as [145], that collect all of the data about a locus
before evaluating genotype likelihoods. The posteriors obtained by equation 5.10
can be used directly to evaluate relative likelihoods of the possible genotypes, and to
assign genotypes via a likelihood ratio, for example, but in order to obtain a proper
posterior probability mass function over the genotypes they need to be normalized,
to obtain:

P (G = g|D) =
L(G = g|D)∑

g′∈G L(G = g′|D)
(5.11)

This equation can be used to obtain a probability estimate of any given genotype,
having observed any given amount of data about a specific locus.

Armed with the update rule for integrating read evidence we are ready to de-
fine a data stream operation of Local State Aggregator type that is responsible for
processing a stream of aligned read pairs, updating its local state with the genetic
variation evidence contained in the reads, and emitting a stream of updated genomic
loci (see Figure 5.19) that can be used by downstream services for variant calling.
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Table 5.10: Definition of updateLociFromRead()

Inputs Maln = {mi : mi = (header, payload)} where m.payload = (r1, r2)
and each read is of type raln.

Operation updateLociFromRead(r, ref, currentloci)

Outputs Mloci = {mi : mi = (header, L)} where L = {l : l =
(s_id, ref_id, contig, pos, alt, gl0, gl1, gl2, dp, ro, qr, ao, qa)}

A Locus l for SNP calling represents a single genomic location for a single sample
and a particular reference genome. For each Locus we keep track of the following
fields:

s_id - Sample ID.

ref_id - Reference Genome ID.

contig - Name of the reference contig.

pos - Reference-relative position of the Locus on the contig.

alt - The alternative allele at this locus (if any alternative alleles have been ob-
served).

gl_0 - Likelihood of homozygous alternative genotype at this locus, based on the
data seen so far.

gl_1 - Likelihood of heterozygous genotype at this locus, based on the data seen
so far.

gl_2 - Likelihood of homozygous reference genotype at this locus, based on the
data seen so far.

dp - Read depth - number of reads observed at this locus so far.

ro - Number of reference observations at this locus.

qr - Sum of base qualities of reference observations at this locus.

ao - Number of alternative observations at this locus.

qa - Sum of base qualities of alternative observations at this locus.

The Locus Processing Service, which is responsible for implementing
updateLociFromRead(), maintains a local data store of Locus objects, ideally
in memory. When a new mapped read arrives via the input stream, the service
walks along the read and for each position on the read compares it to the respective
position on the reference sequence. It retrieves the Locus corresponding to this posi-
tion and, depending on whether the read matches, or is different from the reference
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sequence, updates the Locus genotype likelihoods (and other fields) according to
the update rule of Equation 5.10. Those Locus objects that have been updated, and
have alternative allele observations (i.e. potential variants) are added to a list of
objects that should be emitted by the service as output of updateLociFromRead().
Since a read alignment consists of not only matches and mismatches with respect
to the reference sequence, but also encodes insertions and deletions as an array of
CIGAR elements (see Section 2.2.2), and the alignment may occur on the forward
or the reverse strand of DNA (requiring reverse complementing) special care needs
to be taken during read processing to account for all of the possible cases of
simultaneous read and reference traversal. Read processing proceeds as in the
following algorithms:

Algorithm 6: Process read and reference in tandem to find matching CIGAR
elements.

Function processReadPair(read_pair, ref) begin
for read in read_pair do

strand← read.strand
cigar_els← read.cigar_els
ref_offset← 0
read_idx← read.query_start

/* Alignment does not necessarily start at index 0. */

for el in cigar_els do
if el.type = MATCH or el.type = DEL then

if el.type = MATCH then
updated_loci
←handleMatch(read, read_idx, el.length, ref_offest, ref)

ref_offset← ref_offest+ el.length ∗ strand
/* both matches and deletions consume reference sequence.

Reads that align on the negative strand consume reference
backwards. */

if el.type! = DEL and el.type! = SOFT_CLIP then
read_idx = read_idx+ el.length /* All elements but deletions
and soft-clips consume read sequence. */

Algorithm 6 is responsible for locating the genomic coordinates of those parts
of the alignment that are flagged as matches (a match may still have differences
from the reference). This is accomplished by traversing the CIGAR elements of the
alignment and updating the coordinate offset of the read, the reference, or both,
depending on the type of CIGAR element that is encountered. When a CIGAR
element corresponding to a match is encountered it is processed by Algorithm 7,
which is responsible for updating the set of loci that the matching region overlaps
with the evidence for (or against) variation that exists in the read. In Algorithm
7, the DNA strand to which the read maps determines whether the read sequence
needs to be reverse complemented and whether the match offsetting proceeds from
the beginning or the end of the reference sequence. After offsets are computed
the actual matching always proceeds moving forward (in the direction of increasing
coordinates) along the reference sequence. At each location the reference and read
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Algorithm 7: Process a portion of the read that maps to reference as a
match, updating all loci that it overlaps.

Function handleMatch(read, read_idx,match_length, ref_offest, ref) begin
seq ← read.seq[read_idx : read_idx+match_len]
qual← read.qual[read_idx : read_idx+match_len]
if read.strand = 1 then

ref_start← read.position+ ref_offest− 1

else
/* When read is on negative strand sequence is reverse complemented
and matching starts from end of reference. */

seq ←reverseComplement(seq)
ref_start← read.end+ ref_offest−match_length− 1

read_ref ← ref [ref_start : ref_start+match_length]
for pos_idx in seq do

cur_ref ← ref_start+ pos_idx
cur_locus←all_loci.getLocus(cur_ref)
p_error ←baseQualityToProbabilityOfError(qual[pos_idx])
cur_locus.dp← cur_locus.dp+ 1
cur_locus.gl_het← cur_locus.get_het ∗ 0.5
if seq[pos_idx]! = ref [pos_idx] then

cur_locus.alt← seq[pos_idx]
cur_locus.gl_ref ← cur_locus.gl_ref ∗ p_error
cur_locus.gl_hom← cur_locus.gl_ref ∗ (1− p_error)
cur_locus.ao← cur_locus.ao+ 1
cur_locus.qa← cur_locus.qa ∗ qual[pos_idx]

else
cur_locus.gl_ref ← cur_locus.gl_ref ∗ (1− p_error
cur_locus.gl_hom← cur_locus.gl_ref ∗ p_error
cur_locus.ao← cur_locus.ro+ 1
cur_locus.qa← cur_locus.qr ∗ qual[pos_idx]

sequences are compared and the underlying Locus model is updated based on the
update rule of Equations 5.10. Those loci that have a non-zero count of alternative
allele observations are added to a list of loci that potentially harbour variants and
will be emitted from the Locus Processing Service as a stream Mloci for further
downstream processing by the variant caller.

The Variant Calling Service - is responsible for actually making SNP variant
calls based on a set of user-defined calling criteria, such as a region of interest, variant
quality, genotype likelihood, number of supporting observations, etc. The service
translates between a set of Locus models maintained by Rheos and an external
data format (namely VCF). This service does not operate on a stream of data, but
instead acts as a query service that can be invoked by the user ad hoc with specified
parameters to answer queries of interest.

For each locus inside the queried region the Variant Calling Service evaluates the
set of genotype likelihoods at that locus and calculates normalized genotype pos-
terior probabilities using Equation 5.11. The variant quality is defined to be the
Phred-scale transformed probability that a site is homozygous reference, i.e. sites
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Table 5.11: Definition of callV ariants()

Operation callV ariants(region, calling_threshold)

Outputs outputV CF

that, based on the read evidence, have a very low probability of being reference,
under the Phred-scale transformation end up with a high variant quality (see Equa-
tion 2.11). Variants that exceed calling_threshold will be emitted as records to the
output VCF file. It is possible to envision more sophisticated versions of the Variant
Calling Service that provide extended querying and filtering capabilities.

5.3.4 Germline Structural Variant Calling

As Rheos aims to provide comprehensive sample characterisation it is not enough
to only be able to call single nucleotide polymorphisms, the ability to call other
variants, such as indels and structural variants is also required. Here we examine
an approach for calling a specific class of structural variants, namely deletions,
using a stream of mapped read pairs made available by the Read Mapping Service’s
mapPairToReference() operation.

In general, structural variant callers typically make use of three types of evidence
for the presence of structural variation - read depth, discordantly mapped reads,
and split-reads (see Section 2.2.5). Here we utilise discordantly mapped reads i.e.
those read pairs that align farther away from each other than expected in order to
assess the presence of sequence deletions in the sample with respect to the reference.

Figure 5.20: Effect on read-pair mapping distance for reads overlapping a deletion.

In Figure 5.20 the sample being sequenced has a deletion with respect to the
genome reference, namely the sequence ”CCAAATTAG” is deleted. When sequenc-
ing with read pairs, the term ”insert size” refers to the size of a DNA fragment
that is being sequenced, less the size of the sequence adapters on both ends(see
Figure 5.21). Thus, assuming that both reads in a pair have been mapped, and
have mapped in the proper orientations (5’ towards 3’ on both strands). If the Read
Mapping Service emits the read pair as (r1, r2) where ri are as previously defined and
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r1.pos, r1.end, r2.pos, r2.end, and assuming without loss of generality that r1 is the
read that maps on the positive strand, then the insert size lr1,r2 = r2.end− r1.pos.

Figure 5.21: Read-pair insert size is the size of the DNA molecule being sequenced
minus the length of adapters on both sides (taken from [248]).

As can be seen from Figure 5.20, for those reads that span the site of the deletion
the inferred insert size is larger than the actual insert size (approximately by the size
of the deletion), since the read are mapped farther apart on the reference than they
are on the sample. Such read pairs are said to be discordantly mapped. Since the
insert size distribution for a given sample is relatively predictable (see Figure 5.14),
it is possible to detect the presence of deletions in a sample by identifying clusters
of read pairs that have an inferred insert size larger than some predefined threshold.
Such an approach is already used by several structural variant callers[167, 168] and
we adopt it in Rheos with several key innovations.

Detection proceeds in two stages performed by two different services. The Insert
Size Filtering Service is responsible for listening to the general stream of read pairs
and filtering out all of the pairs that do not meet the requisite criteria. The Insert
Size Clustering Service is responsible for consuming a stream of discordantly mapped
read pairs, clustering the reads that are located close to each other, and outputting
those clusters that have sufficient evidence for being considered sites of deletions.

For the Insert Size Filtering Service we define the following operation:

Table 5.12: Definition of filterDiscordantPairs()

Inputs
Maln = {mi : mi = (header, payload)} where m.payload = (r1, r2)

and each read is of type raln

Operation
filterDiscordantPairs(r1, r2,min_mapq,mad_threshold,
min_sample_size)

Outputs
Mdisc = {mi : mi = (header, payload)} where m.payload = (r1, r2)

and each read is of type raln

Here, the filterDiscordantPairs() operation subscribes to the stream of mapped
read pairs that is produced by the Read Mapping Service. The goal is to produce a
stream of read pairs that are suitable for clustering. The following conditions must
be satisfied in order for a pair to be considered suitable:
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Both reads in a pair must be mapped - the Read Mapping Service actually
emits some read pairs where only one of the reads is mapped into the mapped
reads stream.

Both reads in must be mapped to the same contig - Read pairs where indi-
vidual reads map to different contigs may be indicative of genomic transloca-
tions (another type of structural variant), but are not suitable for the detection
of deletions, since different contigs are actually different physical molecules.

Both reads must have mapping quality ≥ min_mapq - A mapping quality
of at least 30 (the default value) on the Phred scale, for instance, implies a
probability of no more than 10−3 that a read is mapped to the wrong location
on the reference.

Insert size must be > MAD * mad_threshold - the Median Absolute Devia-
tion is taken as a measure of the central tendency of the distribution of insert
sizes that is robust against extreme outliers, which can be quite common.
Typical fragment size of the DNA that is being sequenced is in the hundreds
of nucleotides long, whereas certain inferred insert sizes can reach millions of
bases due to structural variants or spurious mappings. Thus, it is desirable to
have a metric similar to variance that will not be sensitive to these extreme
values. Given a set of insert sizes L = {li : li = r2.end − r1.pos}, define
MAD(L) = median(| li −median(L) |). The cutoff of mad_threshold*MAD
places a lower bound on the size of deletions that can be detected with this
method. A value of 5 is arbitrarily chosen as the default for mad_threshold.

Since obtaining an accurate estimate of median insert size and MAD requires
observing a sample of read pairs, the Insert Size Filtering Service does not emit any
reads at first, but accumulates observations in a local data store while collecting
enough information to obtain reliable estimates of these metrics. min_sample_size
(105 by default) read pairs are collected before filtering begins. Once the metrics
are obtained, collected reads are filtered first and released, before processing any of
the remaining reads on the stream.

Read pairs that satisfy all of the conditions above are emitted in an output stream
for consumption by the Insert Size Clustering Service. The main points of con-
trol for the user are the min_mapq and mad_threshold parameters. Decreasing
min_mapq increases sensitivity by allowing more reads through while simultane-
ously decreasing specificity. Likewise, decreasing mad_threshold increases sensitiv-
ity and allows detection of smaller size deletions,at the expense of allowing ”less
surprising” insert sizes through the filter. Choosing a higher min_sample_size
provides more accurate estimates of median insert size and MAD at the expense of
a higher delay before producing filtered output, and higher peak memory require-
ments for the Insert Size Filtering Service. Ideal parameter values may be project
dependent.

The Insert Size Clustering Service is responsible for consuming the stream of
discordantly mapped reads and figuring out locations of read clusters in genomic
space that may be the site of potential deletions. Those read clusters that have
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sufficient evidence are then emitted as variant calls. Because discordantly mapping
read pairs are fairly rare (out of 6705731 mapped read pairs on Chromosome 20
of sample NA12878 analysed as part of this work, only 2663 or 0.04% success-
fully passed through the Insert Size Filtering Service with min_mapq = 30 and
mad_threshold = 5), and the addition of a single new read pair can only poten-
tially affect a small number of variants, it does not make sense to re-evaluate the
clustering model for each new pair that comes in. Instead, the Insert Size Clustering
Service accumulates discordantly mapped read pairs from the input stream and will
process them as part of an ad hoc query or a periodically scheduled execution, pro-
ducing an updated call set as a result. We define the service’s operations in Table
5.13.

Table 5.13: Operations of Insert Size Clustering Service

Input
Mdisc = {mi : mi = (header, payload)} where m.payload = (r1, r2),

and ri = (s_id, r_id, b, q, fp) as in 5.2.

Operations
addReadPair(r1, r2)

callDeletions(region, insert_size_threshold,
min_read_support)

Output
Mdel = {mi : mi = (header, payload)} where m.payload = V =
{vi : vi = (s_id, contig, pos, length, vqual, R)} is the set of called
variants, and R = {ri : ri = (r1, r2)} is the set of read pairs
supporting the variant call.

Here addReadPair() is an operation that reads the stream of discordantly mapped
reads and stores each read pair in the service’s data store. The data store is an in-
memory data structure that consists of an array for general read processing and an
Interval Tree for performing queries for finding those reads that support a partic-
ular putative variant. The Interval Tree is a type of balanced binary search tree
(described in [249], for example) that allows efficient querying of which intervals
overlap a particular query interval. The tree can be constructed in O(n logn) time,
O(n) space, and answers queries in O(logn+m) time, where n is the total number
of intervals stored and m is the number of intervals being returned by the query (see
Figure 5.22). Insertions into the tree after construction take O(logn) time.

224



5.3. DOMAIN-SPECIFIC PROBLEMS

Figure 5.22: a) Intervals arranged on the number line. b)An Interval Tree con-
structed from the same intervals. Each node contains an interval and the maximum
value of any interval in the subtree rooted at that node (taken from [249]).

Invocation of callDeletions() uses the data accumulated by addReadPair() to
perform the actual deletion calling. The calling proceeds as follows:

1. For each read pair determine the center point of the interval spanned by the
pair.

2. Using pair centers perform Kernel Density Estimation[250, 251] to estimate
the distribution of the location of pair centers.

3. Using the estimated density detect regions with local maxima (clusters) that
become locations for putative deletions.

4. Using the sites of putative deletions query the Interval Tree for a list of reads
that overlaps each site.

5. For each site and set of read overlaps call the deletion boundary to be the
maximal interval that is spanned by the inner distance (see Figure 5.21) of all
overlapping read pairs.

6. Based on the width of the deletion remove all overlapping reads whose inferred
insert size is greater than deletion_width+ insert_size_threshold.

7. Output a deletion if the number of supporting reads after filtering above is
> min_read_support.
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The key approach used in this method for the clustering of read pair interval
centers is Kernel Density Estimation. This approach has been used as a highly suc-
cessful and efficient one-dimensional clustering method in a variety of settings[252,
253, 254], but has not been applied in the context of genomic variant calling to date.

If we have a one-dimensional data set of iid observations (x1, x2, ..., xn) from some
unknown distribution and we wish to estimate the pdf f we can do so using:

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
(5.12)

Here K is a non-negative real-valued integrable windowing function, and h is a
smoothing parameter called bandwidth. A variety of kernels are possible. In this
method we use the gaussian kernel as a way to attenuate the influence of each read
pair center with distance from that center.

Figure 5.23: Centers of discordantly mapped read pairs on Chromosome 20 of
NA12878 (plotted as points below x-axis) along with the KDE estimate plotted
above x-axis.

In Figure 5.23 we demonstrate the results of applying KDE with a gaussian kernel
and a bandwidth of 100 on the 2663 discordantly mapped read pairs from Chromo-
some 20 of the NA12878 sample, sequenced by the Genome In A Bottle[255] consor-
tium and processed by Rheos. The x-axis specifies integer genomic coordinates from
0 to 6.3× 107 and the y-axis is real-valued. Each point below the x-axis represents
the coordinates of a centre for a single read-pair. The y-axis values for each point
are randomly generated from a small interval in order to obtain visual point separa-
tion on the graph. The graph above the x-axis shows the estimated density function
based on the 2663 points, with peaks indicating the position of clusters, and hence,
the location of putative deleted regions. The location of peaks is obtained via a
peak finding algorithm that returns the maximum value in an n-neighbourhood of
points.

Once the location of the center points of putative deletions is known it is important
to determine deletion size and evaluate the amount of support that exists for each
deletion call. To achieve this callDeletions() makes use of the Interval Tree data
structure that has been constructed from all of the read pairs. The Interval Tree is
queried for all read pairs that overlap the position of a given deletion center. This
query is answered in O(logn+m) time.
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Figure 5.24: A cluster of reads spanning a germline deletion.

Given a set of read pairs R = {(r1, r2) : r = (r.pos, r.end)} spanning the site
of the deletion we are interested in determining the extent (position, and size)
of the deletion. We take the deletion site (see Figure 5.24) to be an interval
[maxr1,i∈R (r1,i.end),minr2,i∈R (r2,i.pos)], based on the following argument. If the
deletion is homozygous, then no read in the sample should map into the deletion
sequence, thus the deletion should be entirely contained in the inner distance be-
tween reads spanning the deletion. If the deletion is heterozygous, then the reads
that are discordantly mapped come from the haplotype with the deleted allele, and
should thus, also not have any sequence map into the deletion, again containing the
deletion entirely in the inner distance between reads. Thus, the deletion boundaries
are in the interval between the largest end coordinate for a read to the left of the
deletion center, and the smallest start coordinate to the right of the deletion center.

Given the location and width of a putative deletion it is necessary to determine
whether the deletion has sufficient support in the reads to be considered real, or
may be dismissed as spurious. Many filtering strategies are possible, but the simplest
relies on counting the number of read pairs that support a deletion and only retaining
those that exceed a minimum threshold of min_read_support supplied by the user.
To reduce the number of false positive results we would like to remove remove from
the list of reads supporting a deletion call those that are likely spurious. Since, low
quality reads are already filtered by the Insert Size Filtering Service one of the few
remaining sources of false positive signal are reads for which the inferred insert size
is much larger than the actual deletion call that they span. These reads are either
part of another, much larger, deletion, in which case they are accounted for in that
deletion call, or they are spuriously mapped, as there is no other plausible reason for
their large insert size. We thus, use a thresholding cutoff insert_size_threshold,
supplied by the user, such that read pairs with insert_size > deletion_width +
insert_size_threshold are removed from the list of reads supporting a particular
call. Afterwards, deletions that have read support exceeding themin_read_support
threshold are selected as called variants.
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The variant quality for the deletion is taken to be vqual =
∑

r∈R r.mapq i.e. the
Phred-scaled probability that all of the reads that support the deletion have been
mis-mapped. All of the variants that have been called are emitted in the Insert Size
Clustering Service’s output stream in the format:

Mdel = {mi : mi = (header, payload)}

where

m.payload = V = {vi : vi = (s_id, contig, pos, length, vqual, R)}

as described in Table 5.13, where the header includes the query details that are
being answered.

5.4 Rheos implementation

In order to prove the viability of the concepts behind Rheos we have built and tested
a limited implementation of Rheos. This implementation provides a data streaming
architecture of services and is able to perform genome alignment, followed by online
germline SNP and deletion calling, as described in Section 5.3. The source code is
available on github at - https://github.com/llevar/rheos. In this section we describe
the details of the technical implementation, including the key approaches taken for
the establishment of data streaming, service organisation, scalable deployment, and
performance optimisation. Even though the implementation is fully functional and
has been used to analyse real data, it is worth noting that due to the extremely
broad scope of the overall Rheos framework, and the limited resources available, the
implementation focuses on a narrow set of use cases and is meant to be treated as
a proof of concept rather than a production system.

As in the implementation of Butler (see Chapters 3 and 4) we make a concen-
trated effort to rely on established Open Source software frameworks where possible
to ensure that components of Rheos are robust and scalable, require minimal main-
tenance, and can be easily deployed on a variety of platforms. Some of the key
frameworks used by Rheos are Apache Kafka, Google Kubernetes, Docker, and
Prometheus.

The implementation is focused on the following key services:

Read Mapping Service - Reads a FASTQ file and turns it into a set of streams
for mapped and unmapped reads and read-pairs.

Locus Processor Service - Reads a stream of mapped read pairs and incorporates
variant evidence from the reads into a model of genomic Loci. Emits a stream
of updated Loci.

Locus Saver Service - Reads a stream of Loci and stores them in a distributed
data store.
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Variant Calling Service - Reads Loci from a data store and performs germline
SNP calling. Emits a VCF file.

Insert Size Filtering Service - Reads a stream of mapped read pairs and emits
a stream of filtered high quality read pairs that are discordantly mapped and
can be used for calling deletions.

Insert Size Clustering Service - Reads a stream of discordantly mapped read
pairs and calls germline deletions via KDE clustering. Emits a stream of
deletion variants.

We first focus on the general architecture of a Rheos service and describe how ser-
vices communicate with each other, then describe the deployment and operation of
the Rheos system as a whole, and finally describe the individual services to comprise
the Rheos implementation.

5.4.1 Rheos Service

A service in Rheos is a continuously running program with a well defined interface
(implementing one or more operations described in Section 5.2.1), and a set of well
understood operating characteristics. Even though a service author is completely
free to use different technologies for different services (as long as the interface is
respected), we have chosen to implement the initial set of Rheos services in Python.
Since Rheos services are typically streaming services, their operations are most often
invoked automatically when new data appears on the stream.

Figure 5.25: Several instances of the Read Mapping Service are managed behind a
Load Balancer.
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Figure 5.25 demonstrates several key concepts behind Rheos services using the
example of a Read Mapping Service:

• The service transforms the granularity of the data from sample-level on the
input to read-level on the output.

• The service implements a streaming operation of type Decorator, it decorates
the incoming read data with additional information, that of the read coordi-
nates, CIGAR string, mapping quality, etc.

• The service provides a uniform interface to its clients, that of ReadService.map-
ToReference(). Machines that implement this interface are indistinguishable
from each other.

• Clients of the service talk to the service interface through the Load Balancer.
The DNS entry for the service returns the IP of the Load Balancer, which
is then responsible for routing requests to one of the service instances. This
allows one to control the scalability of the service, seamlessly adding and
removing instances of the Read Mapper depending on the rate of the data
that is coming into the system, and the ability of downstream services to
process it.

When services are deployed it is desirable to be able to easily deploy them to a
variety of different environments and achieve a level of resource and environment
isolation, so that other programs running on the same machine can only minimally
impact the installation and running of the service. To accomplish these goals, all of
the services in Rheos follow a containerized approach using Docker[200].

Figure 5.26: Docker system architecture (taken from [256]).
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Docker is an Open Source framework that isolates the execution of a program
from the host machine and other programs by encapsulating it in a lightweight
Linux container. The container is a separate instance of an operating system and a
program running inside it is not aware of its enclosing environment. The Docker ar-
chitecture consists of three main components (see Figure 5.26). A machine that can
run Docker containers (the Docker Host) needs to be running the Docker Daemon.
A container is a runtime instance of a Docker environment, but the blueprint from
which all containers are created is called a Docker Image. The user starts with a
base image that only has an operating system in it. The user can then augment the
image by installing additional software packages and custom programs. This can
be done interactively inside a shell inside a running container, or declaratively via a
Dockerfile. When the user is finished preparing their image they can use the Docker
Client to build it and upload it to an external Docker Registry. This is an external
registry where various Docker images are hosted. When Docker Daemon needs to
create a container it pulls down the requisite image from a registry to the local ma-
chine, and then instantiates the container. Containers can be started and stopped,
created and deleted easily, and provide a great deal of abstraction and simplification
when it comes to running many different applications, with potentially conflicting
dependencies on a server. They also provide a seamless migration path from the
local development machine, through the testing environment,and into production.
All Rheos services are implemented to be encapsulated inside Docker containers.

Figure 5.27: Rheos service file structure.

The layout of a Rheos service file structure is standard (see Figure 5.27). One
or more Python files implement the service functionality in the form of a Python
module. The file setup.py provides a list of dependencies that are needed for the
functionality of the service. The Dockerfile specifies how to build a Docker image of
the service (see Listing 13).
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Listing 13: Example Dockerfile for setting up a service.

1 FROM python:3.7.2-alpine3.8
2 RUN apk add --no-cache build-base python3-dev zlib-dev cython make bzip2-dev

xz-dev libcurl↪→

3 WORKDIR /app
4 COPY . /app/
5 RUN python setup.py install
6 RUN mkdir /app/log && touch /app/log/mapper.log
7 ENTRYPOINT ["python", "read_mapper/batchy_mapper.py"]

The Dockerfile uses a base image of Alpine Linux with Python 3.7.2 preinstalled.
Several addon linux packages are installed. The service module code is copied to the
/app directory. setup.py is run to install all of the service’s dependencies, and the
program entrypoint for the Docker container is set to point to the service executable.

The file build_and_push.sh is a shell script that is responsible for building a
Docker image using the supplied Dockerfile and pushing this image to a Docker
registry (hub.docker.com). Any deployment of the service can now pull down this
image from the registry and instantiate new containers from it.

As there is a good deal of functionality that is common between several Rheos
services there is a separate Python module called rheos-common that houses both
utility classes and commonly used models (such as that for genomic loci) in its
submodules. This module is hosted on Pypi and can be installed from anywhere
using standard Python installation techniques such as pip.

The wire format for messages exchanged between services is currently schema-
less and relies on standard Python serialisation mechanisms (namely pickle), and
json. Although json is completely generic, pickle is proprietary to Python and thus
represents a weakness of the current implementation. A generic wire format with a
defined schema will be a future improvement.

Serialized messages are streamed between services via distributed queues.
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5.4.2 Queueing

For message queueing Rheos relies on an Open Source framework called Apache
Kafka[257]. Kafka queues provide a distributed fault-tolerant implementation of
the publish/subscribe mechanism, and streaming.

Figure 5.28: Example of a Kafka queue with multiple data producers and consumers.

At the heart of Kafka lies an Event Topic (see Figure 5.28). The topic is a
distributed transaction log. When messages are put in the queue, they are never
deleted by a consumer. Instead, consumers keep an offset into the log that tells
them where they currently are in the processing of the data. Offsets can be moved
freely so that a consumer may process the same message multiple times if needed.
Data is deleted from the queue by virtue of a retention policy that removes data
that is older than some specified time period.

The queue is distributed between several machines by using partitions. A Kafka
partition is a function that specifies how many logical and physical partitions of
the data exist. Data may be partitioned onto several machines based on data size
considerations, or it may be partitioned based on a logical grouping. In the former
case, an automated partitioning function is employed that decides which partition to
send new messages to in round-robin fashion. In the latter case a logical partitioning
function needs to be supplied by the user. Rheos mainly uses the latter approach
to partition data by genomic coordinate (see Section 5.4.3 for details).

Data producers put messages into the queue by communicating with a Broker. A
Broker is a Kafka service that manages one or more queues on a particular machine.
Multiple Brokers may be put in a cluster for load balancing. A data producer
establishes a connection with a broker using a client library (kafka-python in the
case of Rheos). The partitioning function determines which machine a particular
message ends up on.
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On the data consumer side, consumers are organised into Consumer Groups. Each
Consumer Group is a set of consumers that are assumed to be a separate entity
from the consumers in all the other consumer groups. A Consumer Group has its
on separate set of offsets into every partition of a topic that it is subscribed to and
these do not interfere with the offsets of other groups. Assignment of consumers
within a group to partitions of a topic can be automated or manual. In the case of
automated assignment Kafka will decide on its own how to pair a consumer with
a partition. In the case of manual assignment the partitioning function is used to
make the assignment. It is in general not advisable to have multiple consumers from
the same group reading data from the same partition.

We implement a generic Kafka Handler in the rheods-common module. This
handler allows Rheos services to initialize Kafka producers and consumers. serialize
and deserialise data using pickle and json, and to store and retrieve messages using
the topics that have been set up for inter-service communication.

5.4.3 Partitioning

Partitioning is important in Rheos not only because the data is quite big and thus
needs to be parcelled out to multiple machines, but also because data exhibits strong
locality subsequent to the read mapping stage, where most of the data that is re-
quired to make decisions about the presence or absence of a genomic variant resides
in some small genomic neighbourhood around the variant. It is thus natural for us
to partition the read data (which is biggest in size) by genomic coordinate.

Figure 5.29: Rheos data is partitioned by genomic coordinate.
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Partitioning can be challenging because different partitions end up on different
machines, yet certain reads and structural variants end up spanning one or several
partitions. We need to decide what to do at the partition boundaries, i.e., if a
particular read ends up spanning the boundary, does it end up in one partition,
the other, or both? If a read ends up in two partitions how does one avoid double
counting the read in downstream processing? Likewise, if the reads supporting one
breakpoint of a structural variant lie in one partition, and the reads supporting the
other breakpoint lie in another partition, how can these be put together to form a
single variant?

We take a simple approach in the initial Rheos implementation that will require
further work when the system is elaborated. The following assumptions are made
by the Partitioner:

• All partitions are of equal size, except at the end of contigs.

• Reads that span multiple partitions are assigned to all partitions that they
map to (see Figure 5.30).

• A given read will always map to the same set of partitions.

• All reads that are unmapped end up in the ”unmapped” partition.

• All reads that map to special contigs (like decoy sequences) are mapped to a
special ”other” partition.

Figure 5.30: Reads that map near the partition boundary - a) The read pair maps
to partitions 1 and 2, b) The read pair maps to partition 2 only, c) The single read
maps to Partition 1 only, d) The read pair maps to partitions 1 and 2, e) The single
read maps to partitions 1 and 2.
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In general the partitioning problem can be stated as follows:

Given a reference genome G, we assign a set of indexed partitions P , where given
a set of reads R (most often a read or a read pair), we desire to have a function f
that maps those reads to a set of partitions from P , using the definitions below

G = Gmain ∪Gother

Gmain = {gi : gi = (namei, length), namei ∈ {1, .., 22, X, Y,MT}}
Gother = {gi : gi = (namei, length), namei ∈ Aux_Contig_Names}
P ={(gi.name, start, end, i) : gi ∈ Gmain, i ∈ [1, |Gmain|]}
∪
{("other", |Gmain|+ 1), ("unmapped", |Gmain|+ 2}

R = {ri : ri = (contig, pos, end)}
f : R 7→ P(P ), where P(P ) is the power set of P

We opt for partitions of fixed width partition_width (except at ends of contigs)
and implement Algorithm 8, that, given G, produces P , and for a given interval or
read pair returns a set of partitions they map to:

Figure 5.31: Rheos Partitioner class diagram.

Algorithm 8 is implemented in Rheos via the Partitioner and PartitionRecord
classes of the rheos-common package. Namely, members of P are implemented
as instances of PartitionRecord, function initializePartitioner() is im-
plemented in Partitioner.__init__(), function partitionsForInterval()
is implemented in Partitioner.get_partitions() method, and function
partitionsForReadPair() is implemented in
Partitioner.get_partitions_for_read_pair().

In our tests we have been using a partition width of 2×107 bases, resulting in 148
partitions for read data. The Partitioner is used in the Read Mapping Service to
determine which partition to write data to, as well as in the Locus Processor Service
to determine which partition is assigned to which instance of the service.
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Algorithm 8: Partitioning the reference genome by a fixed width and map-
ping reads to partition sets.

Function initializePartitioner(g_main, g_other, partition_width) begin
partition_index← 0
for name, length in g_main do

num_partitions← ceiling(length/partition_width)
for i← 0 to num_partitions do

left← i× partition_width+ 1
right← min((i+ 1)× partition_width, length)
new_record← PartitionRecord(name, left, right, partition_index)
// Create a member of P

addBreaksByContig(name, left) // Keep a hashmap of partition
boundaries by contig

addPartitionsByContigAndLeft(partition_index, name, left) // Keep
a hashmap of partition records by contig and left boundary.

partition_index← partition_index+ 1

Function partitionsForInterval(contig, left, right) begin
partitions_for_int← Set() // Partition records are a set, to avoid
duplicates

if contig /∈ getOtherContigNames() then
breaks← getSortedBreaksByContig() // Breaks are sorted by left
coordinate

left_index← binarySearch(breaks, left)
left_partition←

getPartitionByContigAndLeft(contig, breaks[left_index− 1])
addToSet(partitions_for_int, left_partition)
right_index← binarySearch(breaks, right)
right_partition←

getPartitionByContigAndLeft(contig, breaks[right_index− 1])
addToSet(partitions_for_int, right_partition)

else
addToSet(partitions_for_int, getOtherPartition)

Function partitionsForReadPair(read_pair) begin
read_partitionss← Set()
for read in read_pair do

if read.mapped is TRUE then
left← read.pos+ 1
right← read.end
contig ← read.contig
addToSet(read_partitionss,partitionsForInterval(contig, left, right))

else
addToSet(partitions_for_reads, getUnmappedPartition)
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5.4.4 Deployment

Deployment of large-scale distributed systems can be complex as each component
can have its own requirements related to computational resources, environment, or
the ability to scale. This heterogeneity of requirements demands a flexible deploy-
ment approach that can cater to the individual needs of the various components of
the system. Additionally, there is a wide variety of computational infrastructures
into which a user may wish to deploy the system, again with a distinct set of ca-
pabilities and limitations. With Butler (see Chapters 3, 4) we solve this problem
by utilising a separate framework (Terraform) for abstracting the specifics of cloud
provider’s provisioning API, another separate framework (Saltstack) for providing a
flexible configuration management facility that can configure software on a variety of
platforms, and a separate suite of frameworks (InfluxDB, Grafana, Telegraf, Kapac-
itor) for operational management of the deployed components. We take a somewhat
different approach with Rheos, one that based on the containerized nature of Rheos
services, and one that relies on a single common execution environment being de-
ployed on top of any cloud provider, or other types of computational infrastructure.
The environment that we use is Google Kubernetes[258].

Figure 5.32: Kubernetes high level architecture (taken from [259]).

Kubernetes is a cluster resource management and container execution framework
developed by Google. It can deploy on virtually any cloud as well as bare metal
hardware (which makes it more flexible than the approach adopted in Butler). A
Kubernetes cluster is a collection generic compute hosts (Nodes) each running the
Docker and kubelet daemons. These nodes go into a generic pool of computa-
tional resources, although nodes with specialized capabilities, such as high RAM,
or advanced GPUs can be held in separate pools. A master node is responsible
for keeping track of the configuration and computational capabilities of the cluster
by virtue of an etcd registry that it keeps. This node runs a special management
daemon called kubeadm and schedules the deployment and execution of workloads
on the cluster, all of which are encapsulated in Docker containers. See Figure 5.32
for the general high level architecture of Kubernetes. This architecture is scalable
to over 2500 compute nodes per cluster[260].
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In order to facilitate inter-container communication Kubernetes provides an over-
lay network that is responsible for managing address translation, network security,
and local DNS by running a proxy agent kube-proxy on each node. This allows
various components of the system to refer to each other by name rather than IP
address, and enables role-based access to various network resources.

Figure 5.33: Kubernetes dashboard.

Kubernetes was built for deploying and operating services and provides a large
number of high-level abstractions to facilitate the full service lifecycle. Kubernetes
objects are managed through declarative documents in YAML format that describe
the desired state of the system. The user interacts with the cluster by virtue of a
CLI (kubectl) running on the master node, or via a GUI dashboard (see Figure
5.33).

At the lowest level of abstraction in Kubernetes hierarchy is a Pod. The Pod is
a wrapper around a Docker container and describes some useful metadata for cate-
gorising as well as describing the resource requirements of the underlying container
that are used for scheduling the container onto nodes. These resources include CPU
and memory requirements, as well as requests for various types of storage (called
a PersistentVolumeClaim). A Pod is scheduled for execution only when the cluster
manager can find a suitable node that can meet all of the pod’s resource require-
ments. If the Pod exceeds its stated resource requirements during its lifetime it will
be terminated by the scheduler.

Since the goal of Kubernetes is to enable computation at scale, Pods are rarely run
as single instances. Depending on the intended usage of the underlying container
Pods can be organised in groups such as a DaemonSet, ReplicaSet, StatefulSet,
Job, etc (see Figure 5.34). These abstractions describe the runtime behaviour of
groups of Pods and provide lifecycle management support for each. For instance,
a ReplicaSet provides a group stateless interchangeable Pods where each Pod can
identically service a request from a client, and Pods can be scaled horizontally. The
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Figure 5.34: Kubernetes microservice components (from [261], by Bilgin Ibryam)

configuration for a ReplicaSet may specify the number of such Pods that should be
running at a given time and the scheduler will create and delete Pods as necessary to
make sure that the requisite number of Pods is running. Other groups of Pods that
do not scale horizontally, and require access to non-ephemeral secondary storage
(such as those running a database) may use the StatefulSet to provide such services.
A DaemonSet makes sure that every node in a cluster is running an instance of
a particular Pod. A Service is a higher level abstraction that provides a logical
grouping of pods and provides a number of capabilities such as DNS, load balancing,
and security.

In Rheos we make use of Kubernetes for two purposes - one is to deploy and
configure the various products that Rheos services rely on for their operation. These
include:

Kafka - The queueing framework that all Rheos services use for communicating is
deployed on Kubernetes as a set of fault tolerant Docker containers.

Redis - Is a scalable in-memory key-value data store that Rheos services use to
store intermediate results.

PostgreSQL - Is an SQL database used for persisting variants to disk.

Prometheus - Is a monitoring and alerting framework used to maintain operational
control of the running system.

Grafana - Is a metrics dashboarding software used for visualisation of health met-
rics.
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Elasticsearch - Is an indexing product used for harvesting and storing application
logs.

Jenkins - Is an automated build and deployment tool used for creating software
builds.

Kubernetes Dashboard - Is a UI used for managing Kubernetes clusters.

For each product we maintain a set of configuration files used for Kubernetes
deployments and configuration of these tools (see Figure 5.35).

Figure 5.35: Rheos Kubernetes configurations file layout.

Additionally we use Kubernetes to configure and deploy the services of Rheos
themselves, organised as fleets of Docker containers. This allows us to enjoy the
flexibility of being able to deploy on virtually any hardware, the environment iso-
lation provided by Docker, and the resource management and elastic scalability
afforded by Kubernetes, which are all key concerns when operating a large-scale
service-oriented system.
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5.4.5 Services of Rheos

We build on top of the concepts of a general Rheos Service, Kafka topics, the
Kubernetes framework and other products described earlier in this section to provide
a cohesive implementation of a set of services that implement two major end-to-end
use cases encountered in genomic analysis - germline SNP calling, and germline
SV (deletion) calling. As Rheos matures these services will be extended to provide
enhanced functionality and increased scalability required for production applications
of the framework.

Read Mapping Service

The Read Mapping Service is the entrypoint of the initial Rheos implementation.
Although future versions of Rheos will likely have a different entrypoint, namely a
Read Streaming Service that will accept data from an external endpoint, such as a
data repository or directly from the sequencer, we proceed directly to read mapping
in this initial implementation as a matter of simplification.

This service aims to implement two read mapping operations specified in Sec-
tion 5.3.2 - mapToReference() and mapPairToReference(). It reads a user-
specified FASTQ file (the sample), as well as a genome reference file from disk and
emits four data streams mappedReads, mappedReadPairs, unmappedReads, and
unmappedReadPairs. These operations allow the service to deal with both paired
and unpaired short reads produced by Illumina sequencers. The partitioning strat-
egy of Section 5.4.3 implemented in the rheos-common package is used to determine
which partition of their respective topics reads end up in. Instead of implementing
our own read mapper from scratch we are making use of a python module called
mappy, which is an interface to the popular read alignment tool minimap2[123], by
Heng Li, which is based on the hashmap approach to alignment discussed in Section
2.2.2. The reason we chose to provide a wrapper rather than a full implementation
is that minimap2 already has an API that supports a read-by-read alignment that
can be adopted for a streaming use case. Additionally, minimap2 is known to be
accurate, fast, and supports mapping of long reads, and other use cases, making it
an attractive framework to work within for read alignment.

Although the Read Mapping Service can map and stream individual reads, this
approach proves quite impractical. In our tests of performance, we observed that
for a single read the cost of serialising the mapped read data to send it over the wire
was nearly 40% of the overall processing time. To reduce the proportion of com-
putational resources used for serialisation/deserialisation we implemented a read
batching strategy based on the reservoir concept, that groups similar reads together
and sends them over the wire as a group. A PartitionedReservoirSet that im-
plements this functionality is shown in Figure 5.36.

Reads are read one-by-one from a FASTQ file. Each read is attempted to be
paired. If no pair exists for the read it is put into an accumulator (a type of
hashmap). If a read completes a read pair, it is popped from the accumulator and
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Figure 5.36: A PartitionedReservoirSet is used to group together similar reads
before streaming them as a mini batch.

the read pair is sent through to alignment by minimap2. Once the read pair is
aligned it is put through the Partitioner to assign a set of PartitionRecords to it.
Each PartitionRecord is further subdivided by genomic interval into a set of bins
that act as reservoirs. The size of the bins is controlled by user supplied parameters
where num_bins specifies how many bins are created per partition, and bin_size
specifies capacity in read pairs. Each Reservoir accumulates read pairs that map
within its genomic region, until reservoir capacity is reached. At that point all of
the read pairs from that reservoir are serialized and emitted from the service as a
single message. The reservoir is then emptied and is ready to accept new elements.
When a whole sample is finished alignment all of the non-empty bins are serialized
and emitted by the service as individual messages. Figure 5.37 shows the classes
and methods of the Read Mapping Service and the PartitionedReservoirSet.

The disadvantages of the mini-batching approach are the decreased initial
throughput (no data is emitted by the service before at least one of the reservoirs
fills up), and increased memory footprint of the Read Mapping Service. The
reservoir approach, however, reduces the proportion of the overall processing time
due to serialisation by over 90%. Additionally, there are benefits to processing the
read data in small batches of closely-mapped reads by downstream services, because
all of the loci that need to be updated by the reads can be fetched into memory
and efficiently processed, and the since the reads map closely together, fewer total
loci are updated by such a batch than by a random collection of reads. In general,
since the usage of the PartitionedReservoirSet can be controlled by the user via
service parameters, there is a good degree of flexibility when it comes to trading off
these performance considerations.
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Figure 5.37: Classes of the ReadMappingService.

Locus Processor Service

The Locus Processor Service is a Rheos service that listens to the stream of mapped
read pairs produced by the Read Streaming Service and updates a set of genomic loci
that the reads overlap with the variant evidence contained in the reads. It then emits
a stream of updated loci that can be further processed by downstream services for
variant calling. Figure 5.38 shows a schematic view of the Locus Processor Service.

Figure 5.38: The Locus Processor Service uses read data to update a set of loci.

The Locus Processor Service is of Local State Aggregator type and implements
the iterative Bayesian inference framework described in Section 5.3.3, namely it
implements the stream operation updateLociFromRead(), Equations 5.10, and Al-
gorithms 6, and 7. The service uses the same Partitioner to decide where to get
data from as is used by the Read Mapping Service.

A single message received by the Locus Processor Service represents a full
bin of mapped read pairs from a single partition of the mapped_read_pairs
kafka topic. BatchyPairedLocusProcessor.process_messages() is the main
processing loop of the service (see Figure 5.39). An in-memory collection of
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Locus objects for the assigned partition, organised in a hashmap by genomic
coordinate is the main holder of state for the service. For each received message,
the BatchyPairedLocusProcessor.process_reads() method is responsible for
processing all of the contained reads. It acts as the implementation of Algorithm 6.

Namely, for each read, the algorithm simultaneously walks the genome reference
and the read CIGAR string looking for matches. Different CIGAR elements
consume the reference, the read, or both. For instance, a deletion consumes
the reference sequence, but not the read. It is the opposite case for an inser-
tion, and a sequence match consumes both. Deletion and insertion CIGAR
elements will in the future be used for indel variant calling, but at the moment
they are simply passed over. When a match CIGAR element is found, the
BatchyPairedLocusProcessor.handle_match() method is called.

Figure 5.39: The Locus Processor Service classes and methods.

This method implements Algorithm 7. For each match the set of Locus objects
overlapping the match are retrieved. The model of each Locus is updated using
Equation 5.10, depending on whether that position in the read matches the ref-
erence. Reads that map to the negative strand are reverse complemented using
BatchyPairedLocusProcessor.reverese_neg_strand_read() and matched from
the end.

For each input message received, all Locus models that have been updated by
reads in this message, and that potentially have variants (determined by Locus.AO
> 0, where AO is the count of alternative allele observations for that locus) are
bundled together and emitted as a single message of updated loci from the Locus
Processor Service.

Locus Saver Service

The Locus Saver Service is a fairly simple service that acts as an aggregating and
persistence mechanism for Locus objects. Rheos uses an open source in-memory
distributed key-value store called Redis[262]. Using this product allows Rheos to
keep a large number of Locus objects in memory for fast retrieval, while offering
options for distributed access and optional disk persistence.
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Figure 5.40: The Locus Saver Service data processing schematic.

The Locus Saver Service receives messages from the snp_loci_batchy kafka topic,
where each message contains a batch of updated Locus objects. The service writes
all of the updated loci to Redis potentially overwriting any existing values.

Variant Calling Service

The Variant Calling Service is not a stream-based service, instead it provides a
querying interface into Rheos via its callV ariants(region, calling_threshold) op-
eration, where the user provides a region of interest and variant quality threshold
and the service creates a VCF file of all called variants in the region that meet the
variant quality criteria.

Figure 5.41: The Variant Calling Service data processing schematic.

This service communicates with the Redis locus store (see Figure 5.41) and re-
trieves all of the loci that match the query region. For each locus it calculates the
posterior genotype probabilities via Equation 5.11. Variants the exceed the user
provided quality threshold will be written to the output VCF file. It is possible to
apply other variant filtering criteria at this stage to improve calling stringency. As
the service requires access to secondary storage it is deployed as a StatefulSet under
Kubernetes.
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Insert Size Filtering Service

The Insert Size Filtering Service is a streaming service of Filter type. It implements
the filterDiscordantPairs() operation in order to obtain a stream of read pairs
that are fit for germline deletion calling as described in Section 5.3.4. The service
initially only accumulates read pairs in order to estimate the insert size distribution.
The default initial sample size for this purpose is 100000 read pairs, but this value
is controlled by the user. Using this sample we estimate the median insert size, and
subsequently the Median Absolute Deviation of the insert size, which acts as our
cutoff for discordantly mapped reads. Once the estimate is obtained we send the
accumulated reads through the rest of the filtering process, followed by any other
new read pairs that are observed in the data stream. Read pairs that pass filtering
are sent to the discordant_read_pairs kafka topic.

Insert Size Clustering Service

The Insert Size Clustering service implements the addReadPair() streaming op-
eration and the callDeletions() querying operation. addReadPair() observes the
discordant_read_pairs data stream and adds any messages that are received into
the internal data structures used for deletion calling.

Figure 5.42: The Insert Size Clusterer class methods.

The reads are stored as both a List for general handling and clustering, as well
as an Interval Tree (see Figure 5.22) - a type of balanced binary search tree useful
for finding interval overlaps. We use an open source implementation of the Interval
Tree from https://github.com/chaimleib/intervaltree.

When callDeletions() is executed the accumulated reads are prepared for process-
ing by finding their center and insert size. The read centers are then clustered using
the KernelDensity object from the sklearn.neighbors Python package (see Fig-
ure 5.23). Peaks of the estimated distribution are found using the argrelextrema()
function from the scipy.signal package. Given the location of a cluster center we
find the set of read pairs that overlap the center via the Interval Tree. Given a
pre-constructed Interval Tree t and a cluster center coordinate center we obtain the
necessary set of intervals by simply calling overlaps = t[rec.center].
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For each set of overlap intervals the deletion size is set to be the maximum com-
mon overlap between the inner sizes of all such intervals (see Figure 5.24). All over-
lapping read pairs whose insert_size > deletion_size + insert_size_threshold
are removed from the list of reads that support the deletion, and if the number of
remaining reads is > min_support_threshold the deletion is called as real.

5.5 Experimental Validation

We focused on two primary use cases in validating the initial implementation of
the Rheos framework. The first is the ability of the framework to accurately per-
form germline SNP calling. The second is the ability of the framework to accurately
perform germline deletion calling. Deployment of the framework onto cloud comput-
ing infrastructure was also tested. Detailed performance testing was not performed
because of the limited scope of the project.

5.5.1 Deployment

The Rheos framework has been deployed onto the academic cloud computing infras-
tructure provided by EMBL/EBI Embassy Cloud, an OpenStack environment with
164 CPUs, 744 GB RAM, and 15 TB of block volume storage. Resources were split
into 12 virtual machines with the following variety of characteristics:

Table 5.14: Rheos deployment infrastructure

Count CPU RAM Ephemeral Disk

1 4 8GB 60GB
4 8 32GB 100GB
6 16 64GB 100GB
1 32 224GB 100GB

One VM with 4 CPU and 8 GB RAM was designated as the Kubernetes master
node, with other small services like the Kubernetes Dashboard and Weave Net-
working Dashboard deployed to it as well. Other VMs were put into the pool of
worker nodes with automated deployment scheduling of Docker containers provided
by Kubernetes. A Weave overlay network was set up between all of the nodes in
the Kubernetes cluster, creating a private subnet for inter-VM and inter-container
communication but inaccessible from the outside.

The following products were set up to support the running of Rheos:

Kafka - A Kubernetes Kafka service was deployed with a redundancy of 3, deploy-
ing 3 brokers on 3 separate nodes, to ensure availability and scalability.

Zookeeper - A Kubernetes Zookeeper service was deployed with a redundancy of
3.
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Redis - A Kubernetes Redis server was set up with 1 master and 1 replication slave.

Prometheus - Prometheus was set up for monitoring with 1 master, and an agent
running on every node.

Grafana - Grafana was set up as a single container for monitoring dashboarding.

Elasticsearch - Elasticsearch was set up as a single server for collection of appli-
cation logs.

Jenkins - Jenkins was set up as a single server for automated deployment and
continuous integration of new builds in the testing environment.

Figure 5.43: Illustration of Docker container inter-connectivity in a Rheos deploy-
ment.

The services of Rheos were deployed into the Kubernetes environment in the
following configuration:

Read Mapping Service - The service was deployed as a set of 2 Kubernetes Pods
on separate nodes with access to a 500TB NFS share for reading sample data,
and a local copy of the human reference genome, preprocessed for use by
minimap2.

Locus Processor Service - The service was deployed as a set of 6 Kubernetes
Pods, each with a local copy of the human reference genomes in FASTA format.

Locus Saver Service - The service was deployed as a set of 2 Kubernetes Pods
on separate nodes.

Variant Caller Service - The service was deployed as a single Kubernetes Pod,
with access to a 500TB NFS share for writing the VCF file.
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Insert Size Filtering Service - The service was deployed as a single Kubernetes
Pod.

Insert Size Clustering Service - The service was deployed as a single Kuber-
netes Pod.

The following Kafka topics were set up for management of in-flight data. A
replication-factor of 1 was used.

Table 5.15: Rheos Kafka topics.

Name Partitions

mapped_readpairs_batchy 168
unmapped_readpairs_batchy 2
mapped_read_pairs_secondary_batchy 10
snp_loci_batchy 2
discordant_read_pairs 1
deletions 1

Figure 5.43 shows the set of Docker containers that were used in the Rheos Ku-
bernetes deployment. In addition to the Kubernetes test environment, local testing
of individual components was performed on a MacBook Pro 2018, with a 6-core 2.9
GHz Intel Core i9 processor, and 32 GB RAM.

5.5.2 Sample Selection and Preparation

To assess the ability of Rheos to perform germline SNP and SV calling we have
selected a well characterised genomic sample from the Genome in a Bottle Consor-
tium[255], namely the NA12878 sample that was first sequenced in the context of
the 1000 Genomes Project, but has subsequently been sequenced by a variety of
orthogonal sequencing technologies to very high levels of coverage and is very well
studied. Choosing this sample allows us to work with data that is known to be of
high quality and one that has a high quality set of published genomics variants to
compare Rheos calls against.

We downloaded the sample RMNISTHS_30xdownsample.bam a 147GB file from
the GIAB FTP repository at [263]. This sample is a high coverage 300x sequencing
run of the Illumina HiSeq 2500 instrument using a 2x148 bp paired end library. The
original data has been mapped to the GRCh37d5 human reference genome using
BWA-MEM, and subsequently to 30x average coverage.

We performed our experiments on Chromosome 20 of the sample, which is a
DNA molecule that is 63025520 nucleotides long. We extracted raw unaligned reads
for Chromosome 20 from the BAM file into a separate FASTQ file. The size of
this FASTQ file is 4.3 GB and it contains 13424120 reads. All of the alignment
information was discarded in the transformation from BAM to FASTQ.
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The GRCh37 human reference genome was obtained from the 1000 Genomes
Project FTP site at [264]. The reference is in FASTA format and is 3GB in size.
It contains the reference sequence for human chromosomes 1-22, X, Y, MT (mito-
chondrial) as well as a set of decoy sequences and unplaced contigs. We use the
entire reference genome because reads that were mapped to Chromosome 20 by
BWA-MEM may be mapped elsewhere by the minimap2 aligner. We pre-process
the reference for use by minimap2 to generate a minimizer index genome.mmi using
default parameters.

5.5.3 Germline SNP Calling

For germline SNP calling we put together a pipeline using Rheos services that takes
a FASTQ sample file, streams the reads, maps them to a reference genome, processes
the variant evidence contained in the reads, save the resulting genomic loci in a data
store, and performs variant calling, outputting a result VCF (see Figure 5.44). We
then compare the results of the VCF output to the output of other well-established
variant callers.

Figure 5.44: The Rheos germline SNP calling pipeline.

In our initial implementation we have actually combined the first two steps, so
that the Read Mapping Service reads a FASTQ file directly from disk, rather than
a stream, and then streams the already mapped reads for further processing. We
use a single instance of the Read Mapping Service for this task invoking it with the
following parameters:

file -i data/giab/RMNISTHS_30xdownsample_chr20.fastq
-r data/reference/genome.mmi
-g 20:1-63025520
-k kafka:9092
–bin_size=10000
–num_bins=100
–check_freq=1000
–log_level=DEBUG
–root_log_level=DEBUG
–logger_type=stream

These parameters indicate that we are processing the entire Chromosome 20 from
a FASTQ file, that we would like to use 100 bins of capacity 10000 read pairs per
partition in the PartitionedReservoirSet, and that we would like to check which
bins are full once every 1000 mapped read pairs. Partition size was left at the default
20000000 bases. Using a single CPU and an allotment of 16GB RAM this process
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took 1 hour and 23 minutes to complete in full, processing 13424120 reads out of
which 245052 reads were unpaired, sending 12482 bins for downstream processing.
Looking at the system resource usage during the execution (see Figure 5.45) we see
that this process appears to be CPU bound, with full utilisation over almost the
entirety of the processing cycle. Memory usage grows initially as more and more
bins accumulate mapped reads, and peaks at 15.5GB as the rate of bin filling is
counteracted by sending off bins that are full. Due to the stateless nature of the
process, the wall time of the mapping process can be sped up arbitrarily by splitting
the input file into chunks and parallelising across CPUs.

Figure 5.45: System resource usage by Read Mapping Service during alignment of
Chromosome 20 of NA12878 form GIAB.

We next investigate the operation of the Locus Processor Service by simultane-
ously executing 4 instances of the service, one for each partition of Chromosome 20,
on the stream data produced by the Read Mapping Service. We invoke the Locus
Processor Service with the following set of parameters:

service
-r data/reference/genome.fa
-g [20:1-20000000 | 20:20000001-40000000 | 20:40000001-60000000 | 20:60000001-
63025520]
-k kafka:9092
–log_level=DEBUG
–root_log_level=DEBUG
–logger_type=stream

Here, each of the service instances has a separate partition and genomic region as-
signed via the -g parameter. This process completed in 29 minutes and 42 seconds
running four instances simultaneously and took 0.452 seconds to process a single
message on average, sending an average of 32908 updated loci for downstream pro-
cessing per message. Consulting the operational metrics collected during the run
(Figure 5.46) we see a fairly stable CPU and memory utilisation profiles, however sig-
nificant use of swap is observed (bottom right panel), indicating that if the amount
of memory per process was increased, performance could be improved.
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Figure 5.46: System resource usage by Locus Processor Service during processing of
Chromosome 20 of NA12878 form GIAB.

We run a single instance of the Locus Saver Service to process locus updates with
the following parameters:

service
-k kafka:9092 -r redis-master -p 6379
–log_level=DEBUG –root_log_level=DEBUG –logger_type=stream

253



CHAPTER 5. THE RHEOS FRAMEWORK

This is a fairly lightweight service and takes 18 minutes and 58 seconds to pro-
cess all of the messages produced by the 4 instances of Locus Processor and save
them to Redis. 961 messages in total are processed, with average processing time
of 0.72 seconds per message. Figure 5.47 shows operational metrics collected from
the service and the Redis server during the execution runtime. As can be seen,
the execution fully utilises the CPU of the service host (likely for serialisation/de-
serialisation of messages). Resources of the Redis server are only mildly utilised
indicating the ability to run several instances of the Locus Saver per instance of Re-
dis. The bottom-left panel shows the impact of automated disk persistence of Redis
in-memory data. This feature can be turned off to obtain higher throughput at the
expense of lower availability, i.e. if Redis crashes data will need to be reprocessed.

Figure 5.47: System resource usage by Locus Saver Service during processing of
Chromosome 20 of NA12878 form GIAB.
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The last component in the processing pipeline is the Variant Calling Service. We
invoke this service with the following parameters:

file
-g 20:1-63025520
-r redis-master -p 6379
–calling_threshold=50
–max_vqual=5000
-t variant_caller_pkg/variant_caller/rheos_vcf_template.vcf
-o data/na12878_20_1_63025520_rheos_latest.vcf
–log_level=DEBUG
–root_log_level=DEBUG
–logger_type=stream

These parameters indicate that we are calling variants on the entirety of Chro-
mosome 20, that we only include variants exceeding variant quality of 50 (i.e. 1 in
10000 variants is estimated to be a false positive), and with a variant quality ceiling
of 5000 (if a variant has vqual >5000 it will be capped at 5000). Running a single
instance of this service took 1 hour and 21 minutes to complete calling on the en-
tire Chromosome 20 of the sample, evaluating 12754171 potential variant sites from
Redis. Figure 5.48 shows steady CPU utilisation and relatively low memory use
by the service (top panels), and steady but low CPU utilisation, but high memory
consumption by Redis (bottom panels), as expected.

Figure 5.48: System resource usage by Variant Caller Service during processing of
Chromosome 20 of NA12878 form GIAB.

Using the procedure above we obtained a germline SNP callset containing 82576
germline variants. We compare the results of our callset to 2 other callsets for the
same sample and genomic region:
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freebayes - To be able to best compare callsets, we took the same FASTQ file that
has been used for the Rheos analysis, and aligned it against the GRCh37 reference
genome using minimap2, producing a SAM file. We then sorted and compressed
that SAM file using samtools, to produce a BAM file that can be used for variant
calling by most tools.

We installed the latest version of freebayes[61] and invoked it with the following
command:

freebayes -r 20 -f reference/genome.fa
giab/RMNISTHS_30xdownsample_chr20_minimap.bam
> tests_latest/original/freebayes_chr20_minimap.vcf

After filtering out indels we were left with a callset with 89704 SNPs.

GATK 4 - To obtain a GATK 4 callset. We installed and built the latest version of
the GATK[40] from github. Utilising the same BAM file as was used for the freebayes
callset, we invoked the GATK HaplotypeCaller with the following command:

java -jar $GATK HaplotypeCaller
-I /data/giab/RMNISTHS_30xdownsample_chr20_minimap.bam
-R /data/reference/genome.fa
-O tests_latest/gatk_chrom20_minimap.vcf
-pairHMM AVX_LOGLESS_CACHING
-L 20

After removing indels we were left with a callset with 77762 SNPs.

We compared the Rheos callset to those produced by freebayes and GATK by
running the Picard[141] tools’ GenotypeConcordance utility, with the command:

java -jar $PICARD GenotypeConcordance
CALL_VCF=tests_latest/original/na12878_20_1_63025520_rheos_latest.vcf
TRUTH_VCF=tests_latest/gatk_chrom20_no_indels.vcf
O=tests_latest/gatk_to_rheos/gatk_to_rheos
TRUTH_SAMPLE=NA12878
CALL_SAMPLE=NA12878

A similar invocation was used for the freebayes to Rheos comparison.

The results were as follows:

While these results are quite good, and Rheos appears to capture the greatest
majority of the signal that other well established tools do on the same data set, it is
illuminative to manually consider a sample of loci where the callers disagree. Figure
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Table 5.16: Sensitivity and specificity of Rheos caller vs freebayes and GATK.

Rheos vs. Sensitivity Specificity

freebayes 0.988701 0.990385
GATK 0.984848 0.991597

5.49 shows three examples where variants called by GATK do not appear in the
Rheos callset.

In panel a) is a variant that is called a heterozygous SNP by GATK at the locus
930480 on Chromosome 20. Out of 14 reads 4 show the alternate allele T and GATK
assigns a variant quality of 64.77. On the Rheos side, the variant was assigned a
variant quality of 46.94, and consequently did not pass the quality threshold cutoff
of 50 that was used when producing the callset. It is difficult to say based on this
data whether this call is likely a true variant or not. Certainly, if a lower stringency
cutoff was used the call would also be part of the Rheos callset.

In panel b) is a variant at position 20:2678084 that is called homozygous variant
by GATK, but in fact, the coverage at this site is only 2 so GATK is making a call
based on very limited information, and the call has a high probability of being a
false positive in the GATK callset. Rheos attaches a probability of 0.62 that the site
is homozygous variant, and 0.32 that the site is heterozygous variant. The overall
variant quality however, is 12 on the account of the low number of observations and
consequently the site does not pass the quality threshold.

In panel c) there are two adjacent SNPs in positions 20:18956622-18956623. The
first of these is called by both variant callers, but the second is only present in the
GATK callset. It is called a heterozygous SNP with 5 out of 19 reads showing the
alternate A allele, and has a variant quality of 97.77. In the Rheos callset the variant
is assigned a quality of 40.0 and does not pass through the quality cutoff. Because
of the lower fraction of alternate allele observations than would be expected, it is
possible that the site actually represents a somatic variant that is only present in
the subset of the sample’s cells.

A unifying theme of all of the false negative calls is that even though they are
detected by Rheos, they end up below the quality threshold of 50 (one false variant
in 100000). Using a less stringent filter will certainly increase sensitivity of the
callset, although an approach for controlling the resultant increase in false positives
is also required.

Figure 5.50 shows several examples of false positive calls, those that are detected
as variant by Rheos but are not called by GATK.

In panel a) we see a locus at 20:813667-813669 that is called as 3 adjacent SNPs
by Rheos, whereas in GATK it is called a SNP adjacent to a complex variant. It is
indeed probably a complex variant that extends to all 3 adjacent nucleotides, and
there is evidence of both the presence of SNPs, as well as a small deletion at that
locus. Since Rheos has no concept of indels or complex variants, these sites naturally
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Figure 5.49: Three examples of false negative calls by Rheos, compared to GATK.
a) Site with few, but high quality alternate allele observations. b) Site with very
low coverage. c) Site of two adjacent SNPs, one of which has low variant quality.

end up as false positive SNP calls.

In panel b) we see a locus at 20:2487891 that is called a heterozygous SNP by
Rheos but is not present in the GATK callset. Rheos calls this site variant because
there is a relatively large number (10/24) of alternate allele observations, although
they are mostly of relatively low base quality (9 our of 10 reads have base quality
between 6 and 8, implying probability of error between 15-25% for each). Addition-
ally, all of the alternative allele observations fall on reads that map to the negative
strand. This type of strand bias is a strong indicator of a false positive signal and
is often used by variant filtering software to filter out false positives.
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In panel c) we see a locus at 20:11298489 that is called homozygous variant in
the Rheos callset, but is actually included as part of the neighbouring deletion by
GATK. Indeed, this region is called differently by all three callers. GATK calls a
5bp indel at 11298472-11298476, followed by an 8bp indel at 11298482-11298489.
Freebayes calls a 13bp indel 11298472-11298484, followed by a homozygous SNP at
11298489. And Rheos calls a bunch of SNPs inside the indel, since it presently has
no concept of indels, followed by a homozygous SNP at 11298489.

Two major sources of false positive signals are apparent for Rheos from this testing,
areas around indels, and loci with many low quality bases. Both of these warrant
further work to improve.

Figure 5.50: Three examples of false positive calls by Rheos, compared to GATK.
a) Site of a complex variant. b) Site with many low quality bases. c) Site of a SNP
adjacent to an indel.
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Our testing of Germline SNP Calling with Rheos shows that this framework is
capable of deploying scalably onto an academic cloud computing infrastructure and
producing accurate results that are compatible with callsets produced by leading
variant callers, while doing so in a streamlined, online manner that is not accessible
to these other tools.

5.5.4 Germline Deletion Calling

For germline deletion calling we are interested in collecting discordantly mapped
read pairs and performing clustering, and variant calling as described in Section
5.3.4. We put together a Rheos pipeline shown in Figure 5.51. We use the same run
of the Read Mapping Service as was used for germline SNP calling, but consume
all of the reads from all mapped read partitions by the same single instance of the
Insert Size Filtering Service.

Figure 5.51: Rheos SV calling pipeline.

We use the following settings for the Insert Size Filtering Service - accumulate
100000 read pairs for insert size estimation, keep read pairs with insert size > 5
* MAD (Median Absolute Deviation), that are both mapped, that map to the
same contig, and that both have mapping quality >= 30. These settings result in
2663 read pairs passing through the Insert Size Filtering Service to the Insert Size
Clustering Service. The total runtime was 4 minutes 32 seconds to process 13069
messages from 168 data partitions.

We use a single instance of the Insert Size Clustering Service applying the following
settings - min_read_support = 2, insert_size_threshold = 500, indicating that
we only want deletions that are supported by at least two discordant reads, and
that we want to remove from a deletion’s list of supporting reads, those that have
insert_size > deletion_width + 500. We apply KDE clustering with a gaussian
kernel, setting bandiwdth = 100. The runtime of the clustering and deletion calling
was 17 seconds. Results of the clustering can be seen in Figure 5.23.

The initial calling produced a set of 36 putative deletions. Looking at the read
pairs that support these deletions we observed that a deletion was supported, on
average by 121 read pairs. This is a very high number given that the total number
of read pairs considered is 2663. This observation has led to the consideration of
whether there is a significant number of potentially spurious read pairs with very
long insert sizes that overlap many deletions, but do not actually contribute to the
signal. We investigated the distribution of insert size widths in the data set, with
results visible in Figure 5.52. It is evident that even though the majority of insert
sizes are relatively small - < e10, there are over a hundred read pairs with insert size
> e14.
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Figure 5.52: A histogram of discordant read pair insert sizes on the log-log scale.
X-axis is log(insert_size), Y-axis is log(count).

We would like to investigate whether the large insert-size read pairs contribute
significantly to signal identified by one-dimensional KDE, and indeed, whether they
may cluster by themselves. To assess this, we introduce a second dimension of insert
size to the original clustering, and perform a second round of KDE clustering in two
dimensions, where each point was now of the form (center, width). The results can
be seen in Figure 5.53. Here, the horizontal dimensions are insert size center and
width, and the vertical dimension is density. We can see that most of the density
still falls in the area of low width and along centre coordinate. We thus, believe
that the very long insert sizes are not significant contributors to the detection of
deletions that they overlap, and may be removed from the list of reads supporting
those deletions. Indeed, when we remove these read pairs from our data set entirely
and repeat the clustering, the results recapitulate those produced with the original
data set, and only one fewer deletions is called. We thus introduce a width-based
cutoff for reads supporting a deletion and set it to deletion_width + 500, where
all read pairs that have insert size greater than this cutoff are removed from the
list of supporting reads. This results in a much more sensible average number of
supporting reads per deletion, namely 9. We retain those deletions for our final
callset that are supported by at least 2 read pairs, leaving 29 deletions in the final
callset.

We compare the results of this method with two other data sets. One is a set of
structural variant calls produced by the GIAB consortium. We downloaded the file
Personalis_1000_Genomes_deduplicated_deletions from the NIH FTP site[265].
We then used the software package bedtools[266] to filter the data set to only include
deletions on Chromosome 20 and those exceeding 500bp in length. The length
trimming is necessary because the insert size based method of Rheos is limited to
detecting deletions that are approximately equal to the MAD ∗mad_threshold in
size. MAD is 131.95 in our data set and mad_threshold is 5. We take the cutoff at
500 since slightly smaller deletions can be detected, due to the overlap of multiple
read pairs. This results in a callset of 26 deletions.
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Figure 5.53: 2-D KDE estimate of insert size center and width, using a gaussian
kernel with bandwidth 100.

The other comparison data set is produced by calling variants with Delly[167].
We produce the callset by invoking Delly with the following command:

delly call -n -q 30 -s 5
-g reference/genome.fa giab/RMNISTHS_30xdownsample_chr20.bam
-o tests_latest/delly_chrom20_dels.vcf

The flags supplied to Delly have been selected to mimic the cutoffs used for the
Rheos caller. We then trim the callset to only include deletions that are not flagged
as LowQuality, and that are greater than 500 bp in length. This results in a callset
of 25 deletions.

Figure 5.54: Venn diagram depicting overlap between the Rheos (red), Delly (blue),
and GIAB (green) deletion callsets on Chromosome 20 of NA12878.
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We used bedtools to compare the 3 callsets and produce the diagram of Figure
5.54 that shows the overlap between them. 83% of the deletions called by Rheos are
called in at least one of the other two callsets. This is a pretty satisfactory result as
the Rheos callset only makes use of discordantly mapped reads at this time, while
the other two callsets have been produced with methods that take advantage of
split-reads and read depth analysis.

Figure 5.55: Visualisation of the genomic regions that were called deletions by Rheos
but not by other callers.

To assess the shortcomings of the Rheos deletion calling method we take a look
at a sample of the deletions that are called by Rheos and not by other tools, and
also those that are called by other tools but not by Rheos. Figure 5.55 shows the
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5 deletion calls that were called only by Rheos. Out of these five calls, three (a),
b), and e)) look like real deletions when the region is viewed with IGV. There is a
clear depletion of reads in these regions compared to the surrounding regions and
there are several discordantly mapped read pairs that overlay each region (3 each
for deletions a), b), and c)). The region in panel b) is difficult to make calls in,
because of the large number of low quality reads, with large portions clipped out of
the alignment and the call is only supported by two read pairs so this can easily be
a false positive. The region in d) is hard to judge, but can also be a false positive.

Figure 5.56: Visualisation of the genomic regions that were called deletions by both
GIAB and Delly but not Rheos (a) and b)), GIAB but not Rheos or Delly (c)),
Delly but not GIAB or Rheos (d)).
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In Figure 5.56 we show several examples of deletion calls that were not part of
Rheos’ callset but were called by other tool. The deletions in panels a) and b)
were part of the GIAB callset and part of the Delly callset. These look like very well
defined deletions with a clear dropoff in read coverage, as well as split-reads flanking
the deletion site. Since Rheos is currently not using read depth or split-reads, it was
not able to make these calls. When looking at the deletion call in panel c) is not
readily apparent that this is a deletion. Even though there are some split-reads at
the flank, there is no dropoff in coverage. It may be that this is a false positive
call in the GIAB callset. The deletion in panel d) was called by Delly, but is not
in GIAB and was not called by Rheos. This region is difficult to judge by sight.
There is clearly a small homozygous deletion in the left portion of the image, but
the Delly deletion call spans the entire visible region. There is a clear difference in
read depth visible, but only on one side of the region, the read depth towards the
left is relatively constant. The only true variant in this region is likely the small
deletion, but since it is too small for Delly to call, it is probably extending the call
towards the right, thus creating a false variant.

Based on the manual inspection of called regions that we performed, it appears
that the true sensitivity and specificity of the Rheos deletion calling method would
be underestimated by a direct comparison with the two other callsets, because they
miss some calls that appear to be true, and because they make some calls that appear
to be false. Overall, the currently implemented method of germline deletion calling
in Rheos appears to be accurate, but will certainly benefit from the additional signal
sources like split-reads and read depth that other tools make use of.

In our experimental validation work we were successfully able to deploy Rheos
on cloud computing infrastructure using Google Kubernetes. We executed several
real end-to-end variant calling use cases using a data set of 4.7 GB in size. We
successfully compared the results to the data produced by other well established
variant callers and found them to be accurate. Future enhancements of the Rheos
framework will surely improve both the scalability of the framework, as well as the
accuracy of the callsets that it produces.
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Chapter 6

Discussion and Conclusion

6.1 Butler Framework

We have deployed Butler in a production setting at the EMBL/EBI’s Embassy
Cloud in a configuration that utilises 1500 CPUs, 6 TB RAM, 1 PB of Isilon storage
accessed over NFS, and 40 TB of block-storage. Furthermore, we have built a series
of workflows that facilitate the large-scale cancer genomics analyses carried out by
the Germline Working Group of the Pan Cancer Analysis of Whole Genomes project,
including:

• Germline SNV discovery

• Germline SNV joint-genotyping

• Germline SV genotyping

• Variant Filtration

• Sample submission

Using these workflows we have performed a number of analyses on a 725TB data
set of 2834 cancer patients’ DNA samples consuming a total of 546,552 CPU hours.
Each analysis took no longer than two weeks to complete and utilised only 1.5% -
2.2% of the overall compute capacity for management overhead. On several occasions
we were able detect large scale cluster instability and program crashes utilising the
Operational Management system and take corrective action with a minimal impact
on overall cluster productivity.

We applied Butler in the context of the European Open Science Cloud pilot where
Butler was selected as the Life Sciences demonstrator project. We deployed Butler
to two additional cloud computing environments - Computer Canada, in Vancouver,
and Cyfronet in Poland. The Compute Canada environment had 1000 cores, 4TB
RAM, and 1PB disk. The Cyfronet environment had 700 cores, 2.5 TB RAM, and
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200TB disk. We deployed a genomic data set of approximately 60TB of data to
each of the environments and used Butler to perform a coordinated analysis on this
data. The project successfully concluded in 2018. Our manuscript describing Butler
is in press at Nature Biotechnology[45].

Butler has been created to facilitate scientific analyses at scale and we have demon-
strated that it is able to successfully perform at the level required for today’s big
data initiatives in the genomics domain. There are projects on the horizon, however,
that are up to 3 orders of magnitude larger than the current biggest projects. such
as the US All of Us[267] (with up to 1,000,000 genomes), and ICGC Argo. This
means that in order to not have to proportionately increase the timeline for theses
projects the computational infrastructure will have to be scaled up instead. It is thus
imperative for Butler’s continued relevance to be able to ascertain the framework’s
performance level at several orders of magnitude larger than the current 1500 core
empirically obtained result. The most immediate opportunity to do so will come
up in 2019 when the EMBL/EBI’s Embassy Cloud will be upgraded to 5000 CPU
cores and Butler has been invited to take part in the stress-testing of the upgraded
cloud.

It is important to grow the library of workflows that are readily available for the
Butler system to make the framework more appealing to new users. The Technical
Working Group of the PCAWG project is in the process of migrating all of the
main computational pipelines that have been used in the project into Docker[200]
containers. Although the workflows that have been developed for the Germline
Working Group have not yet been ported to Docker, Airflow, the workflow system
underlying Butler has support for running Docker containers. Thus, a key next
step for growing the library of Butler workflows lies in the adaptation of the core
PCAWG workflows to be able to easily run them on a Butler instance. This would
allow Butler to offer a comprehensive set of next generation sequencing workflows
that are used for cancer genomics analysis.

Deploying Butler to a larger variety of environments will confirm the multi-cloud
purpose of the framework and allow for the development of a richer set of con-
figuration and provisioning profiles, as necessitated by the differences between de-
ployment environments. On the basis of the already completed analyses for the
PCAWG Germline Working Group, and the EOSC Pilot project, the Butler frame-
work has also been selected to help deliver the EuCanCan project, an international
alliance between Europe and Canada to develop best-practices pipelines for clinical
sequencing data analysis.

Thus, over the course of the next 12-24 months the focus of Butler development
will be on supporting improved scalability, developing a richer set of computational
pipelines and operating in a number of new cloud computing environments. These
steps should result in a more robust, feature rich, and useful tool.
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6.2 Rheos Framework

When considering the need for developing Rheos we were guided by our experience
running existing bioinformatics algorithms at scale. The difficulties experienced dur-
ing projects such as PCAWG demonstrate the need for a suite of genome analysis
algorithms that are better suited to large scale computation that the current gener-
ation of tools. One hallmark of large distributed systems is that not all competing
constraints can be ideally satisfied in such a system and tradeoffs are necessary
to attain a satisfactory level of performance. In the case of genomic analysis the
tradeoff is between analysis cost, time, and quality.

We designed Rheos as a flexible service oriented architecture that relies on data
streaming and allows the user to trade off competing constraints in a dynamic fash-
ion based on the data that is being observed, rather than a priori as current file-based
batch processing systems. We developed the general definition of a stream-based
operation and described several classes of such operations that may exist in a dis-
tributed system, along with their unique characteristics. We then applied this gen-
eral framework to the specific domain of genomic variant calling. We defined a set
of data types that are of interest in the context of genomic variant calling and then
mapped them to a set of services that would be able to progressively elaborate se-
quencing read data to produce these data types as more and more data is observed.
These services include:

Read QC - Services for calculating a series of quality measures such as average
base quality, GC content, and nucleotide distribution, on a stream of reads.

Read Mapping - Service for performing various read alignment operations with
individual reads and read pairs, split-read alignment and alignment of candi-
date haplotypes to a reference genome.

Germline SNP Calling - Services for detecting single nucleotide variants in a
human genome.

SV Calling - Services for calling structural variants in a human genome.

We devised new online algorithms for variant calling that are mathematically
equivalent to their batch-processing counterparts in well established variant calling
software. Unlike the batch algorithms, these iterative versions can be used to pro-
duce a callset at any point in time before all of the data is observed. This greatly
facilitates the active tradeoff between cost, time and quality that is desired.

We followed up the design of Rheos with a limited first implementation of a set of
services necessary for performing germline SNP and deletion calling from a collection
of raw reads. As part of the implementation we put in place a number of performance
optimisations, including building a PartitionedReservoirSet - a strategy for collecting
micro-batches of reads that map closely together and sending them downstream in
a single message. This strategy allowed us to enjoy some of the benefits of batching
without giving up the dynamic nature of stream-based processing. We implemented
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a novel method for germline deletion calling from discordantly mapped reads by
employing Kernel Density Estimation. The implementation of Rheos relies heavily
on a number of open source packages, including Kafka for message queueing and
Docker and Kubernetes for deployment. Using these products we were able to design
the entire system as a set of Docker containers, and flexibly deploy them to the cloud
into a Kubernetes managed cluster, letting us benefit from its automated resource
management capabilities.

We evaluated the accuracy of the callsets produced by Rheos by comparing Rheos
callsets made on chromosome 20 of the NA12878 samples from the Genome In a
Bottle Consortium to callsets generated by well established variant callers such as the
GATK, freebayes, and Delly, as well as comparing them to a high-confidence callset
generated from multiple callers by the GIAB consortium. We found germline SNP
calling to be 98% accurate compared to freebayes and GATK, and germline deletion
calling to be 80% accurate compared to Delly and the GIAB call-set. Manual
investigation of a sampling of false-positive and false-negative calls made by Rheos
showed that true accuracy is probably underestimated by these figures as several of
the calls made by Rheos but not other tools appeared to be legitimate, and several of
the calls made by other tools but not Rheos appeared to be spurious. Nevertheless,
there are clear opportunities for improving upon the initial implementation of the
framework presented in this thesis.

A key feature of most leading variant callers is their ability to use local assembly
of small genomic neighbourhoods in order to produce a set of alternative haplotypes,
that are then evaluated based on the read support for each such haplotype to select
the best one. This method produces better results than the simpler single-locus
model used by the initial Rheos implementation and tools such as samtools because
it models a region of the underlying DNA molecule that is being sequenced, and
allows a more natural representation of small variants such as indels. It will be
clearly desirable to incorporate local assembly into the Rheos variant calling process,
although this will require significant work, as no current approaches exist for iterative
genome assembly and new algorithms will need to be devised to accomplish this.
Another key enhancement would be the support for more structural variant types
than just deletions, and more sources of signal for structural variant calling than
just insert sizes.

A key consideration that has been left relatively unexplored in this thesis is Rheos’
ability to produce a callset earlier than other tools by only considering a subset of
the data. At any given point in time we would like to be able to describe the degree
of confidence in each variant call that is being made, and estimate the probability
that this variant call might change when new data is observed. If at some point we
are able to produce high-confidence calls that have a low probability of changing, we
may elect to stop seeing more data for those calls, thus reducing cost, and improving
analysis time, while still meeting our quality targets.

From a technical standpoint, we want to continue testing of Rheos’ scalability
on large compute clusters and with larger data sets. Since the current results have
been obtained from a single sample, there is still a lot of work left to do to convince
the bioinformatics community that the Rheos approach will be viable for many
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thousands of genomes. Rheos services have been designed with scalability in mind,
and for many, scaling is as easy as adding more servers to a pool. Those services
that are stateful (such as the Locus Processor Service), are however inherently not
horizontally scalable, and continued effort will be required to make sure that these
services do not become the system bottleneck in the future.

Although Illumina sequencing technology is the clear current market leader for
producing genomic data, new long read technologies from companies like Oxford
Nanopore Technologies are finding increasing use, despite their high error rate[268].
These technologies are producing single reads that are many thousands of bases long.
These reads dramatically increase scientists’ ability to resolve structural variation
within the genome[269], as well as aiding in the assembly of low complexity genomic
regions, that have long evaded groups that build reference genomes[270]. These
technologies stand to benefit significantly from the application of Rheos’ streaming
real-time analysis because it is possible to analyse a long read in real-time as it
is being produced by the sequencer, and selectively prioritise the sequencing of
molecules that exhibit characteristics that are of interest to researchers. For instance,
when they align to a particular region of interest, or when they match a particular
species among many possible candidate.

This work has successfully established the theoretical and experimental basis for
the Rheos framework as an attractive and promising approach to large-scale analysis
of genomic data that can be used to produce high quality scientific results today. At
the same time, it opens up a rich set of new opportunities for future research at the
intersection of genomic analysis for precision medicine and large-scale distributed
systems.
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Code Listings

Listing 14: Terraform configuration of a worker VM

1 provider "openstack" {
2 user_name = "${var.user_name}"
3 password = "${var.password}"
4 tenant_name = "${var.tenant_name}"
5 auth_url = "${var.auth_url}"
6 }
7

8 resource "openstack_compute_instance_v2" "worker" {
9 image_id = "${var.image_id}"

10 flavor_name = "s1.massive"
11 security_groups = ["internal"]
12 name = "${concat("worker-", count.index)}"
13 network = {
14 uuid = "${var.main_network_id}"
15 }
16 connection {
17 user = "${var.user}"
18 key_file = "${var.key_file}"
19 bastion_key_file = "${var.bastion_key_file}"
20 bastion_host = "${var.bastion_host}"
21 bastion_user = "${var.bastion_user}"
22 agent = "true"
23

24 }
25 count = "175"
26 key_pair = "${var.key_pair}"
27 provisioner "remote-exec" {
28 inline = [
29 "sudo mv /home/centos/saltstack.repo

/etc/yum.repos.d/saltstack.repo",↪→

30 "sudo yum install salt-minion -y",
31 "sudo service salt-minion stop",
32 "echo 'master: ${var.salt_master_ip}' | sudo tee -a

/etc/salt/minion",↪→

33 "echo 'id: ${concat("worker-", count.index)}' | sudo tee
-a /etc/salt/minion",↪→
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34 "echo 'roles: [worker, germline, consul-client]' | sudo
tee -a /etc/salt/grains",↪→

35 "sudo hostname ${concat("worker-", count.index)}",
36 "sudo service salt-minion start"
37 ]
38 }
39 }

Listing 15: Terraform configuration of a security group

1 resource "openstack_compute_secgroup_v2" "internal" {
2 name = "internal"
3 description = "Allows communication between instances"
4 #SSH
5 rule {
6 from_port = 22
7 to_port = 22
8 ip_protocol = "tcp"
9 self = "true"

10 }
11 #Saltstack
12 rule {
13 from_port = 4505
14 to_port = 4506
15 ip_protocol = "tcp"
16 self = "true"
17 }
18 }

Listing 16: Salt Pillar for specifying test data location.

1 test_data_sample_path: /shared/data/samples
2

3 test_data_base_url: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
4

5 test_samples:
6 NA12874:
7 -
8 - NA12874.chrom11.ILLUMINA.bwa.CEU.low_coverage.20130415.bam
9 - 88a7a346f0db1d3c14e0a300523d0243

10 -
11 - NA12874.chrom11.ILLUMINA.bwa.CEU.low_coverage.20130415.bam.bai
12 - e61c0668bbaacdea2c66833f9e312bbb

Listing 17: Using Salt Mine to look up a server’s IP Address.
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1 consul-client:
2 service.running:
3 - enable: True
4 - watch:
5 - file: /etc/opt/consul.d/*
6 {%- set servers = salt['mine.get']('roles:(consul-server|consul-bootstrap)',

'network.ip_addrs', 'grain_pcre').values() %}↪→

7 {%- set node_ip = salt['grains.get']('ip4_interfaces')['eth0'] %}
8 # Create a list of servers that can be used to join the cluster
9 {%- set join_server = [] %}

10 {%- for server in servers if server[0] != node_ip %}
11 {% do join_server.append(server[0]) %}
12 {%- endfor %}
13 join-cluster:
14 cmd.run:
15 - name: consul join {{ join_server[0] }}
16 - watch:
17 - service: consul-client

Listing 18: Using Top File to map States to Roles.

1 base:
2 '*':
3 - consul
4 - dnsmasq
5 - collectd
6 'G@roles:monitoring-server':
7 - influxdb
8 - grafana
9 'G@roles:job-queue':

10 - rabbitmq

Listing 19: Collectd configuration for metrics collection.

1 # Read metrics about cpu usage
2 [[inputs.cpu]]
3 ## Whether to report per-cpu stats or not
4 percpu = true
5 ## Whether to report total system cpu stats or not
6 totalcpu = true
7 ## If true, collect raw CPU time metrics.
8 collect_cpu_time = false
9 ## If true, compute and report the sum of all non-idle CPU states.

10 report_active = false
11
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12

13 # Read metrics about disk usage by mount point
14 [[inputs.disk]]
15 ## By default, telegraf gather stats for all mountpoints.
16 ## Setting mountpoints will restrict the stats to the specified mountpoints.
17 # mount_points = ["/"]
18

19 ## Ignore some mountpoints by filesystem type. For example (dev)tmpfs (usually
20 ## present on /run, /var/run, /dev/shm or /dev).
21 ignore_fs = ["tmpfs", "devtmpfs", "devfs"]
22

23

24 # Read metrics about disk IO by device
25 [[inputs.diskio]]
26 ## By default, telegraf will gather stats for all devices including
27 ## disk partitions.
28 ## Setting devices will restrict the stats to the specified devices.
29 # devices = ["sda", "sdb"]
30 ## Uncomment the following line if you need disk serial numbers.
31 # skip_serial_number = false
32 #
33 ## On systems which support it, device metadata can be added in the form of
34 ## tags.
35 ## Currently only Linux is supported via udev properties. You can view
36 ## available properties for a device by running:
37 ## 'udevadm info -q property -n /dev/sda'
38 # device_tags = ["ID_FS_TYPE", "ID_FS_USAGE"]
39 #
40 ## Using the same metadata source as device_tags, you can also customize the
41 ## name of the device via templates.
42 ## The 'name_templates' parameter is a list of templates to try and apply to
43 ## the device. The template may contain variables in the form of '$PROPERTY' or
44 ## '${PROPERTY}'. The first template which does not contain any variables not
45 ## present for the device is used as the device name tag.
46 ## The typical use case is for LVM volumes, to get the VG/LV name instead of
47 ## the near-meaningless DM-0 name.
48 # name_templates = ["$ID_FS_LABEL","$DM_VG_NAME/$DM_LV_NAME"]
49

50

51 # Get kernel statistics from /proc/stat
52 [[inputs.kernel]]
53 # no configuration
54

55

56 # Read metrics about memory usage
57 [[inputs.mem]]
58 # no configuration
59
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60

61 # Get the number of processes and group them by status
62 [[inputs.processes]]
63 # no configuration
64

65

66 # Read metrics about swap memory usage
67 [[inputs.swap]]
68 # no configuration
69

70

71 # Read metrics about system load & uptime
72 [[inputs.system]]
73 # no configuration

Listing 20: Filebeat Prospector configuration.

1 filebeat:
2 # List of prospectors to fetch data.
3 prospectors:
4 -
5 paths:
6 - /var/log/airflow/*/*
7 document_type: airflow
8 -
9 paths:

10 - /var/log/messages
11 document_type: syslog
12 -
13 paths:
14 - /var/lib/pgsql/9.4/data/pg_log/*.log
15 document_type: postgres
16 -
17 paths:
18 - /var/log/*.log

Listing 21: TICKscript for alerting on CPU value.

1 // Parameters
2 var info = 70
3 var warn = 80
4 var crit = 90
5 var infoSig = 2.5
6 var warnSig = 3
7 var critSig = 3.5
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8 var period = 10s
9 var every = 10s

10

11 // Dataframe
12 var data = stream
13 |from()
14 .database('metrics')
15 .retentionPolicy('default')
16 .measurement('cpu_value')
17 .where(lambda: "type" == 'percent' AND "type_instance" == 'idle')
18 |eval(lambda: 100 - "value")
19 .as('used')
20 |window()
21 .period(period)
22 .every(every)
23 |mean('used')
24 .as('stat')
25

26 // Thresholds
27 var alert = data
28 |eval(lambda: sigma("stat"))
29 .as('sigma')
30 .keep()
31 |alert()
32 .id('{{ index .Tags "host"}}/cpu_value')
33 .message('{{ .ID }}:{{ index .Fields "stat" }}')
34 .info(lambda: "stat" > info OR "sigma" > infoSig)
35 .warn(lambda: "stat" > warn OR "sigma" > warnSig)
36 .crit(lambda: "stat" > crit OR "sigma" > critSig)
37

38 // Alert
39 alert
40 .log('/tmp/cpu_alert_log_2.txt')

Listing 22: TICKscript for handling dead VMs.

1 {% raw %}
2 var db = 'telegraf'
3 var rp = 'autogen'
4 var measurement = 'system'
5 var groupBy = ['host']
6 var whereFilter = lambda: TRUE
7 var period = 30s
8 var name = 'Host Deadman'
9 var idVar = name + ':{{.Group}}'

10 var blah = '{{index .Tags "host"}}'
11 var message = 'The host {{index .Tags "host"}} is offline as of {{.Time}}.'
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12 var messageN = 'The host {{index .Tags "host"}} is back online at {{.Time}}.'
13 var idTag = 'alertID'
14 var levelTag = 'level'
15 var messageField = 'message'
16 var durationField = 'duration'
17 var outputDB = 'chronograf'
18 var outputRP = 'autogen'
19 var outputMeasurement = 'alerts'
20 var triggerType = 'deadman'
21 var threshold = 0.0
22 var data = stream
23 |from()
24 .database(db)
25 .retentionPolicy(rp)
26 .measurement(measurement)
27 .groupBy(groupBy)
28 .where(whereFilter)
29

30 var trigger = data
31 |deadman(threshold, period)
32 .stateChangesOnly()
33 .message('{{ if eq .Level "CRITICAL" }}' + message + '{{else}}' +

messageN + '{{end}}')↪→

34 .id(idVar)
35 .idTag(idTag)
36 .levelTag(levelTag)
37 .messageField(messageField)
38 .durationField(durationField)
39 .slack()
40 .channel('#embassyalerts')
41 {% endraw %}
42 .exec('butler_healing_agent', 'relaunch-worker', '-t', '{{

pillar['terraform_files'] }}', '-s', '{{ pillar['terraform_state']
}}', '-v', '{{ pillar['terraform_vars'] }}', '-p', '{{
pillar['terraform_provider'] }}')

↪→

↪→

↪→

43 {% raw %}
44 trigger
45 |eval(lambda: "emitted")
46 .as('value')
47 .keep('value', messageField, durationField)
48 |influxDBOut()
49 .create()
50 .database(outputDB)
51 .retentionPolicy(outputRP)
52 .measurement(outputMeasurement)
53 .tag('alertName', name)
54 .tag('triggerType', triggerType)
55
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56 trigger
57 |httpOut('output')
58 {% endraw %}

Listing 23: Butler healing agent code for restarting the Airflow Scheduler.

1 def call_command(command, cwd=None):
2 try:
3 logging.debug("About to invoke command: " + command)
4 my_output = check_output(command, shell=True, cwd=cwd, stderr=STDOUT)
5 logging.debug("Command output is: " + my_output)
6 return my_output
7 except CalledProcessError as e:
8 logging.error("An error occurred! Command output is: " +

e.output.decode("utf-8") )↪→

9 raise
10

11 def is_critical(level):
12 return level == "CRITICAL"
13

14 def parse_alert_data():
15 return json.loads(sys.stdin.read())
16

17 def get_host_name(alert_data):
18 return alert_data["data"]["series"][0]["tags"]["host"]
19

20 def restart_service(host, service_name):
21 call_command("pepper {} service.restart {}".format(host, service_name), None)
22

23 def parse_args():
24 my_parser = argparse.ArgumentParser()
25

26 sub_parsers = my_parser.add_subparsers()
27

28 common_args_parser = argparse.ArgumentParser(
29 add_help=False, conflict_handler='resolve')
30

31 restart_airflow_scheduler_parser = sub_parsers.add_parser(
32 "restart-airflow-scheduler", parents=[common_args_parser],

conflict_handler='resolve')↪→

33

restart_airflow_scheduler_parser.set_defaults(func=restart_airflow_scheduler_command)↪→

34

35 def restart_airflow_scheduler_command(args, alert_data):
36 if is_critical(alert_data["level"]):
37 restart_service("-G 'roles:tracker'", "airflow-scheduler")
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Listing 24: Butler healing agent code for relaunching a failed VM.

1 def call_command(command, cwd=None):
2 try:
3 logging.debug("About to invoke command: " + command)
4 my_output = check_output(command, shell=True, cwd=cwd, stderr=STDOUT)
5 logging.debug("Command output is: " + my_output)
6 return my_output
7 except CalledProcessError as e:
8 logging.error("An error occurred! Command output is: " +

e.output.decode("utf-8") )↪→

9 raise
10

11 def is_critical(level):
12 return level == "CRITICAL"
13

14 def parse_alert_data():
15 return json.loads(sys.stdin.read())
16

17 def get_host_name(alert_data):
18 return alert_data["data"]["series"][0]["tags"]["host"]
19

20 def restart_service(host, service_name):
21 call_command("pepper {} service.restart {}".format(host, service_name), None)
22

23 def parse_args():
24 my_parser = argparse.ArgumentParser()
25

26 sub_parsers = my_parser.add_subparsers()
27

28 common_args_parser = argparse.ArgumentParser(
29 add_help=False, conflict_handler='resolve')
30

31 relaunch_worker_parser = sub_parsers.add_parser(
32 "relaunch-worker", parents=[common_args_parser],

conflict_handler='resolve')↪→

33 relaunch_worker_parser.add_argument(
34 "-t", "--terraform_location", help="Location of the terraform definition

files.",↪→

35 dest="terraform_location", required=True)
36 relaunch_worker_parser.add_argument(
37 "-s", "--terraform_state_location", help="Location of the terraform state

file.",↪→

38 dest="terraform_state_location", required=True)
39 relaunch_worker_parser.add_argument(
40 "-v", "--terraform_var_file_location", help="Location of the terraform vars

file.",↪→
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41 dest="terraform_var_file_location", required=True)
42 relaunch_worker_parser.add_argument(
43 "-p", "--terraform_provider", help="The terraform provider to use.",
44 choices = provider_list,
45 dest="terraform_provider", required=True)
46 relaunch_worker_parser.set_defaults(func=relaunch_worker_command)
47

48 def is_key_present(key_data, host_name):
49 parsed_key_data = json.loads(key_data)
50 return_data = parsed_key_data["return"][0]["data"]["return"]
51

52 if "minions" in return_data:
53 return_vals = return_data["minions"]
54 for val in return_vals:
55 if val == host_name:
56 return True
57

58 return False
59

60 def locate_minon_key(host_name):
61 minion_connect_try = 1
62 while minion_connect_try <= MINION_CONNECT_MAX_RETRIES:
63 logging.info("Attempt #{} of {} to retrieve minion key for host {} from the

master.".format(minion_connect_try, MINION_CONNECT_MAX_RETRIES,
host_name))

↪→

↪→

64 key_data = call_command("pepper --client=wheel key.name_match
match={}".format(host_name))↪→

65 logging.debug("Retrieved key data: " + key_data)
66 if is_key_present(key_data, host_name):
67 return True
68 else:
69 logging.debug("Key data for host {} not found at time {}. Sleeping for

{} seconds.".format(host_name, datetime.now(),
MINION_CONNECT_SLEEP_PERIOD))

↪→

↪→

70 time.sleep(MINION_CONNECT_SLEEP_PERIOD)
71 minion_connect_try = minion_connect_try + 1
72

73 return False
74

75 def relaunch_worker_command(args, alert_data):
76 if is_critical(alert_data["level"]):
77 host_name = get_host_name(alert_data)
78

79

80 tf_location = args.terraform_location
81 tf_state_location = args.terraform_state_location
82 tf_var_file_location = args.terraform_var_file_location
83 tf_resource = provider_resource_lookup[args.terraform_provider]
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84 worker_number = host_name.split("-")[1]
85

86 call_command("pepper --client=wheel key.delete match={}".format(host_name))
87 call_command("terraform taint -lock=false -state={}

{}.worker.{}".format(tf_state_location, tf_resource, worker_number),
tf_location)

↪→

↪→

88 call_command("terraform apply -lock=false -state={} --var-file {}
-auto-approve".format(tf_state_location, tf_var_file_location),
tf_location)

↪→

↪→

89

90 locate_minon_key(host_name)
91

92 call_command("pepper '*' mine.update")
93 call_command("pepper {} state.apply dnsmasq".format(host_name))
94 call_command("pepper {} state.apply consul".format(host_name))
95 call_command("pepper {} state.highstate".format(host_name))

Listing 25: Consul service definition for PostgreSQL.

1 {
2 "service": {
3 "name": "Postgresql",
4 "tags": ["postgresql"],
5 "port": 5432}
6 }

Listing 26: Source code for the freebayes workflow.

1 from airflow import DAG
2 from airflow.operators import BashOperator, PythonOperator
3 from datetime import datetime, timedelta
4

5 import os
6 import logging
7 from subprocess import call
8

9 import tracker.model
10 from tracker.model.analysis_run import *
11 from tracker.util.workflow_common import *
12

13

14 def run_freebayes(**kwargs):
15

16 config = get_config(kwargs)
17 logger.debug("Config - {}".format(config))
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18

19 sample = get_sample(kwargs)
20

21 contig_name = kwargs["contig_name"]
22 contig_whitelist = config.get("contig_whitelist")
23

24

25 if not contig_whitelist or contig_name in contig_whitelist:
26

27 sample_id = sample["sample_id"]
28 sample_location = sample["sample_location"]
29

30 result_path_prefix = config["results_local_path"] + "/" + sample_id
31

32 if (not os.path.isdir(result_path_prefix)):
33 logger.info(
34 "Results directory {} not present,

creating.".format(result_path_prefix))↪→

35 os.makedirs(result_path_prefix)
36

37 result_filename = "{}/{}_{}.vcf".format(
38 result_path_prefix, sample_id, contig_name)
39

40 freebayes_path = config["freebayes"]["path"]
41 freebayes_mode = config["freebayes"]["mode"]
42 freebayes_flags = config["freebayes"]["flags"]
43

44 reference_location = config["reference_location"]
45

46 if freebayes_flags == None:
47 freebayes_flags = ""
48

49 if freebayes_mode == "discovery":
50 freebayes_command = "{} -r {} -f {} {} {} > {}".\
51 format(freebayes_path,
52 contig_name,
53 reference_location,
54 freebayes_flags,
55 sample_location,
56 result_filename)
57 elif freebayes_mode == "regenotyping":
58 variants_location = config["variants_location"]
59

60 freebayes_command = "{} -r {} -f {} -@ {} {} {} > {}".\
61 format(freebayes_path,
62 contig_name,
63 reference_location,
64 variants_location[contig_name],

284



65 freebayes_flags,
66 sample_location,
67 result_filename)
68 else:
69 raise ValueError("Unknown or missing freebayes_mode -

{}".format(freebayes_mode))↪→

70

71 call_command(freebayes_command, "freebayes")
72

73 compressed_sample_filename = compress_sample(result_filename, config)
74 generate_tabix(compressed_sample_filename, config)
75 copy_result(compressed_sample_filename, sample_id, config)
76 else:
77 logger.info(
78 "Contig {} is not in the contig whitelist,

skipping.".format(contig_name))↪→

79

80

81 default_args = {
82 'owner': 'airflow',
83 'depends_on_past': False,
84 'start_date': datetime.datetime(2020, 01, 01),
85 'email': ['airflow@airflow.com'],
86 'email_on_failure': False,
87 'email_on_retry': False,
88 'retries': 1,
89 'retry_delay': timedelta(minutes=5),
90 }
91

92 dag = DAG("freebayes", default_args=default_args,
93 schedule_interval=None, concurrency=10000, max_active_runs=2000)
94

95

96 start_analysis_run_task = PythonOperator(
97 task_id="start_analysis_run",
98 python_callable=start_analysis_run,
99 provide_context=True,

100 dag=dag)
101

102

103 validate_sample_task = PythonOperator(
104 task_id="validate_sample",
105 python_callable=validate_sample,
106 provide_context=True,
107 dag=dag)
108

109 validate_sample_task.set_upstream(start_analysis_run_task)
110
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111 complete_analysis_run_task = PythonOperator(
112 task_id="complete_analysis_run",
113 python_callable=complete_analysis_run,
114 provide_context=True,
115 dag=dag)
116

117 for contig_name in tracker.util.workflow_common.CONTIG_NAMES:
118 freebayes_task = PythonOperator(
119 task_id="freebayes_" + contig_name,
120 python_callable=run_freebayes,
121 op_kwargs={"contig_name": contig_name},
122 provide_context=True,
123 dag=dag)
124

125 freebayes_task.set_upstream(validate_sample_task)
126

127 complete_analysis_run_task.set_upstream(freebayes_task)

Listing 27: Saltstack state for workflow deployment.

1 pcawg-germline-clone:
2 git.latest:
3 - rev: master
4 - force_reset: True
5 - name: https://github.com/llevar/pcawg-germline.git
6 - target: /opt/pcawg-germline
7 - submodules: True
8

9 /opt/airflow/dags:
10 file.symlink:
11 - target: /opt/pcawg-germline/workflows/
12 - user: airflow
13 - group: airflow
14 - mode: 755
15 - force: True
16 - makedirs: True
17

18 /tmp/pcawg-germline/scripts:
19 file.symlink:
20 - target: /opt/pcawg-germline/scripts/
21 - user: root
22 - group: root
23 - mode: 755
24 - force: True
25 - makedirs: True

Listing 28: Butler Analysis configuration for SNP genotyping.
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1 {
2 "variants_location": {
3 "1": "/freebayes.chr_1.sites.snv_indel.annot.final.vcf.gz",
4 "2": "/freebayes.chr_2.sites.snv_indel.annot.final.vcf.gz",
5 "3": "/freebayes.chr_3.sites.snv_indel.annot.final.vcf.gz",
6 "4": "/freebayes.chr_4.sites.snv_indel.annot.final.vcf.gz",
7 "5": "/freebayes.chr_5.sites.snv_indel.annot.final.vcf.gz",
8 "6": "/freebayes.chr_6.sites.snv_indel.annot.final.vcf.gz",
9 "7": "/freebayes.chr_7.sites.snv_indel.annot.final.vcf.gz",

10 "8": "/freebayes.chr_8.sites.snv_indel.annot.final.vcf.gz",
11 "9": "/freebayes.chr_8.sites.snv_indel.annot.final.vcf.gz",
12 "10": "/freebayes.chr_10.sites.snv_indel.annot.final.vcf.gz",
13 "11": "/freebayes.chr_11.sites.snv_indel.annot.final.vcf.gz",
14 "12": "/freebayes.chr_12.sites.snv_indel.annot.final.vcf.gz",
15 "13": "/freebayes.chr_13.sites.snv_indel.annot.final.vcf.gz",
16 "14": "/freebayes.chr_14.sites.snv_indel.annot.final.vcf.gz",
17 "15": "/freebayes.chr_15.sites.snv_indel.annot.final.vcf.gz",
18 "16": "/freebayes.chr_16.sites.snv_indel.annot.final.vcf.gz",
19 "17": "/freebayes.chr_17.sites.snv_indel.annot.final.vcf.gz",
20 "18": "/freebayes.chr_18.sites.snv_indel.annot.final.vcf.gz",
21 "19": "/freebayes.chr_19.sites.snv_indel.annot.final.vcf.gz",
22 "20": "/freebayes.chr_20.sites.snv_indel.annot.final.vcf.gz",
23 "21": "/freebayes.chr_21.sites.snv_indel.annot.final.vcf.gz",
24 "22": "/freebayes.chr_22.sites.snv_indel.annot.final.vcf.gz",
25 "X": "/freebayes.chr_X.sites.snv_indel.annot.final.vcf.gz",
26 "Y": "/freebayes.chr_Y.sites.snv_indel.annot.final.vcf.gz"
27 },
28 "results_base_path":

"/shared/data/results/regenotype_freebayes_discovery/",↪→

29 "results_local_path": "/tmp/regenotype_freebayes_discovery/",
30 "freebayes": {
31 "mode": "regenotyping",
32 "flags": "-l"
33 }
34 }

Listing 29: Butler Workflow configuration for Data Submission.

1 {
2 "gnos": {
3 "ebi": {
4 "url": "https://gtrepo-ebi.annailabs.com"
5 },
6 "osdc_icgc": {
7 "url": "https://gtrepo-osdc-icgc.annailabs.com"
8 },
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9 "osdc_tcga": {
10 "url": "https://gtrepo-osdc-tcga.annailabs.com"
11 }
12 },
13 "rsync": {
14 "flags": "-a -v --remove-source-files"
15 }
16 }

Listing 30: Butler Analysis configuration for Data Submission.

1 {
2 "gnos": {
3 "ebi": {
4 "key_location":

"/home/airflow/.ssh/sergei_pcawg_gnos_icgc.pem"↪→

5 },
6 "osdc_icgc": {
7 "key_location":

"/home/airflow/.ssh/sergei_pcawg_gnos_icgc.pem"↪→

8 },
9 "osdc_tcga": {

10 "key_location":
"/home/airflow/.ssh/sergei_bionimbus_gnos_may.pem"↪→

11 }
12 },
13 "metadata_template_location": "/opt/pcawg-germline/workflows/gtupload-wo c

rkflow/analysis_template.xml",↪→

14 "submission_base_path":
"/shared/data/results/freebayes_discovery_gnos_submission/",↪→

15 "destination_repo_mapping": {
16 "ICGC": "ebi",
17 "TCGA": "osdc_tcga"
18 }
19 }

Listing 31: Python code for the run_delly function which implements the function-
ality of the delly_genotype task inside the Butler Delly Workflow.

1 def run_delly(**kwargs):
2

3 config = get_config(kwargs)
4 sample = get_sample(kwargs)
5

6 sample_id = sample["sample_id"]
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7 sample_location = sample["sample_location"]
8

9 result_path_prefix = config["results_local_path"] + "/" + sample_id
10

11 if (not os.path.isdir(result_path_prefix)):
12 logger.info(
13 "Results directory {} not present,

creating.".format(result_path_prefix))↪→

14 os.makedirs(result_path_prefix)
15

16 delly_path = config["delly"]["path"]
17 reference_location = config["reference_location"]
18 variants_location = config["variants_location"]
19 variants_type = config["variants_type"]
20 exclude_template_path = config["delly"]["exclude_template_path"]
21

22 result_filename = "{}/{}_{}.bcf".format(
23 result_path_prefix, sample_id, variants_type)
24

25 log_filename = "{}/{}_{}.log".format(
26 result_path_prefix, sample_id, variants_type)
27

28 delly_command = "{} call -t {} -g {} -v {} -o {} -x {} {} > {}".\
29 format(delly_path,
30 variants_type,
31 reference_location,
32 variants_location,
33 result_filename,
34 exclude_template_path,
35 sample_location,
36 log_filename)
37

38 call_command(delly_command, "delly")
39

40 copy_result(result_filename, sample_id, config)

Listing 32: Butler Delly Workflow analysis configuration to genotype deletions.

1 {
2 "variants_location": "/delly_deletion_sites/del.sites.bcf",
3 "results_base_path":

"/shared/data/results/delly_germline_deletions_14_07_2016/",↪→

4 "results_local_path": "/tmp/delly_germline_deletions/",
5 "variants_type": "DEL"
6

7 }
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APPENDIX . CODE LISTINGS

Listing 33: Example of a VCF file (from https://samtools.github.io/hts-
specs/VCFv4.3.pdf).

1 {
2 ##fileformat=VCFv4.3
3 ##fileDate=20090805
4 ##source=myImputationProgramV3.1
5 ##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
6 ##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb c

2da,species="Homo
sapiens",taxonomy=x>

↪→

↪→

7 ##phasing=partial
8 ##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
9 ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">

10 ##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
11 ##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
12 ##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
13 ##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
14 ##FILTER=<ID=q10,Description="Quality below 10">
15 ##FILTER=<ID=s50,Description="Less than 50% of samples have data">
16 ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
17 ##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
18 ##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
19 ##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
20 #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003
21 20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ

0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.↪→

22 20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50
0|1:3:5:65,3 0/0:41:3↪→

23 20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB
GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4↪→

24 20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60
0|0:48:4:51,51 0/0:61:2↪→

25 20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4
0/2:17:2 1/1:40:3↪→
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