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Abstract

Let P (x) be a unimodal polynomial of degree m with nonnegative co-
efficients and a mode n for nonnegative integers n � m. We study the
unimodality of P (x+ z) for real numbers z = 1 or z � 2 and show that:
if z = 1, P (x + z) is unimodal provided that m − n � 4; if z � 2, then
P (x+ z) is unimodal provided that m− n � �2z�+ 1; and we also show
that the given conditions are best possible. Additionally, we explore the
location of modes of P (x+ z), and show P (x+ z) has a mode �m−z

z+1
� or

�m−z
z+1

� − 1 or �m−z
z+1

� − 2, which are reachable.

1 Introduction

A finite sequence of real numbers {a0, a1, . . . , am} is said to be unimodal if there
exists an index k satisfying 0 � k � m, called a mode of the sequence, such that
ai increases up to i = k and decreases from then on; that is, a0 � a1 � · · · � ak
and ak � ak+1 � · · · � am. It is said to be logarithmically concave (or log-concave
for short) if a2i � ai−1ai+1 for i = 1, 2, . . . , m − 1. It is said to have no internal
zeros if whenever ai, ak �= 0 and 0 � i < j < k � m then aj �= 0. A polynomial

P (x) =
m∑
i=0

aix
i is said to be unimodal (respectively, log-concave, with no internal

zeros, nondecreasing) if the sequence {a0, a1, . . . , am} has the corresponding property.
A mode of the sequence is also called a mode of the corresponding polynomial. In
fact, a nonnegative log-concave sequence with no internal zeros is unimodal (see [9]
for instance). Unimodal and log-concave polynomials arise often in combinatorics,
geometry and algebra. The reader is referred to [4, 9] for surveys of the diverse
techniques, problems, and results about unimodality and log-concavity.

It is well-known that if a polynomial P (x) is log-concave with no internal zeros,
then P (x + 1) is log-concave, which leads to the log-concavity of P (x + z) for all
positive integers z (see [4, Corollary 8.4] or [7, Theorem 2]). If P (x) is nonnegative
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and nondecreasing, then P (x+ 1) is unimodal in [3], which was implied by a result
due to Chen, Yang, Zhou [6], and P (x + n) is unimodal for any positive integer n
[1]. Finally, Wang and Yeh [10] obtained a stronger result that P (x+ t) is unimodal
for all real numbers t > 0. Llamas and Mart́ınez-Bernal [8] proved that P (x+ t) is
log-concave for all real numbers t � 1.

In this paper, we study an analogous problem: under what condition does a
unimodal polynomial P (x) guarantee the unimodality of P (x + z) for positive real
numbers z? It is obvious that if a polynomial P (x) is unimodal, then P (x + z)
is not necessarily unimodal for positive real numbers z, even for positive integers
z. For instance, P (x) = 12 + x + x2 + x3 + x4 + x5 is unimodal, but P (x + 1) =
17 + 15x + 20x2 + 15x3 + 6x4 + x5 is not. Therefore, it is interesting to investigate
the conditions mentioned above. We show that for a unimodal polynomial P (x) of
degree m with a mode n and real number z, if z = 1, P (x+ z) is unimodal provided
that m−n � 4; if z � 2, then P (x+ z) is unimodal provided that m−n � �2z�+1,
and we also give an example to prove that the given conditions are best possible.
Additionally, we explore the location of modes of P (x+ z), and also show P (x+ z)
has a mode �m−z

z+1
� or �m−z

z+1
� − 1 or �m−z

z+1
� − 2, all of which are reachable.

2 Mode of P (x + z) for nondecreasing polynomial P (x) and
the real numbers z = 1 or z � 2

We first introduce a lemma.

Lemma 2.1. [10] Let P (x) be a polynomial of degree m with nonnegative coefficients.
Suppose that P (x) is nondecreasing and z is a positive real number. Then P (x+ z)
is unimodal.

The locations of modes in Lemma 2.1, however, are uncertain [10]. If we restrict
z to z = 1 or z � 2, then there is a result about the locations of modes. Before
proving the result, we give a lemma.

Lemma 2.2. Let m be a nonnegative integer and z a positive real number. We let
m(z) = �m−z

z+1
� and m(z) = � m

z+1
�. Then

m(z)− 1 � m(z) � m(z).

In particular, if z is a positive integer, then m(z) = m(z).

Proof. First of all, note that 0 < m
z+1

− m−z
z+1

= z
z+1

< 1. If the closed interval between
m−z
z+1

and m
z+1

contains an integer, then m(z) = m(z); otherwise m(z)− 1 = m(z). So
m(z)− 1 � m(z) � m(z).

Suppose now that z is a positive integer.

Claim: (z + 1)m(z)− 1 < m � (z + 1)m(z) + z.
The definition of m(z) yields the inequalities

m

z + 1
− 1 < m(z) � m

z + 1
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and it follows directly that m � (z+1)m(z) > (z+1)m(z)−1 and m < (z+1)m(z)+
z + 1. Since z is an integer, m � (z + 1)m(z) + z.

By the Claim, we have

(z + 1)(m(z)− 1) < m− z � (z + 1)m(z),

and after dividing the inequalities above by z + 1, we obtain

m(z)− 1 <
m− z

z + 1
� m(z).

Hence

m(z) = �m− z

z + 1
� = m(z).

Lemma 2.3. Let P (x) =
m∑

k=0

akx
k be a polynomial of degree m with nonnegative and

nondecreasing coefficients, and let z be a real number z = 1 or z � 2. Then the
polynomial P (x+ z) is unimodal with mode m(z) or m(z), defined as in Lemma 2.2.
In particular, if z is a positive integer, then P (x+ z) is unimodal with mode m(z).

Proof. We give a similar proof as the proof of Theorem 2.3 in [1]. The binomial
theorem yields

P (x+ z) =

m∑
k=0

ak

k∑
i=0

(
k

i

)
zk−ixi.

Now we exchange the two sums and thus obtain

P (x+ z) =
m∑
i=0

( m∑
k=i

ak

(
k

i

)
zk−i

)
xi =

m∑
i=0

qix
i.

So it is sufficient to prove the sequence
{
qi =

m∑
k=i

ak
(
k
i

)
zk−i

}m

i=0
is unimodal with

mode m(z) or m(z) for real numbers z = 1 or z � 2; i.e., by Lemma 2.2, to show
that (a) qj − qj+1 � 0 when m(z) � j � m− 1, i.e., qm(z) � qm(z)+1 � · · · � qm and
(b) qj+1−qj � 0 when 0 � j � m(z)−1. Wang and Yeh have shown (a) [10, Lemma
2.2]. It is sufficient to show (b). Note that

(j + 1)(qj+1 − qj) = (j + 1)
( m∑
k=j+1

ak

(
k

j + 1

)
zk−j−1 −

m∑
k=j

ak

(
k

j

)
zk−j

)

=

m∑
k=j

ak

(
k

j

)
zk−j−1[k − j − (j + 1)z]. (1)

Assume now that 0 � j � m(z) − 1. To show that qj+1 − qj � 0, we divide the
sum (1) into two parts: one part includes all negative terms, (denote the inverse of
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the part by T1) and the other includes nonnegative terms, denoted by T2. Then it is
sufficient to prove that T1 � T2.

Now we analyze the sign of terms in the sum (1). Since ak, z
k−j−1 and the binomial

coefficient
(
k
j

)
are nonnegative, the term ak

(
k
j

)
zk−j−1[k − j − (j + 1)z] � 0 if and

only if k − j − (j + 1)z � 0, i.e., k � (j + 1)z + j. For the sake of simplicity, we
let c = �(j + 1)z + j�. Note that c < m. (Since (z + 1)m(z) = (z + 1)� m

z+1
� � m,

(z+1)(m(z)− 1)+ z � m− 1. Combined with j � m(z)− 1, we have (j+1)z+ j =
(z + 1)j + z � m− 1. So c = �(j + 1)z + j� < m.) Then

T1 = −
c−1∑
k=j

ak

(
k

i

)
zk−j−1[k − j − (j + 1)z]

=
c−1∑
k=j

ak

(
k

j

)
zk−j−1[(j + 1)z + j − k]

and

T2 =

m∑
k=c

ak

(
k

j

)
zk−j−1[k − j − (j + 1)z)]. (2)

In what follows, we estimate the values of T1.
Observe that

T1 =

c−1∑
k=j

ak

(
k

j

)
zk−j−1[((j + 1)z + j − k]

� ac+1

c−1∑
k=j

(
k

j

)
zk−j−1[(j + 1)z + j − k]

� ac+1z
c−j−2

c−1∑
k=j

(
k

j

)
[(j + 1)z + j − k]

� ac+1z
c−j−2

c−1∑
k=j

(
k

j

)
(c− k)

= ac+1z
c−j−2

(
c+ 1

j + 2

)
. (3)

The monotonicity of the coefficients of P (x) was used in the first inequality and
the definition of c was used in the last inequality. The last equality can be proved

as follows:
c−1∑
k=j

(
k
j

)
(c − k) can be written as

c−j∑
i=1

c−i∑
k=j

(
k
j

)
. Using the formula (see [2,

Theorem 4.5])
b∑

i=a

(
i
a

)
=

(
b+1
a+1

)
twice, we obtain the result.

Claim:
1

z2

(
c+ 1

j + 2

)
�

(
c + 1

j

)
[(c+ 1)− (j + (j + 1)z)].

(4)
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We first show that the claim holds for z � 2.

1

z2

(
c+1
j+2

)
(
c+1
j

) =
1

z2

(c+1)!
(j+2)!(c−j−1)!

(c+1)!
j!(c−j+1)!

=
(c− j + 1)(c− j)

z(j + 2)z(j + 1)
. (5)

By the definition of c,

c− j + 1 = �(j + 1)z + j� − j + 1

< (j + 1)z + j + 1− j + 1

= zj + z + 2 � z(j + 2). (6)

The last inequality follows from the fact that z � 2. Substituting Eq. (6) into Eq.
(5), we have

1

z2

(
c+1
j+2

)
(
c+1
j

) <
c− j

z(j + 1)

=
c− j − z(j + 1)

z(j + 1)
+ 1

< c− j − z(j + 1) + 1

= (c+ 1)− (j + (j + 1)z).

Hence the claim holds for z � 2.
If z = 1, we easily obtain c = 2j + 1. So(

c+ 1

j

)
[(c+ 1)− (j + (j + 1)z)] =

(
2j + 2

j

)

=

(
2j + 2

j + 2

)

=
1

z2

(
c+ 1

j + 2

)
.

Hence the claim holds for z = 1.
Combining Eqs. (3) and (4), we have

T1 � ac+1z
c−j

(
c+ 1

j

)
[(c+ 1)− (j + (j + 1)z)]

= ac+1z
(c+1)−j−1

(
c+ 1

j

)
[(c+ 1)− (j + (j + 1)z)]. (7)

The term in Eq. (7) is exactly the second term in the sum (2) by substituting k for
c + 1. So T1 � T2.

In particular, if z is a positive integer, by Lemma 2.2, m(z) = m(z). So P (x+ z)
has a mode m(z).



Y.-T. XIE AND S.-J. XU /AUSTRALAS. J. COMBIN. 69 (1) (2017), 119–129 124

Two possible distinct values of modes in Lemma 2.3 are available as in the fol-
lowing examples.

Example 2.4. Let P (x) = x+x2+x3, z = 2.5. Sincem = 3,m(z) = 1 andm(z) = 0,
the mode of P (x+2.5) = 24.375+24.75x+8.5x2+x3 ism(z), If P (x) = 1+x+x2+x3,
then the mode of P (x+ 2.5) = 25.375 + 24.75x+ 8.5x2 + x3 is m(z).

Corollary 2.5. [1] Let P (x) =
m∑
i=0

aix
i be a polynomial of degree m with nonnegative

and nondecreasing coefficients, and let z be a positive integer. Then the polynomial
P (x+ z) is unimodal with mode � m

z+1
�.

In fact, a similar result as Lemma 2.3 was obtained by Wang and Yeh [10, Corol-
lary 4.1]: P (x + z) has at most two modes m(z) and m(z) + 1 if P (x) = axm for
some positive real number a, or m(z) − 1 and m(z) otherwise. But there is a small
difference between them. For example, if m(z) = m(z), it follows from Lemma 2.3
that m(z) must be a mode of P (x+ z).

3 Layer decomposition and main results

First, we give a new notion about unimodal polynomials: layer decomposition.

Definition Let P1(x) =
j1∑

i=i1

a1ix
i be a unimodal polynomial with positive coefficients

and mode n for nonnegative integers i1 � j1. Let α1 = min{a1i1 , a1j1} and P2(x) =

P1(x)−α1

j1∑
i=i1

xi. Obviously, P2(x) is still unimodal with nonnegative coefficients and

mode n. If P2(x) is nonzero, suppose P2(x) =
j2∑

i=i2

a2ix
i with a2i > 0 for i2 � i � j2.

Note that i1 � i2 � n � j2 � j1. Likewise, let α2 = min{a2i2 , a2j2} and P3(x) =

P2(x)−α2

j2∑
i=i2

xi. We can do such decomposition until we reach the zero polynomial.

So P1(x) can be decomposed as the form P1(x) = α1

j1∑
i=i1

xi+α2

j2∑
i=i2

xi+ · · ·+αk

jk∑
i=ik

xi

for some integer k with i1 � i2 � · · · � ik � n � jk � · · · � j2 � j1. We call such a
decomposition the layer decomposition of a unimodal polynomial P1(x) with positive
coefficients.

It is obvious that every unimodal polynomial has a unique layer decomposition.
An example follows.

Example 3.1. Let P (x) = 2+ 5x+ 7x2 + 8x3 + 8x4 + 2x5 + x6 + x7. Then the layer
decomposition of P (x) is

P (x) =
7∑

i=0

xi +
5∑

i=0

xi + 3
4∑

i=1

xi + 2
4∑

i=2

xi +
4∑

i=3

xi.
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Theorem 3.2. Let P (x) =
m∑
i=0

aix
i be a unimodal polynomial of degree m with non-

negative coefficients and mode n. Suppose P (x+ z) =
m∑
i=0

bix
i for real numbers z = 1

or z � 2. Then b0 � b1 � · · · � b� n
z+1

� and b�m−z
z+1

� � b�m−z
z+1

�+1 � · · · � bm.

Proof. Suppose the layer decomposition of P (x) is

P (x) = α1

j1∑
i=i1

xi + α2

j2∑
i=i2

xi + · · ·+ αk

jk∑
i=ik

xi

for some k with i1 � i2 � · · · � ik � n � jk � · · · � j2 � j1 = m. By Lemma
2.3, for any 1 � l � k and any real number z satisfying z = 1 or z � 2, a mode of

αl

jl∑
i=il

(x+ z)i is jl(z) or jl(z), which are not less than n(z) = � n
z+1

� and not greater

thanm(z) = �m−z
z+1

�. So b0 � b1 � · · · � b� n
z+1

� and b�m−z
z+1

� � b�m−z
z+1

�+1 � · · · � bm.

From Theorem 3.2, we can obtain some corollaries as follows.

Corollary 3.3. Let P (x) be a unimodal polynomial of degree m with nonnegative
coefficients and mode n, z = 1 or z � 2. If z � m − n, then P (x + z) is unimodal
with mode m(z) or n(z).

Proof. By z � m − n, n � m − z, and further n
z+1

� m−z
z+1

. So �m−z
z+1

� − � n
z+1

� � 1.
By Theorem 3.2, P (x+ z) is unimodal with mode m(z) or n(z).

Corollary 3.4. Let P (x) be a unimodal polynomial of degree m with mode n and
nonnegative coefficients. Then, for any positive integer z � m− n − 1, P (x+ z) is
unimodal with mode � m

z+1
� or � n

z+1
�.

Proof. By z � m− n− 1, m−n
z+1

� 1 and further � m
z+1

� − � n
z+1

� � 1. Combining with

Lemma 2.2, we have �m−z
z+1

� − � n
z+1

� = � m
z+1

� − � n
z+1

� � 1. It follows from Theorem
3.2 that P (x+ z) is unimodal with mode � m

z+1
� or � n

z+1
�.

In fact, we can show a stronger result than Corollaries 3.3 and 3.4. First, we give
a lemma.

Lemma 3.5. [10] Suppose that the polynomial P (x) is unimodal and positive real
number z. Then (x+ z)P (x) is unimodal.

In what follows we give the main result.

Theorem 3.6. Let P (x) be a unimodal polynomial of degree m with nonnegative
coefficients and mode n. Then P (x+ z) is unimodal with a mode m(z) or m(z)− 1
or m(z)− 2 provided that either
(1) z � 2 and m− n � �2z� + 1; or
(2) z = 1 and m− n � 4.
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Proof. Let P (x) =
m∑
i=0

aix
i be a unimodal polynomial of degree m with nonnegative

coefficients and mode n, and B(x) =
m−1∑
i=0

ai+1x
i. Then P (x) = a0 + xB(x). For

notational simplicity, we let P (x+ z) =
m∑
i=0

dix
i.

We first prove the unimodality of P (x+ z) under the conditions by induction on
n.

First of all, we prove the result under condition (1). It is sufficient to prove that,
for a nonnegative integer n and z � 2, a unimodal polynomial P (x) with nonnegative
coefficients and mode n, of degree m satisfying

m � n+ �2z� + 1, (8)

P (x+ z) is unimodal.
The initial step: If n = 0, from the conditionm � n+�2z�+1, we getm � �2z�+1

and therefore �m−z
z+1

� � �2z+1−z
z+1

� = 1. It follows from Theorem 3.2 that P (x + z) is
unimodal.

The inductive step: Now we assume that the result holds for less than n and
prove it for n(� 1).
Case 1. (1 �)n � �z�.

In this case m � n+ �2z�+ 1 � 3z + 2, so �m−z
z+1

� � 2. By Theorem 3.2, we have

d2 � d3 � · · · � dm. (9)

By the definition of B(x), B(x) is a unimodal polynomial of degree m−1 with mode
n − 1. By the condition m � n + �2z� + 1, we get (m − 1) � (n − 1) + �2z� + 1

satisfying Eq. (8) for B(x). So B(x + z) =
m−1∑
i=0

bix
i is unimodal by the inductive

hypothesis. Since m � 3z + 2, we have �m−1−z
z+1

� � 2. Combining with Theorem 3.2,
we get b2 � b3 � · · · � bm−1. Hence, either

b1 � b0

or

b0 > b1 � b2.

Since P (x+ z) = a0 + (x+ z)B(x+ z),

d2 = b1 + zb2, (10)

d1 = b0 + zb1, (11)

d0 = a0 + zb0. (12)

Subcase 2.1 b1 � b0.

Since n � 1, a1 � a0. Therefore b0 = B(z) =
m−1∑
i=0

ai+1z
i =

m−1∑
i=1

ai+1z
i + a1 �

a1 � a0. Combining with Eqs. (11) and (12), we have d1 � d0. Hence we prove that
P (x+ z) is unimodal by Eq. (9).
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Subcase 2.2. b0 > b1 � b2.
In this case, by Eqs. (10) and (11), d1 = b0 + zb1 > b1 + zb2 = d2. Combining

with Eq. (9), we get P (x+ z) is unimodal regardless of relative magnitude of d0 and
d1.
Case 2. n � �z� + 1.

In this case � n
z+1

� � �z+1
z+1

� = 1. By Theorem 3.2, d0 � d1. Similar to the proof
in Case 1, we can show that B(x) is a unimodal polynomial with mode n − 1 of
degree m− 1 satisfying Eq. (8). By the inductive hypothesis, B(x+ z) is unimodal.

Combining with Lemma 3.5, (x + z)B(x + z) =
m∑
i=0

cix
i is unimodal. Note that

d0 = a0 + c0, di = ci for 1 � i � m. It follows from d0 � d1 that c0 � c1. So there
is some positive integer 1 � k � m such that c0 � c1 � · · · � ck � ck+1 � · · · � cm
by the unimodality of (x+ z)B(x + z). Therefore d1 � · · · � dk � dk+1 � · · · � dm.
Combining with d0 � d1, we get d0 � d1 � · · · � dk � dk+1 � · · · � dm. Hence
P (x+ z) is unimodal.

Now, we prove P (x+z) is unimodal under the condition (2): z = 1 andm−n � 4.
Similarly, it is sufficient to prove that, for nonnegative integer n and a unimodal
polynomial P (x) with mode n of degree m satisfying m � n+4, P (x+1) is unimodal.
i.e., it is sufficient to prove P (x+ z) is unimodal provided that m � n+ 2z + 2 and
z = 1. In order to reduce the proof by repeating the proof above, we make this
treatment.

The initial step. If n = 0, then m � 4. If m � 3, then �m−z
z+1

� � �2
2
� = 1.

By Theorem 3.2, P (x + z) = P (x + 1) is unimodal with mode 0 or 1. If m = 4,

then P (x) =
4∑

i=0

aix
i = a4

4∑
i=0

xi + C(x), where C(x) is a unimodal polynomial of

degree � 3 with mode n = 0. Similar to the proof above in the case m � 3,

C(x+ z) = C(x+1) is unimodal with mode 0 or 1. Combining with a4
4∑

i=0

(x+1)i =

a4(5 + 10x+ 10x2 + 5x3 + x4), we get P (x+ 1) is unimodal.
The induction step. We can give the parallel proof as the case under condition

(1) by substituting �2z� + 1 for 2z + 2 = 4, and n + �2z� + 1 in Eq. (8) for
n + �2z� + 2 = n+ 4.

We now prove the locations of modes of P (x+z). If the condition (1) is satisfied,

then m−z
z+1

− n
z+1

� �2z�+1−z
z+1

� 1 and further �m−z
z+1

� − � n
z+1

� � 2 by simple analysis.
Hence P (x+ z) has a mode m(z) or m(z)−1 or m(z)−2 by Theorem 3.2. Likewise,
if the condition (2) is satisfied, then m

2
− n

2
� 2. Therefore �m

2
� − �n

2
� � 2. Note

that m(1) = �m
2
� and n(1) = �n

2
� in this case. Hence P (x+ 1) has a mode m(z) or

m(z)− 1 or m(z)− 2 by Theorem 3.2.

In fact, the condition given in Theorem 3.6 is sharp, i.e., if z = 1 and m− n = 5,
or z � 2 and m− n = �2z� + 2, we cannot guarantee that P (x+ z) is unimodal.

Example 3.7. Let P (x) = 12 + x + x2 + x3 + x4 + x5, which is unimodal with
m = 5, n = 0. Then P (x+ 1) = 17 + 15x+ 20x2 + 15x3 + 6x4 + x5 is not unimodal.
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Lemma 3.8. [10] Let P (x) =
m∑
i=0

xi for some nonnegative integer m and z > 1 . If

zm(z) is an integer, then P (x+ z) has the unique mode m(z).

Example 3.9. Let P (x) = (c+1)+x+x2+ · · ·+x�2z�+2 = c+B(x) for nonnegative
real numbers c and z � 2. Obviously, P (x) is unimodal of degree m = �2z�+2 with

the unique mode n = 0. Suppose 2z is an integer. Then zm(z) = z� �2z�+2−z
z+1

� =

z�z+2
z+1

� = 2z. By Lemma 3.8, B(x + z) has the unique mode m(z) = 2. It follows
that P (x+ z) = c+B(x+ z) is not unimodal for a sufficient number c.

In addition, three possible modes of P (x+ z) in Theorem 3.6 are reached.

Example 3.10. Suppose z � 2 is an integer and d is a positive integer. Let P (x) =

a
(d+2)(z+1)∑

i=0

xi + b
(d+1)(z+1)∑

i=0

xi + c
d(z+1)+1∑

i=0

xi for a, b, c > 0. It is obvious that P (x) is

unimodal of degree m = (d + 2)(z + 1) with a mode n = d(z + 1) + 1. Then

m(z) = �m−z
z+1

� = � (d+2)(z+1)−z
z+1

� = d+2 and m−n = 2z+1 = �2z�+1. It follows from

Theorem 3.6 that P (x+z) is unimodal. By Lemma 3.8,
(d+2)(z+1)∑

i=0

(x+z)i,
(d+1)(z+1)∑

i=0

(x+

z)i,
d(z+1)+1∑

i=0

(x + z)i have the unique modes d + 2, d + 1, d, respectively. Note that

(d+ 1)(z + 1)(z) = d + 1, d(z + 1) + 1(z) = d. Hence P (x + z) has a unique mode
m(z) = d + 2 for fixed b, c and sufficient large a. Similarly, P (x + z) has a unique
mode m(z) − 1 = d + 1 for fixed a, c and sufficient large b, P (x + z) has a unique
mode m(z)− 2 = d for fixed a, b and sufficient large c.

In addition, from Theorem 3.6, we can directly obtain the following corollary.

Corollary 3.11. Let P (x) be a unimodal polynomial of degree m with nonnegative
coefficients and mode n. If m − n � 4, then for any positive integer z, P (x + z) is
unimodal with a mode m(z) or m(z)− 1 or m(z)− 2.

4 Conclusions

If P (x) is a polynomial with nonnegative and nondecreasing coefficients, then for any
positive real number z, P (x+z) is unimodal. Does this fact generalize to a unimodal
polynomial P (x) with nonnegative coefficients? Unfortunately, the result does not
hold. In this paper we investigate under what conditions P (x + z) is unimodal.
If the real number z = 1 or z � 2, then we give respective sharp conditions for
completely answering this problem (i.e. Theoerem 3.6), and we also locate a mode
of P (x+ z). Hence there is an open question which is worthy of further exploration:
is there a corresponding result similar to Theorem 3.6 for real numbers 0 < z < 1
and 1 < z < 2 ?
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