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Abstract

Let P(z) be a unimodal polynomial of degree m with nonnegative co-
efficients and a mode n for nonnegative integers n < m. We study the
unimodality of P(z + z) for real numbers z = 1 or z > 2 and show that:
if z =1, P(x + 2) is unimodal provided that m —n < 4; if z > 2, then
P(z + z) is unimodal provided that m —n < |2z] + 1; and we also show
that the given conditions are best possible. Additionally, we explore the
location of modes of P(x + z), and show P(z + z) has a mode [Z=2] or

z+1
m—z7 m—z7 :
“=£ | — Lor [2=] — 2, which are reachable.

1 Introduction

A finite sequence of real numbers {ag,a1,...,ay,} is said to be unimodal if there
exists an index k satisfying 0 < k& < m, called a mode of the sequence, such that
a; increases up to ¢ = k and decreases from then on; that is, ap < a1 < -+ < ag
and ap = agr1 = -+ = ay. It is said to be logarithmically concave (or log-concave
for short) if a? > a;_ja;1q for i = 1,2,...,m — 1. Tt is said to have no internal
zeros if whenever a;,a; # 0 and 0 < @ < j < k < m then a; # 0. A polynomial
P(x) = Y a;z' is said to be unimodal (respectively, log-concave, with no internal
i=0

zeros, nondecreasing) if the sequence {ag, a1, ..., ay,} has the corresponding property.
A mode of the sequence is also called a mode of the corresponding polynomial. In
fact, a nonnegative log-concave sequence with no internal zeros is unimodal (see [9]
for instance). Unimodal and log-concave polynomials arise often in combinatorics,
geometry and algebra. The reader is referred to [4, 9] for surveys of the diverse
techniques, problems, and results about unimodality and log-concavity.

It is well-known that if a polynomial P(z) is log-concave with no internal zeros,
then P(xz + 1) is log-concave, which leads to the log-concavity of P(x + z) for all
positive integers z (see [4, Corollary 8.4] or [7, Theorem 2|). If P(x) is nonnegative
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and nondecreasing, then P(z + 1) is unimodal in [3], which was implied by a result
due to Chen, Yang, Zhou [6], and P(z + n) is unimodal for any positive integer n
[1]. Finally, Wang and Yeh [10] obtained a stronger result that P(z +t) is unimodal
for all real numbers ¢t > 0. Llamas and Martinez-Bernal [8] proved that P(x + t) is
log-concave for all real numbers ¢ > 1.

In this paper, we study an analogous problem: under what condition does a
unimodal polynomial P(z) guarantee the unimodality of P(z + z) for positive real
numbers 2?7 It is obvious that if a polynomial P(z) is unimodal, then P(z + 2)
is not necessarily unimodal for positive real numbers z, even for positive integers
z. For instance, P(x) = 12+ z + 2% + 2* + 2* + 2° is unimodal, but P(z + 1) =
17 + 152 + 2022 + 1523 + 62* + 2° is not. Therefore, it is interesting to investigate
the conditions mentioned above. We show that for a unimodal polynomial P(x) of
degree m with a mode n and real number z, if z = 1, P(x + 2) is unimodal provided
that m —n < 4; if z > 2, then P(z + z) is unimodal provided that m —n < [2z] + 1,
and we also give an example to prove that the given conditions are best possible.
Additionally, we explore the location of modes of P(x + z), and also show P(x + z)

has a mode [75] or [ ] — 1 or [ ] — 2, all of which are reachable.

2 Mode of P(z + z) for nondecreasing polynomial P(z) and
the real numbers 2z =1 or z > 2

We first introduce a lemma.

Lemma 2.1. [10] Let P(x) be a polynomial of degree m with nonnegative coefficients.
Suppose that P(x) is nondecreasing and z is a positive real number. Then P(x + z)
s unimodal.

The locations of modes in Lemma 2.1, however, are uncertain [10]. If we restrict
ztoz =1or z > 2, then there is a result about the locations of modes. Before
proving the result, we give a lemma.

Lemma 2.2. Let m be a nonnegative integer and z a positive real number. We let

m(z) = [25] and m(z) = [ F5]. Then

m(z) —1 < m(z) < m(z).

In particular, if z is a positive integer, then m(z) = m(z).

Proof. First of all, note that 0 < 55 — 2= = % < 1. If the closed interval between
7% and 75 contains an integer, then m(z) = m(z); otherwise m(z) —1 = m(z). So
m(z) — 1 <m(z) < m(z).

Suppose now that z is a positive integer.
Claim: (z+ 1)m(z) — 1 <m < (z+ 1)m(z) + =

The definition of m(z) yields the inequalities

m—z

m | < m(2) < m
— m(z
z+1 - S+
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and it follows directly that m > (z+1)m(z) > (z+1)m(z)—1and m < (z+1)m(z)+
z 4 1. Since z is an integer, m < (z + 1)m(z) + z.
By the Claim, we have

(z+1)(m(z) = 1) <m—2z < (z+ 1)m(z),

and after dividing the inequalities above by z + 1, we obtain

m—z
z+1

m(z) —1< < m(2).

Hence

O

Lemma 2.3. Let P(x) = Z apx® be a polynomial of degree m with nonnegative and

nondecreasing coeﬁﬁczents and let z be a real number z = 1 or z > 2. Then the
polynomial P(x + z) is unimodal with mode m(z) or m(z), defined as in Lemma 2.2.
In particular, if z is a positive integer, then P(x + z) is unimodal with mode m(z).

Proof. We give a similar proof as the proof of Theorem 2.3 in [1]. The binomial

theorem yields
m k
Pa+s =3 ad (7)4
k=0  i=0

Now we exchange the two sums and thus obtain

So it is sufficient to prove the sequence {qi = > ag (]f) zk_i}zo is unimodal with
k=i

mode m(z) or m(z) for real numbers z = 1 or z > 2; i.e., by Lemma 2.2, to show

that (a) ¢; — ¢j41 = 0 when m(z) < j <m — 1, ie., ¢miz) = Gmz)41 = - = ¢m and

(b) gj+1—¢; = 0 when 0 < j < m(z) —1. Wang and Yeh have shown (a) [10, Lemma

2.2]. Tt is sufficient to show (b). Note that

G -w) =G> af;f )= a ()4

_ g:ak (";) I~ — (+1)2]. (1)

Assume now that 0 < j < m(z) — 1. To show that ¢;41 — ¢; > 0, we divide the
sum (1) into two parts: one part includes all negative terms, (denote the inverse of
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the part by 77) and the other includes nonnegative terms, denoted by T5. Then it is
sufficient to prove that T} < Ts.

Now we analyze the sign of terms in the sum (1). Since ag, 277~! and the binomial
coefficient (I;) are nonnegative, the term ay, (I;) A7k — 5 — (5 4+ 1)z] = 0 if and
only if Kk —j—(j+1)z >0, ie, k> (j + 1)z + j. For the sake of simplicity, we
let ¢ = [(j + 1)z + j|. Note that ¢ < m. (Since (z + 1)m(2) = (z + 1)[ 5] < m,
(z+1)(m(z) —1)+2 < m—1. Combined with j < m(z) —1, we have (j+1)z+j =

(z+1)j+2z<m—1.S0c=[(j+1)z+j] <m.) Then

T = — ;:iak (l:) Ak - — (54 1)7]

J

N (’f) FIG 4 D)zt j— K

k=j J
and
- K\ k—jo1 . -
Tzz(]) k=~ (G +1)2). (2)

In what follows, we estimate the values of T.
Observe that

T, = gak<§)zk_j_l[((j+1)z+j—l<;]

c—1

k )
< an X (§)# G4 De -
=
c—1
- k
< a2 (MG vz -

k=j

/N
s
o
x
I
(s}
<
Do
9}
]!
. =
VR
™
~~
~
|
=z

. 1
— g (;* ) 3)

The monotonicity of the coefficients of P(x) was used in the first inequality and
the definition of ¢ was used in the last inequality. The last equality can be proved

c c—Jj c—1
as follows: > (];)(c — k) can be written as ) > (];) Using the formula (see [2,

k=j i=1 k=j
b .
Theorem 4.5]) > (}) = (Zﬁ) twice, we obtain the result.
I fc+1 c+1
Claim: — < 1)—( +1)z2)].
am (7)< (“THern-G+ G+ 02)
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We first show that the claim holds for z > 2.

c+1 (c+1)!
1 (j+2) 1 G-
22 (c+1) ] (c41)!
J jl(c—j+1)!
(C_j+1)(c_j) (5)
2(j+2)z(j+1)
By the definition of ¢,
c—j+1 = [G+Dz+j]—j+1
< (J+1l)z+5+1—-7+1
= zj+z2z+2 < z2(j+2). (6)

The last inequality follows from the fact that z > 2. Substituting Eq. (6) into Eq.
(5), we have

c+1 .
i(j+2) < c—]
2 (c+1 .
z (]) 2(j+1)
(i
I ek Ve ) B
2(74+1)

< c—j—z2(j+1)+1
= (c+1) =G+ +1)2).

Hence the claim holds for z > 2.
If 2 =1, we easily obtain ¢=25+1. So

c+1 . . 274+ 2

(“FHern -GG = (V77
B (2j+2)
Co\j+2
B 1 /fc+1
o2\ +2)

Hence the claim holds for z = 1.

Combining Egs. (3) and (4), we have

T < oyt (j 1) (et )= G+ (G +1)2)]

ern—i_1fc+1 ‘ ‘
= a0 (T ek 1) = (4 G 1)) )
The term in Eq. (7) is exactly the second term in the sum (2) by substituting & for
c+ 1. So Tl <TQ

In particular, if z is a positive integer, by Lemma 2.2, m(z) = m(z). So P(z+ 2)
has a mode m(z). O
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Two possible distinct values of modes in Lemma 2.3 are available as in the fol-
lowing examples.

Example 2.4. Let P(z) = z+2%+23, 2 = 2.5. Sincem = 3, m(z) = 1 and m(z) = 0,
the mode of P(x+2.5) = 24.375+24.75x+8.5z*+ 3 ism(z), If P(z) = 1+x+2%+2?,
then the mode of P(z + 2.5) = 25.375 4 24.75x + 8.52% + 2% is m(z2).

Corollary 2.5. [1] Let P(x) = Y a;z' be a polynomial of degree m with nonnegative

=0
and nondecreasing coefficients, and let z be a positive integer. Then the polynomial

P(x + 2) is unimodal with mode | 75 |.

In fact, a similar result as Lemma 2.3 was obtained by Wang and Yeh [10, Corol-
lary 4.1]: P(x + z) has at most two modes m(z) and m(z) + 1 if P(x) = az™ for
some positive real number a, or m(z) — 1 and m(z) otherwise. But there is a small
difference between them. For example, if m(z) = m(z), it follows from Lemma 2.3
that m(z) must be a mode of P(z + z).

3 Layer decomposition and main results

First, we give a new notion about unimodal polynomials: layer decomposition.

j ,

Definition Let P (xz) = ) ay;2* be a unimodal polynomial with positive coefficients
i=i1

and mode n for nonnegative integers i; < j;. Let oy = min{ay;,, a5, } and Pa(z) =

I
Pi(x)—ay Y x*. Obviously, Py(x) is still unimodal with nonnegative coefficients and
i=i1

j2 ,

mode n. If Py(z) is nonzero, suppose Py(x) = > aga’ with ay; > 0 for iy < i < jo.
i=is

Note that i1 < ia < n < jo < j;. Likewise, let as = min{ag,, asj,} and Ps(z) =

j2
Py(x) —ag Y 2. We can do such decomposition until we reach the zero polynomial.
i=is
J1 ) 72 . Jk .
So Pi(x) can be decomposed as the form Py(z) = a; Y @'+ ag >, &'+ -+ag > &
i=i1 T i=iy,
for some integer k with iq <o <+ <ip <N < Jp < -+ - < Jo < 1. We call such a
decomposition the layer decomposition of a unimodal polynomial P;(x) with positive
coefficients.
It is obvious that every unimodal polynomial has a unique layer decomposition.
An example follows.

Example 3.1. Let P(x) = 2+ 5x + 72 + 823 + 82" 4 22° + 2° 4+ 27. Then the layer
decomposition of P(z) is

7 5 4 4 4
P(z) = le —|—in —I—Bin —I—Qin +in.
i=0 =0 i=1 i=2 i=3
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Theorem 3.2. Let P(z) = Y. a;x® be a unimodal polynomial of degree m with non-
i=0

negative coefficients and mode n. Suppose P(x+z) = > bz’ for real numbers z = 1

i=0
orz>2. Thenby < b <---< bLnJandb[ b(%Hl}'“}bm.

z+1

Proof. Suppose the layer decomposition of P(z) is

J1 J2 Jk
x):(xlzxijL(ngxijL"'—l—akai

i=i1 i=ig i=iy,

for some k with 93 <o < - < i < n < Jp < -+ < Jo < j1 = m. By Lemma
2.3, for any 1 < I < k and any real number z satisfying z =1 or z > 2, a mode of

Q Z(x + 2)" is ji(2) or ji(2), which are not less than n(z) = | 7| and not greater

=1

than m(z) = [Z5

f}.SObOSblg- bL Jandb{m z‘| b"%‘|+1>"'>bm. D
From Theorem 3.2, we can obtain some corollaries as follows.

Corollary 3.3. Let P(x) be a unimodal polynomial of degree m with nonnegative
coefficients and mode n, z =1 or z > 2. If z > m —n, then P(x + z) is unimodal
with mode m(z) or n(z).

Proof. By z 2 m —n, n 2 m — z, and further 15 > 7. So ﬁ] — LZLHJ < 1.
By Theorem 3.2, P(x + z) is unimodal with mode m(z) or n(z). O

Corollary 3.4. Let P(z) be a unimodal polynomial of degree m with mode n and
nonnegative coefficients. Then, for any positive integer z > m —n — 1, P(x + z) is

unimodal with mode | 75| or | 55].

Proof. By 2 2m —n —1, 757 < 1 and further |75 | — [ ] < 1. Combining with
Lemma 2.2, we have [7=] — | 5] = [5] — [;37] < 1. It follows from Theorem
3.2 that P(z + z) is unimodal with mode [ 75| or | 25 ]. O

In fact, we can show a stronger result than Corollaries 3.3 and 3.4. First, we give
a lemma.

Lemma 3.5. [10] Suppose that the polynomial P(z) is unimodal and positive real
number z. Then (z + z)P(x) is unimodal.

In what follows we give the main result.

Theorem 3.6. Let P(x) be a unimodal polynomial of degree m with nonnegative
coefficients and mode n. Then P(x + z) is unimodal with a mode m(z) or m(z) — 1
or m(z) — 2 provided that either

(1) 2> 2 and m —n < |2z] + 1; or

(2) z=1and m —n < 4.
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Proof. Let P(x) = Y a;2" be a unimodal polynomial of degree m with nonnegative
i=0

m—1
coefficients and mode n, and B(x) = Y. a;12°. Then P(x) = aog + zB(z). For
i=0

notational simplicity, we let P(z + 2) = > d;x".
i=0

We first prove the unimodality of P(z + z) under the conditions by induction on
n.

First of all, we prove the result under condition (1). It is sufficient to prove that,
for a nonnegative integer n and z > 2, a unimodal polynomial P(x) with nonnegative
coefficients and mode n, of degree m satisfying

m<n+|2z] + 1, (8)

P(x + z) is unimodal.

The initial step: If n = 0, from the condition m < n+[2z]+1, we get m < |2z]+1
and therefore [=£] < [22E2] = 1. Tt follows from Theorem 3.2 that P(x + z) is
unimodal.

The inductive step: Now we assume that the result holds for less than n and
prove it for n(> 1).

Case 1. (1 <)n < [z].

In this case m < n+ [2z] +1 <32+ 2, so [755] < 2. By Theorem 3.2, we have

dy 2 d3 = -+ 2 dy. (9)

By the definition of B(x), B(x) is a unimodal polynomial of degree m — 1 with mode
n — 1. By the condition m < n+ [2z] + 1, we get (m —1) < (n — 1)+ [2z] + 1

m—1
satisfying Eq. (8) for B(z). So B(z +2) = . bz’ is unimodal by the inductive

i=0
hypothesis. Since m < 3z + 2, we have [m;};z} < 2. Combining with Theorem 3.2,
we get by > b3 > -+ > b,,_1. Hence, either
b1 = by
or
bo > by = bs.
Since P(x + 2) = ag + (v + 2) B(z + 2),
dy = by + zbo, (10)
dy = by + zby, (11)
do =ag + Zbo. (12)

Subcase 2.1 b; > by.
P

m—1 m—1

Since n > 1, a; > ag. Therefore by = B(z) = . a;12' = >, ajp12' + a3 >
i=0 i=1

a; = ag. Combining with Egs. (11) and (12), we have d; > dy. Hence we prove that

P(z + z) is unimodal by Eq. (9).
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Subcase 2.2. by > by = bs.

In this case, by Egs. (10) and (11), dy = by + zby > by + zby = dy. Combining
with Eq. (9), we get P(x+ 2) is unimodal regardless of relative magnitude of dy and
di.

Case 2. n > [z] + 1.

In this case | 5| > |25 ] = 1. By Theorem 3.2, dy < d;. Similar to the proof

in Case 1, we can show that B(z) is a unimodal polynomial with mode n — 1 of

degree m — 1 satisfying Eq. (8). By the inductive hypothesis B(x + z) is unimodal.
Combining with Lemma 3.5, (:1: + 2)B(z + 2) = Z c;x’ is unimodal. Note that

do = ag + co,d; = ¢; for 1 < i < m. It follows from do < dy that ¢y < ¢;. So there
is some positive integer 1 < k; < m such that cop <c; < - < 2 g 2 cee 2Oy
by the unimodality of (x + 2)B(x + z). Therefore dy < -+ < dy, = dgy1 = -+ = dpp.
Combining with dy < dy, we get dg < dy < --- < dyp > dpyq = -+ = d,,. Hence
P(z + z) is unimodal.

Now, we prove P(z+z) is unimodal under the condition (2): z = 1 and m—n < 4.
Similarly, it is sufficient to prove that, for nonnegative integer n and a unimodal
polynomial P(z) with mode n of degree m satisfying m < n+4, P(x+1) is unimodal.
i.e., it is sufficient to prove P(z + z) is unimodal provided that m < n + 2z + 2 and
z = 1. In order to reduce the proof by repeating the proof above, we make this
treatment.

The initial step. If n = 0, then m < 4. If m < 3, then [2=2] < [2] = 1.

z+1 2
By Theorem 3. 2 P(z + z) = P(x + 1) is unimodal with mode 0 or 1. If m = 4,

then P(x) = Z a;rt = ay Z 2 + C(z), where C(z) is a unimodal polynomial of
degree < 3 Wlth mode n = O Similar to the proof above in the case m < 3,

4

C(x +z) = C(x +1) is unimodal with mode 0 or 1. Combining with a; > (x +1)" =
i=0

as(5 + 10z + 1022 + 523 + %), we get P(x + 1) is unimodal.

The induction step. We can give the parallel proof as the case under condition
(1) by substituting [2z] + 1 for 22 + 2 = 4, and n + [2z] + 1 in Eq. (8) for
n+ |2z +2=n+4.

We now prove the locations of modes of P(z+ z). If the condition (1) is satisfied,

then 72 — 25 < % < 1 and further [755] — [15] < 2 by simple analysis.
Hence P(z + z) has a mode m(z) or m(z) — 1 or m(z) —2 by Theorem 3.2. Likewise,

if the condition (2) is satisfied, then F — & < 2. Therefore || — [5] < 2. Note

that m(1) = [% ] and n(1) = [%] in this case. Hence P(z + 1) has a mode m(z) or

m(z) — 1 or m(z) — 2 by Theorem 3.2. O

In fact, the condition given in Theorem 3.6 is sharp, i.e., if z =1 and m —n =5,
or z > 2 and m —n = |2z] + 2, we cannot guarantee that P(x + z) is unimodal.

Example 3.7. Let P(z) = 12 + x + 2% + 2% + 2* + 2°, which is unimodal with
m =5,n=0. Then P(z + 1) = 17 + 152 + 202 + 152 + 62* + 2° is not unimodal.
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Lemma 3.8. [10] Let P(z) = Y_ x' for some nonnegative integer m and z > 1 . If
i=0
2zm(z) is an integer, then P(x + z) has the unique mode m(z).

Example 3.9. Let P(z) = (c+1)+a+2%+-- -+ 22212 = ¢4 B(x) for nonnegative

real numbers ¢ and z > 2. Obviously, P(z) is unimodal of degree m = |2z] + 2 with

. . . __ 2z|+2—2
the unique mode n = 0. Suppose 2z is an integer. Then zm(z) = [t iil 1 =
z[%ﬂ = 2z. By Lemma 3.8, B(z + z) has the unique mode m(z) = 2. It follows
that P(x + z) = ¢+ B(z + 2) is not unimodal for a sufficient number c.

In addition, three possible modes of P(x + z) in Theorem 3.6 are reached.

Example 3.10. Suppose z > 2 is an integer and d is a positive integer. Let P(x) =
(d+2)(2+1) ‘ (d+1)(z+1) ‘ d(z+1)+1
a Y, x+b > z+c >, afora,bc>0. 1Itis obvious that P(zx) is
i=0 i=0 i=0
unimodal of degree m = (d + 2)(z + 1) with a mode n = d(z + 1) + 1. Then

m(z) = [m=2] = [WAED =) — g1 9 and m—n = 22+1 = |2z] + 1. It follows from

z+1 z+1
(d+2)(z+1) (D))
Theorem 3.6 that P(x+z) is unimodal. By Lemma 3.8, Y (z+2)", > (z+
i=0 i=0
) d(z+1)+1 A
z)', Y (x4 2)" have the unique modes d + 2,d + 1,d, respectively. Note that
i=0

(d+1)(z+1)(2) =d+1,d(z+ 1)+ 1(2) = d. Hence P(z + z) has a unique mode
m(z) = d + 2 for fixed b, ¢ and sufficient large a. Similarly, P(x + z) has a unique
mode m(z) — 1 = d + 1 for fixed a,c and sufficient large b, P(z + z) has a unique
mode m(z) — 2 = d for fixed a,b and sufficient large c.

In addition, from Theorem 3.6, we can directly obtain the following corollary.

Corollary 3.11. Let P(z) be a unimodal polynomial of degree m with nonnegative
coefficients and mode n. If m —n < 4, then for any positive integer z, P(x + z) is
unimodal with a mode m(z) or m(z) — 1 or m(z) — 2.

4 Conclusions

If P(x) is a polynomial with nonnegative and nondecreasing coefficients, then for any
positive real number z, P(z+ 2) is unimodal. Does this fact generalize to a unimodal
polynomial P(z) with nonnegative coefficients? Unfortunately, the result does not
hold. In this paper we investigate under what conditions P(x + z) is unimodal.
If the real number z = 1 or z > 2, then we give respective sharp conditions for
completely answering this problem (i.e. Theoerem 3.6), and we also locate a mode
of P(x+ z). Hence there is an open question which is worthy of further exploration:
is there a corresponding result similar to Theorem 3.6 for real numbers 0 < z < 1
and 1 < z<27
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